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Abstract: Tectona grandis is a traditional Dai medicine plant belonging to the Lamiaceae family, which
can be used to treat malaria, inflammation, diabetes, liver disease, bronchitis, tumors, cholelithiasis,
jaundice, skin disease and as an anti-helminthic. To find more novel therapeutic agents contained
in this medicinal plant, the antioxidant, anti-inflammatory and anti-diabetic activities of T. grandis
methanolic extract, fractions and compounds were evaluated. In this study, 26 compounds were
isolated from the leaves and branches of T. grandis. Their structures were identified based on ex-
tensive spectral experiments, including NMR, ESI-MS and comparison with published spectral
data. Among them, compounds 1–2, 4–6, 9–14 and 16–22 were reported for the first time for this
plant. The antioxidant activity screening results showed that compounds 5, 15 and 23 had potent
antioxidant capacities, with SC50 values from 0.32 to 9.92 µmol/L, 0.92 to 1.10 mmol Trolox/L
and 1.02 to 1.22 mmol Trolox/L for DPPH, ABTS and FRAP, respectively. In addition, their anti-
inflammatory effects were investigated by releasing TNF-α, IL-1β and IL-6 through the use of mouse
monocytic macrophages (RAW 264.7). Compounds 1, 13, 18 and 23 had the effects of reducing the
expression of inflammatory factors. Compounds 13 and 18 were reported for the first time for their
anti-inflammatory activities. Furthermore, the methanolic extract (ME), petroleum ether extract
(PEE) and EtOAc extract (EAE) of T. grandis showed significant glucose uptake activities; compounds
21 and 23 significantly promoted glucose uptake of 3T3-L1 adipocytes at 40 µM. Meanwhile, com-
pounds 4, 5 and 7 showed significant inhibitory activities against α-glucosidase, with IC50 values
of 14.16 ± 0.34 µmol/L, 19.29 ± 0.26 µmol/L and 3.04 ± 0.08 µmol/L, respectively. Compounds 4
and 5 were reported for the first time for their α-glucosidase inhibitory activities. Our investigation
explored the possible therapeutic material basis of T. grandis to prevent oxidative stress and related
diseases, especially inflammation and diabetes.

Keywords: Tectona grandis; chemical composition; antioxidant activity; anti-inflammatory activity;
α-glucosidase; glucose uptake

1. Introduction

Tectona grandis has been widely used in traditional Dai medicine. It mainly grows
in tropical and subtropical southwestern China, India, Laos and northern Thailand. It is
a large deciduous tree, measuring up to 40–50 m, with a deeply fluted trunk that can reach
2–2.5 m in diameter and a brown or gray bark [1]. Previous phytochemical research reported
that T. grandis was not only rich in flavonoids and quinones, but also contained pheno-
lic, steroids, phenylpropanoids, fatty esters and other compounds [2]. In ethnomedicine,
T. grandis is commonly used to treat wounds, pain, fever, malaria, inflammation, diabetes,
liver disease, helminthic infection, bronchitis, tumors, cholelithiasis, jaundice, skin disease
and bacterial infection [3–7]. Pharmacological studies conducted on the methanolic extracts
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of T. grandis bark and flowers established its hypoglycemic activities [8,9]. The leaf extract of
T. grandis has significant wound healing activity [10]. Hydrochloric acid extract of T. grandis
leaves exhibited antitumor activity in the female Swiss mouse malaria model, thereby
validating its traditional use in the treatment of tumors [11]. Traditional use of T. grandis as
an antibacterial and anti-inflammatory medicine was validated by a study conducted by
Bitchagno [12], who reported that the ethanolic extract from the fruit of T. grandis exhibited
a remarkable inhibitory effect on four Gram-negative bacteria, and the methanolic extract
of T. grandis woods demonstrated significant analgesic activity and inhibited edema action
in writhing test and paw edema test rats [13]. In summary, T. grandis has a wide range of
pharmacological properties. However, the previous modern pharmacological research on
T. grandis mainly focused on antibacterial and analgesic aspects [14,15]; the components of
antioxidative, anti-inflammatory and anti-diabetes effects of T. grandis have not yet been
studied in detail. It is worthwhile to explore the therapeutic material basis and effects of
T. grandis in treating oxidative stress and related diseases, such as inflammation
and diabetes.

Reactive oxygen species (ROS) have important roles in a wide range of physiolog-
ical processes; however, oxidative stress and the resultant oxidative damage have been
implicated in many human diseases, including cardiovascular disease, neurodegenerative
diseases, inflammation, diabetes and cancer and also in the aging process [16–18]. Extensive
or prolonged exposure to ROS results in oxidative stress, which is a deleterious process
that damages lipids, proteins and DNA in the cell. Excessive ROS can cause damage to cell
structure and function and induce somatic cell mutation and tumor transformation [19].
It is noteworthy that excessive ROS produced during oxidative metabolism can induce
inflammatory processes leading to the production of many inflammatory mediators such
as TNF-α, IL-1β and IL-6 [20], which can lead to a variety of chronic diseases. As such,
antioxidants play an important role in anti-inflammation and protection against oxidative
damage to proteins and DNA. Meanwhile, oxidative stress and inflammation play a key
role in the development of diabetes and its complications [21,22]. When excessive amounts
of ROS are produced in the body, the internal oxidation and antioxidant effects will be
out of balance, and lead to oxidative stress and ultimately damage the macromolecules
involved in insulin release [23]. According to the International Diabetes Federation (IDF),
globally, the number of cases of diabetes are predicted to increase from 537 million in 2021
to 643 million by 2030 [24]. α-Glucosidase is an important catalytic enzyme involved in the
hydrolysis of carbohydrates in the gastrointestinal tract, which enables monosaccharides
to be absorbed into the blood, thus reducing postprandial glucose fluctuations in diabetic
patients. It has been confirmed that α-glucosidase inhibitors possessing delayed α-glucose
uptake can reduce postprandial blood glucose levels [25]. In view of this, one of the
therapeutic strategies used to manage diabetes focuses on the inhibition of α-glucosidase.

Herein, we reported the isolation and structure identification of compounds 1–26 from
T. grandis, together with the exploration of their potential antioxidant, anti-inflammatory,
α-glucosidase inhibition and glucose uptake activities. Firstly, DPPH, ABTS and FRAP
methods were used to detect and analyze the antioxidant activities and the protective effects
against oxidative damage to DNA and protein. Secondly, different types of compounds
were screened for the inhibitory effects of TNF-α, IL-1β and IL-6 inflammatory factors.
Finally, glucose uptake assays and α-glucosidase inhibition experiments were used to
explore its anti-diabetes effect. The potent antioxidant capacities of compounds 15 and 23
suggested that they might be potential natural candidate drugs to inhibit oxidative stress
and prevent DNA and protein oxidative damage.

2. Materials and Methods
2.1. Plant Material

Branches and leaves of T. grandis were collected from Xishuangbanna Tropical Botan-
ical Garden, Chinese Academy of Sciences, in August 2020. The original plants were
identified by Hua Shuai, an engineer at the Xishuangbanna Tropical Botanical Garden,
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Chinese Academy of Sciences. The voucher specimen (20200801) was given to the Innova-
tive Drug Research Group, Xishuangbanna Tropical Botanical Garden, Chinese Academy
of Sciences.

2.2. General Experimental Procedures

ESI-MS was carried out using a Bruker Micro ToF-Q II mass spectrometer (Bruker
Daltonics, Fremont, CA, USA). NMR spectra were recorded using a Bruker AV II-600 or
400 MHz spectrometer (Bruker, Fällanden, Switzerland). Column chromatography (CC)
was run on silica gel (80–100 mesh or 200–300 mesh) (Qingdao Marine Chemical Co.,
Ltd., Qingdao, China), LiChroprep RP-C18 gel (Merck, 40–63 µm) and Sephadex LH-20
(GE Healthcare). Fractions were monitored using thin layer chromatography (TLC) and
spots were visualized by heating silica gel plates sprayed with 10% H2SO4/CH3CH2OH.
Semipreparative HPLC was run on a Shimadzu system (Shimadzu Corporation, Nakagyo-
ku, Kyoto, Japan) with a Shim-pack Scepter C18-120 (4.6 mm × 250 mm, 5 µm). RAW
264.7 mouse mononuclear macrophages and 3T3-L1 mouse preadipocytes were purchased
from the American Type Culture Collection (ATCC, Manassas, VA, USA). High glucose
DMEM, low glucose DMEM, Pen-Strep solution (P/S), insulin, certified fetal bovine serum
(FBS), special newborn calf serum (NBCS) and phosphate-buffered saline (PBS) were pur-
chased from Biological Industries (Shanghai, China). 3-Isobutyl-1-methylxanthine (IBMX)
and dexamethasone (DEX) were obtained from Sigma-Aldrich (St. Louis, MO, USA).
Rosiglitazone (ROSI) was purchased from Meilun Biotech Co., Ltd. (Dalian, Liaoning,
China). Ascorbic acid, folin-phenol, 5 × protein loading buffer, the sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) gel kit and dimethyl sulfoxide (DMSO)
was obtained from Solarbio (Beijing, China). Lipopolysaccharide (LPS) was obtained from
ACMEC (Beijing, China). The cytokine kit was purchased from Kunming Zanna Biotech
Co., Ltd. (Kunming, China), glucose test kit was purchased from Rongsheng Biotech Co.,
Ltd. (Shanghai, China). CellTiter 96® AQueous One Solution Cell Proliferation Assay
was obtained from Promega Corporation (Madison, WI, USA). α-Glucosidase (33 U/mg),
acarbose, 4-nitrophenyl-α-D-glucopyranoside (pNPG) and ascorbic acid were purchased
from Yuanye Biotech Co., Ltd. (Shanghai, China). The absorbance was measured using
a microplate reader (Molecular Devices, Palo Alto, Santa Clara, CA, USA). 2,2′-Azobis
(2-methylpropionamidine) dihydrochloride (AAPH) was purchased from GlpBio (Mont-
clair, America). pBR322 DNA was purchased from Takara (Beijing, China). The 5 × DNA
loading buffer was purchased from Shanghai Generay Biotech Co., Ltd. (Shanghai, China).
Agarose and rutin were obtained from Aladdin (Shanghai, China). Bovine serum al-
bumin (BSA) was purchased from BioFroxx (Einhausen, Germany). 2,2′-azino-bis (3-
ethylbenzothiazoline-6-sulfonic acid) (ABTS) and ferric-reducing antioxidant power (FRAP)
detection reagents were purchased from Suzhou Comin Biotechnology Co., Ltd. (Jiangsu,
China). Gallic acid, sodium nitrite, aluminum nitrate, sodium carbonate, 2,2-diphenyl-1-
picrylhydrazyl (DPPH), brilliant blue R and sodium hydroxide were purchased from
Macklin (Shanghai, China). The other chemicals and reagents were purchased from
local suppliers.

2.3. Extraction, Isolation and Purification

Dried branches and leaves of T. grandis (16 kg) were extracted using heating reflux for
3 h in 90% methanolic (100 L × 3 times). The filtrate was combined and concentrated under
vacuum to obtain a methanolic extract (ME, 1.55 kg), then sequentially partitioned with
petroleum ether, EtOAc, n-BuOH and water, respectively, to obtain petroleum ether extract
(PEE, 793 g), EtOAc extract (EAE, 141 g), n-BuOH extract (NBE, 247 g) and water extract
(WE, 369 g).

The EtOAc extract (141 g) was purified using silica gel CC and eluted with a gradient
of petroleum ether: EtOAc (from 50:1 to 1:1, v/v) and CHCl3: MeOH (from 10:1 to 1:1, v/v)
to provide six fractions (Fr. A–Fr. F). Fr. C (15.9 g) was further isolated using silica gel CC
eluted with petroleum ether: EtOAc (from 100:1 to 1:1, v/v) to obtain three subfractions
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(C1–C3). Subfraction C3 (9.23 g) was further isolated using silica gel CC eluted with
petroleum ether: EtOAc (from 50:1 to 1:1, v/v), Sephadex LH-20 eluted with CHCl3:
MeOH (1:1, v/v), semi-preparative HPLC and eluted with methanol: H2O (45:55, v/v)
to obtain compounds 9 (1.2 mg), 10 (2 mg), 11 (15.8 mg) and 12 (2.8 mg). Fr. D (95.4 g)
was purified repeatedly using silica gel CC eluted with EtOAc: MeOH (from 80:0 to 0:1,
v/v) to obtain four subfractions (D1–D4). Subfraction D2 (39.23 g) was purified repeatedly
using silica gel CC eluted with EtOAc: MeOH (from 50:0 to 0:1, v/v), MCI (small pore
resin gel column, polystyrene-based inverse resin filler) eluted with MeOH: H2O (from
10:90 to 100:0, v/v), Sephadex LH-20 eluted with CHCl3: MeOH (from 3:1 to 1:1, v/v),
semi-preparative HPLC eluted with methanol: H2O (form 70:30 to 55:45, v/v) to obtain
compounds 14 (2 mg), 16 (4 mg), 17 (10 mg), 18 (1.9 mg), 22 (0.8 mg) and 23 (4.9 mg). Fr. E
(25 g) was chromatographed repeatedly with a gradient of petroleum ether: EtOAc (from
100:0 to 1:1, v/v), ODS (octadecylsilane) and eluted with petroleum ether: EtOAc (from
10:1 to 1:1, v/v), silica gel CC eluted with petroleum ether: EtOAc (from 50:1 to 1:1, v/v),
Sephadex LH-20 eluted with CHCl3: MeOH (1:1, v/v) to obtain compounds 13 (4 mg), 19
(3.7 mg), 20 (2.4 mg) and 21 (5 mg).

The n-BuOH extract (247.3 g) was purified using D101 macroporous resin and eluted
with EtOH: H2O (from 20:80 to 100:0, v/v) to obtain three fractions (Fr. I–Fr. III). Fr. I (66.3 g)
was purified repeatedly using silica gel CC eluted with CHCl3: MeOH (from 100:0 to 1:1,
v/v) to obtain four subfractions (I1–I4). Subfraction I2 (15.7 g) was purified repeatedly
using silica gel CC eluted with CHCl3: MeOH (from 20:0 to 1:1, v/v), MCI eluted with
MeOH: H2O (from 10:90 to 100:0, v/v), Sephadex LH-20 eluted with CHCl3: MeOH (1:1,
v/v), semi-preparative HPLC eluted with methanol: H2O (from 70:30 to 50:50, v/v) to
obtain compounds 1 (2.1 mg), 2 (0.8 mg), 3 (1.2 mg), 4 (1.6 mg) and 5 (1 mg). Fr. II (25.9 g)
was further isolated using silica gel CC eluted with petroleum ether: EtOAc (from 100:1 to
10:1, v/v) to obtain compounds 15 (236 mg), 24 (200.7 mg), 25 (209 mg) and 26 (50.7 mg). Fr.
III (35.2 g) was purified repeatedly using silica gel CC eluted with CHCl3: MeOH (from
100:1 to 1:1, v/v) and petroleum ether: EtOAc (from 80:1 to 1:1, v/v), Sephadex LH-20
eluted with CHCl3: MeOH (1:1, v/v), semi-preparative HPLC eluted with methanol: H2O
(80:20, v/v) to obtain compounds 6 (30.6 mg), 7 (8 mg) and 8 (0.6 mg).

2.4. DPPH Free Radical Scavenging Assay

The DPPH free radical scavenging activities of T. grandis methanolic extract, different
fractions and its compounds were conducted according to Dr. Yang et al. [26]. The concen-
tration gradient of methanolic extract and different fractions was 160.0, 80.0, 40.0, 20.0, 10.0,
5.0 and 2.5 µg/mL, the concentration gradient of VC was 100.0, 50.0, 25.0, 12.5, 6.3, 3.1 and
1.6 µg/mL and the detection concentration of compounds (1–23) was 50 µM. Initially, the
samples were dissolved in DMSO to different concentrations, and the DPPH was dissolved
in PBS (0.1 M, pH 6.8) to 0.1 mM. Then, 190 µL DPPH solution and 10 µL sample were
mixed in each well of a 96-well plate and incubated for 30 min at room temperature in the
dark. The absorbance was measured using a microplate reader at 517 nm, and ascorbic acid
was used as a positive control. The DPPH scavenging activity was calculated according to
the following formula:

Scavenging activity (%) = [1 − (A1 − A2)/(A3 − A4)] × 100% (1)

where A1 is the OD value of the tested samples, A2 is the OD value of the sample control,
A3 is the OD value of the negative control and A4 is the OD value of the blank control. The
analysis was performed in triplicates and the results were described as SC50 values.

2.5. ABTS Radical Cation Scavenging Assay

The ABTS radical cation (ABTS•+) scavenging activities were conducted in accordance
with the instructions for the ABTS kit. The total antioxidant activity values were estimated
using the Trolox equivalent antioxidant capacity test. The detection concentration of
methanolic extract and different fractions was 80 µg/mL, and the detection concentration
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of compounds (1–23) was 50 µM. The ABTS working solution was prepared by taking 1
bottle of reagent 2 and adding 11 mL reagent 1, shaking it for 20 min, letting it stand and
taking the supernatant for use. Then, 190 µL of ABTS working reagent was mixed with
10 µL sample and incubated at room temperature for 5 min. The absorbance was then
measured using a microplate reader at 734 nm, and the scavenging activity was calculated
according to Equation (2). The blank control group used DMSO to replace the sample.

Scavenging activity (mmol Trolox/L) = 1.424 × (A1 − A2 + 0.0012) (2)

where A1 is the OD value of the blank control and A2 is the OD value of the tested samples.
The analysis was performed in triplicates, 1.424, 0.0012 was a constant.

2.6. Ferric Reducing Antioxidant Power Assay

The FRAP assay was determined in accordance with the instructions for the FRAP kit.
The total antioxidant activity values were estimated using the Trolox equivalent antioxidant
capacity test. Initially, the detection concentration of methanolic extract and different
fractions was 80 µg/mL, and the detection concentration of compounds (1–23) was 50 µM.
Then, 190 µL of FRAP working reagent was mixed with 10 µL sample and incubated at
room temperature for 20 min. The absorbance was then measured using a microplate
reader at 593 nm, and the scavenging activity was calculated according to Equation (3). The
blank control group used DMSO to replace the sample.

Scavenging activity (mmol Trolox/L) = 0.8054 × (A1 − A2 − 0.0134) (3)

where A1 is the OD value of the blank control and A2 is the OD value of the tested samples.
The analysis was performed in triplicates, 0.8054, 0.0134 was a constant.

2.7. DNA Oxidative Damage Assay

The effects of T. grandis methanolic extract, different fractions and its compounds 15,
19 and 23 on the prevention of DNA oxidative damage were carried out using the method
of Han et al. [27]. Initially, 8 µL pBR322 DNA (50 µg/mL) in PBS (0.1 M, pH 6.8) was
mixed with different concentrations of T. grandis fractions and its compounds (12 µL) and
incubated in water at 37 ◦C for 30 min. Then, 5 µL AAPH (20 mM) was added to the
mixture and the reaction continued for 60 min. The control group used the same volume of
PBS (0.1 M, pH 6.8) to replace AAPH. The pre-treated samples were mixed with 5 × DNA
loading buffer, and the mixture (8 µL) was taken for 1.0% agarose gel electrophoresis for
25 min. After electrophoresis, the gels were stained with ethidium bromide for 20 min.
Finally, images were taken using a DNA gel imaging system (ChampChemi 610, Beijing
sage creation Co., Ltd. Beijing, China).

2.8. Protein Oxidative Damage Assay

The protective activities of T. grandis methanolic extract, different fractions and its
compounds 15 and 23 on protein oxidative damage were carried out using the method of
Yang et al. [28]. Initially, 20 µL BSA solutions (1 mg/mL) in PBS (0.1 M, pH 6.8) were mixed
with different concentrations of fractions (40 µL) and compounds (40 µL) and incubated
in water at 37 ◦C for 30 min. Then, 40 µL AAPH (160 mM) was added to the mixture and
the reaction continued for 4 h. The control group used the same volume of PBS (0.1 M,
pH 6.8) to replace AAPH. The pre-treated samples were added to 5 × SDS loading buffer
and treated in water at 95 ◦C for 15 min. The mixture (16 µL) was taken for 10% SDS-PAGE
for 95 min. After electrophoresis, the gels were stained with Coomassie brilliant blue R-250
dye (0.25%, w/v), and then the gels were decolorized with the decolorizing solution. Finally,
images were taken using the SDS-PAGE gel imaging system (ChampChemi 610, China)
and the grayscale of Western blot was analyzed using Image J software.
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2.9. Anti-Inflammatory Activity and Cell Viability Assay

In order to increase cytokine production, macrophages were treated with LPS at a final
concentration of 1 µg/mL, and then with T. grandis compounds at 40 µM. The compounds
were solubilized in DMEM medium containing 0.1% DMSO. Dexamethasone was employed
as a positive control (5 µg/mL). A centrifuge was used to separate the supernatant from
the cells after 48 h of incubation, with three replicates per group. Quantification of TNF-α,
IL-1β and IL-6 secretion was achieved by following the ELISA manufacturer’s instructions.
Then, absorbance was measured at 450 nm. Relative TNF-α, IL-1β and IL-6 expression
was calculated according to Equation (4). Following the inflammatory factor test, cell
viability was detected by CellTiter96® Aqueous One Solution Cell Proliferation Assay.
Then, 20 µL/well CellTiter96® Aqueous One Solution Cell Growth Assay reagent was
added to the plate and incubated at 37 ◦C for 8 h, absorbance was measured at 570 nm and
relative cell viability was calculated according to Equation (5).

Relative content of inflammatory cytokines (%) = (A1/A2)/A3 × 100% (4)

where A1 is the concentrations value of inflammatory cytokines of each group, A2 is the
relative cell viability of each group (model group is 100) and A3 is the concentration of
inflammatory cytokines of model group.

Cell viability rate (%) = B1/B2 × 100% (5)

where B1 is the OD value of each fraction group or positive control group and B2 is the OD
value of the model control.

2.10. α-Glucosidase Inhibition Assay

The inhibitory effect on α-glucosidase was measured according to the previous report
method with slight modifications [29]. The 20 mM sample dissolved in DMSO was diluted
to 50 µM in PBS, 10 µL sample was mixed with 50 µL of 0.1 µ/mL α-glucosidase solution
in 0.1 M phosphate buffer (pH 6.5) in a 96-well microplate and 10 µL PBS was used as
a blank control. The mixture was incubated at 37 ◦C for 10 min before adding 40 µL of
5 mM 4-nitrophenyl-α-D-glucopyranoside to each well. After 30 min of incubation at
37 ◦C, the reaction was terminated by adding 50 µL of 0.1 M Na2CO3 to this mixture.
The released 4-nitrophenol absorbance measurements were carried out using a microplate
reader (SpectraMax190, USA) at 405 nm. Acarbose was used as the positive control.
The enzyme inhibitory activity was expressed as % inhibition and was calculated via
the equation:

Inhibition rate (%) = (A1 − A2)/A1 × 100% (6)

where A1 is the OD value of the negative control and A2 is the OD value of each fraction
group or positive control group.

2.11. Glucose Uptake and Cell Viability Assay

Mouse 3T3-L1 preadipocyte cells were maintained in DMEM supplemented with 10%
NBCS and 1% P/S at 37 ◦C in a humidified environment with 5% CO2, and then began
starvation when the cells grew to 80% confluence (day 0). To facilitate differentiation to
adipocytes, 2-days post-confluent cells were placed in 10% FBS DMEM supplemented with
1% P/S, 0.5 mM IBMX, 1 µM Dex, 1 µM Rosi and 100 nM insulin (day 2). For another
three days (day 5), the medium was changed to high glucose DMEM containing 10% FBS,
1% P/S and 100 nM insulin for one day (day 6), and the 3T3-L1 preadipocytes were fully
differentiated into mature adipocytes.

Next, differentiated 3T3-L1 adipocytes at a density of 5 × 104 cells/well were cultured
with DMEM in 96-well plates and divided into the blank control group, model group,
insulin group (100 ng/mL), berberine group (10 µg/mL) and compound groups (40 µM).
Then, 10 µL samples were mixed with 190 µL medium and added to individual 3T3-L1
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adipocytes. This was repeated 3 times. After 24 and 48 h of culture, glucose uptake
was initiated by the addition of 10 µM medium and 190 µL glucose detection reagent to
each well, reaction at 37 ◦C for 15 min, and the glucose uptake was measured according
to the operating instructions of the glucose content determination kit. Following the
glucose uptake test, cell viability was detected by CellTiter96® Aqueous One Solution Cell
Proliferation Assay. Then, 20 µL/well CellTiter96® Aqueous One Solution Cell Growth
Assay reagent was added to the plate and incubated at 37 ◦C for 8 h. Absorbance was
measured at 490 nm and relative cell viability was calculated according to Equation (7).

Cell viability rate (%) = A1/A2 × 100% (7)

where A1 is the OD value of each fraction group or positive control group and A2 is the
OD value of the blank control.

2.12. Statistical Analysis

All data are presented as the means ± SD from 3 replicates. The differences between
different samples were assessed using a one-way analysis of variance (ANOVA). It was
considered a significant difference when the p value was less than 0.05. All analyses were
performed using Graph Pad Prism 7.0 software (Graph Pad Software Inc., San Diego,
CA, USA).

3. Results and Discussion
3.1. Structure Elucidation

Twenty-six compounds (Figure 1) were isolated from the dried branches and leaves
of T. grandis, including luteolin-7-O-β-D-glucoside (1) [30], acacetin-7-O-β-glucuronide
(2) [31], apigenin (3) [32], apigenin-7-O-β-D-glucuronide methyl ester (4) [33], vitegno-
side (5) [34], luteolin (6) [35], rhamnetin (7) [36], quercetin (8) [37], isozyganein (9) [38],
1-hydroxy-6-hydroxymethyl anthraquinone (10) [39], luteolin-3′-O-glucuronide (11) [40],
1-O-methylemodin (12) [41], 3-carbomethoxy-1-hydroxy-9,10-anthraquinone (13) [42], 3-
hydroxy-2-methyl-9,10-anthraquinone (14) [43], verbascoside (15) [44], 1H-indole-3-carboxylic
acid (16) [45], 3-hydroxy-4-methoxycinnamaladehyde (17) [46], 2β,3β,19α,23-tetrahydroxy-
urs-12-en-28-O-[β-D-glucopyranosyl (1-2)-β-D-glucopyranosyl] ester (18) [47], rel-(2α,3β)-7-
O-methylcedrusin (19) [48], 7S,8R-syringylglycerol-8-O-4′-(synapyl alcohol) ether (20) [49],
rel-5-(3S,8S-dihydroxy-1R,5S-dimethyl-7-oxa-6-oxobicyclo [1–3]oct-8-yl)-3-methyl-2Z,4E-
pentadienoic acid (21) [50], austrocortirubin (22) [51], gallic acid (23) [52], oleanolic acid
(24) [53], β-sitosterol (25) [54] and β-sitosterol 3-O-β-D-glucopyranoside (26) [55]. Among
them, compounds 1–2, 4–6, 9–14 and 16–22 were isolated from T. grandis for the first time.

Compound 1. C21H20O11. ESI-MS m/z 447 [M-H]−; 1H NMR (CD3OD, 500 MHz,) δH
7.79 (1H, d, H-2′), 7.62 (1H, dd, J = 8.5, 2.0 Hz, H-6′), 6.99 (1H, d, J = 8.5 Hz, H-5′), 6.60
(1H, s, H-3), 6.46 (1H, d, H-8), 6.21 (1H, d, J = 2.0 Hz, H-6), 4.61 (1H, s, H-1′′), 4.15 (1H,
d, J = 12.0 Hz, H-6′′a), 3.84 (1H, dd, J = 12.0, 6.6 Hz, H-6′′b), 3.64 (1H, m, H-5′′), 3.58 (2H,
overlapped, H-2′′,3′′), 3.44 (1H, m, H-4′′); 13C NMR (CD3OD, 125 MHz) δC 183.9 (C-4),
166.5 (C-7), 165.6 (C-2), 163.3 (C-9), 159.5 (C-5), 153.2 (C-4′), 147.0 (C-3′), 124.0 (C-1′), 123.6
(C-6′), 118.2 (C-5′), 116.9 (C-2′), 105.3 (C-10), 104.3 (C-3), 104.24 (C-1′′), 100.3 (C-6), 95.3
(C-8), 76.9 (C-2”), 76.8 (C-3′′), 74.6 (C-4′′), 72.9 (C-5′′), 64.4 (C-6′′).

Compound 2. C22H20O11. ESI-MS m/z 459 [M-H]−; 1H NMR (DMSO-d6, 500 MHz)
δH 12.98 (1H, s, 5-OH), 7.96 (2H, d, J = 8.8 Hz, H-2′,6′), 6.94 (2H, d, J = 8.8 Hz, H-3′,5′), 6.87
(1H, s, H-3), 6.86 (1H, d, J = 2.2 Hz, H-8), 6.47 (1H, d, J = 2.2 Hz, H-6), 5.36 (1H, s, H-1′′),
4.20 (1H, d, J = 9.6 Hz, H-5′′), 3.66 (3H, s, 4′-OCH3), 3.41–3.34 (2H, overlapped, H-3′′,4′′),
3.31 (1H, m, H-2′′); 13C NMR (DMSO-d6, 125 MHz,) δC 196.5 (C-6′′), 182.0 (C-4), 164.3 (C-7),
162.4 (C-2), 161.4 (C-5), 161.2 (C-4′), 156.9 (C-9), 128.6 (C-2′), 128.6 (C-6′), 121.0 (C-1′), 116.0
(C-3′), 116.0 (C-5′), 105.5 (C-10), 103.1 (C-3), 99.3 (C-1′′), 99.0 (C-6), 94.6 (C-8), 75.4 (C-3′′),
75.1 (C-5′′), 72.7 (C-2′′), 71.3 (C-4′′), 48.6 (4′-OCH3).
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Figure 1. Structures of compounds 1–26 from T. grandis.

Compound 3. C15H10O5. ESI-MS m/z 269 [M-H]−; 1H NMR (DMSO-d6, 600 MHz) δH
12.90 (1H, s, 5-OH), 7.82 (2H, d, J = 8.7 Hz, H-2′,6′), 6.90 (2H, d, J = 8.7 Hz, H-3′,5′), 6.52
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(1H, d, J = 2.2 Hz, H-8), 6.51 (1H, s, H-3), 6.42 (1H, d, J = 2.2 Hz, H-6); 13C NMR (DMSO-d6,
150 MHz) δC 183.1 (C-4), 165.1 (C-7), 164.9 (C-2), 163.4 (C-5), 161.9 (C-4′), 158.8 (C-9), 129.3
(C-2′,6′), 123.3 (C-1′), 116.9 (C-3′,5′), 105.4 (C-10), 104.1 (C-3), 99.7 (C-6), 94.7 (C-8).

Compound 4. C22H20O11. ESI-MS m/z 459 [M-H]−; 1H NMR (DMSO-d6, 600 MHz)
δH 7.95 (2H, d, J = 8.8 Hz, H-2′,6′), 6.94 (2H, d, J = 8.8 Hz, H-3′,5′), 6.86 (2H, d, J = 2.1 Hz,
H-3,8), 6.47 (1H, d, J = 2.1 Hz, H-6), 5.31 (1H, d, J = 7.4 Hz, H-1′′), 3.66 (3H, s, H-5′′); 13C
NMR (DMSO-d6, 150 MHz) δC 182.0 (C-4), 169.3 (C-6′′), 164.4 (C-2), 162.4 (C-7), 161.5 (C-5),
161.2 (C-4′), 157.0 (C-9), 128.7 (C-2′), 128.7 (C-6′), 120.9 (C-1′), 116.1 (C-3′,5′), 105.5 (C-10),
103.1 (C-3), 99.3 (C-6), 99.0 (C-1′′), 94.7 (C-8), 75.4 (C-3′′), 75.2 (C-5′′), 72.7 (C-2′′), 71.3 (C-4′′),
52.1 (5′′-OCH3).

Compound 5. C22H20O12. ESI-MS m/z 475 [M-H]−; 1H NMR (DMSO-d6, 600 MHz)
δH 12.93 (1H, s, 5-OH), 7.68–7.61 (2H, m, H-2′,6′), 6.96 (1H, d, J = 8.4 Hz, H-5′), 6.81 (1H,
s, H-3), 6.46 (1H, d, J = 1.8 Hz, H-8), 6.19 (1H, d, J = 1.8 Hz, H-6), 5.22 (1H, d, J = 7.3 Hz,
H-1′′), 4.21 (1H, d, J = 9.7 Hz, H-5′′), 3.30–3.38 (3H, overlapped, H-3′′,2′′,4′′), 3.16 (3H, s,
6′′-OCH3); 13C NMR (DMSO-d6, 150 MHz) δC 181.7 (C-4), 169.3 (C-6′′), 164.5 (C-7), 163.3
(C-2), 161.4 (C-5), 157.3 (C-9), 151.3 (C-4′), 145.2 (C-5′), 122.0 (C-2′), 121.1 (C-1′), 116.8 (C-3′),
113.9 (C-6′), 103.6 (C-10), 103.1 (C-3), 100.8 (C-1′′), 98.9 (C-6), 94.0 (C-8), 75.2 (C-5′′), 75.1
(C-3′′), 72.9 (C-2′′), 71.4 (C-4′′), 52.1 (5′′-OCH3).

Compound 6. C15H10O6. ESI-MS m/z 285 [M-H]−; 1H NMR (DMSO-d6, 500 MHz) δH
7.41 (1H, d, J = 2.1 Hz, H-6′), 7.39 (1H, d, J = 2.1 Hz, H-2′), 6.88 (1H, 1H, H-5′), 6.65 (1H,
1H, H-3), 6.42 (1H, s, J = 1.4 Hz, H-8), 6.17 (1H, s, J = 1.4 Hz, H-6); 13C NMR (DMSO-d6,
125 MHz) δC 181.6 (C-4), 164.2 (C-2), 163.8 (C-7), 161.4 (C-9), 157.3 (C-5), 149.7 (C-4′), 145.7
(C-3′), 121.4 (C-1′), 118.9 (C-6′), 116.0 (C-5′), 113.3 (C-2′), 103.6 (C-10), 102.8 (C-3), 98.8 (C-6),
93.8 (C-8).

Compound 7. C16H12O7. ESI-MS m/z 315 [M-H]−; 1H NMR (DMSO-d6, 500 MHz) δH
12.48 (1H, s, 5-OH), 7.71 (1H, d, J = 2.1 Hz, H-2′), 7.56 (1H, dd, J = 8.5, 2.1 Hz, H-6′), 6.88
(1H, d, J = 8.5 Hz, H-5′), 6.69 (1H, d, J = 2.1 Hz, H-8), 6.34 (1H, d, J = 2.1 Hz, H-6), 3.85 (3H,
s, 7-OCH3); 13C NMR (DMSO-d6, 125 MHz) δC 175.9 (C-4), 164.8 (C-7), 160.3 (C-5), 156.0
(C-9), 147.8 (C-2), 147.2 (C-4′), 145.0 (C-3′), 136.0 (C-3), 121.8 (C-6′), 120.0 (C-1′), 115.5 (C-2′),
115.2 (C-5′), 104.0 (C-10), 97.4 (C-6), 91.9 (C-8), 56.0 (7-OCH3).

Compound 8. C15H10O7. ESI-MS m/z 301 [M-H]−; 1H NMR (DMSO-d6, 500 MHz) δH
7.74 (1H, s, H-2′), 7.64 (1H, d, J = 8.4, 2.0 Hz, H-6′), 6.88 (1H, d, J = 8.4 Hz, H-5′), 6.39 (1H, d,
J = 2.0 Hz, H-8), 6.19–6.17 (1H, m, J = 2.0 Hz, H-6); 13C NMR (DMSO-d6, 125 MHz) δC 177.4
(C-4), 165.7 (C-7), 162.6 (C-5), 158.3 (C-9), 148.9 (C-2), 148.1 (C-4′), 146.3 (C-3′), 137.3 (C-3),
124.2(C-1′), 121.7 (C-6′), 116.3 (C-5′), 116.1 (C-2′), 104.6 (C-10), 99.3 (C-6), 94.5 (C-8).

Compound 9. C15H10O4. ESI-MS m/z 253 [M-H]−; 1H NMR (CD3OD, 600 MHz) δH
8.04 (1H, s, J = 8.4 Hz, H-8), 7.72 (1H, d, J = 8.4 Hz, H-4), 7.67 (1H, t, J = 7.8 Hz, H-7), 7.52
(1H, s, H-3), 7.26 (1H, d, J = 7.8 Hz, H-6), 2.33 (3H, s, 2-CH3); 13C NMR (CD3OD, 150 MHz)
δC 189.4 (C-9), 183.9 (C-10), 163.6 (C-5), 163.5 (C-1), 138.0 (C-3), 137.3 (C-7), 135.3 (C-9a),
133.8 (C-8a), 131.1 (C-4a), 125.1 (C-6), 120.0 (C-8), 120.0 (C-4), 117.3 (C-10a), 112.7 (C-2), 16.6
(2-CH3).

Compound 10. C15H10O4. ESI-MS m/z 253 [M-H]−; 1H NMR (CD3OD, 600 MHz) δH
12.61 (1H, s, 1-OH), 8.31 (2H, d, J = 8.0 Hz, H-8,5), 7.85 (2H, t, J = 8.0 Hz, H-7,4), 7.69 (1H, t,
J = 8.0 Hz, H-3), 7.33 (1H, d, J = 8.0 Hz, H-2), 4.92 (2H, s, 6-CH2OH); 13C NMR (CD3OD,
150 MHz) δC 188.8 (C-9), 182.4 (C-10), 162.8 (C-1), 147.9 (C-6), 137.0 (C-3), 133.7 (C-4a),
133.5 (C-10a), 133.0 (C-8a), 132.6 (C-7), 128.1 (C-8), 124.7 (C-5), 124.5 (C-2), 119.8 (C-4), 116.4
(C-9a), 64.5 (6-CH2OH).

Compound 11. C21H18O12. ESI-MS m/z 461 [M-H]−; 1H NMR (DMSO-d6, 500 MHz)
δH 7.76 (1H, s, J = 2.2 Hz, H-2′), 7.57 (1H, dd, J = 8.5, 2.2 Hz, H-6′), 6.80 (1H, d, J = 8.5 Hz,
H-5′), 6.62 (1H, s, H-3), 6.46 (1H, s, J = 2.2 Hz, H-8), 6.12 (1H, s, J = 2.2 Hz, H-6), 4.75 (1H,
d, J = 6.5 Hz, H-1′′), 3.16 (1H, s, J = 8.5 Hz, H-5′′), 2.52–2.48 (10H, m, sugar-H); 13C NMR
(DMSO-d6, 125 MHz) δC 181.3 (C-4), 172.7 (C-6′′), 165.0 (C-7), 163.7 (C-2), 161.3 (C-5), 157.2
(C-9), 157.2 (C-4′), 146.9 (C-3′), 123.0 (C-6′), 123.0 (C-1′), 117.8 (C-5′), 117.3 (C-2′), 103.7



Antioxidants 2023, 12, 664 10 of 26

(C-10), 103.7 (C-3), 103.1 (C-1′′), 98.9 (C-6), 94.1 (C-8), 76.0 (C-3′′), 73.9 (C-5′′), 73.2 (C-2′′),
72.0 (C-4′′).

Compound 12. C16H12O5. ESI-MS m/z 283 [M-H]−; 1H NMR (CD3OD, 600 MHz)
δH 7.98 (1H, s, 8-OH), 7.91 (1H, s, 6-OH), 7.72 (1H, d, J = 7.8 Hz, H-4), 7.68 (1H, t, J = 8.0,
7.8 Hz, H-5), 7.25 (1H, d, J = 8.0 Hz, H-2), 6.80 (1H, overlapped, H-7), 3.88 (3H, s, 1-OCH3),
2.36 (3H, s, 3-CH3); 13C NMR (CD3OD, 150 MHz) δC 189.2 (C-9), 183.5 (C-10), 163.2 (C-8),
157.7 (C-6), 153.0 (C-1), 137.4 (C-3), 136.3 (C-4a), 133.7 (C-10a), 127.3 (C-4), 126.5 (C-2), 125.6
(C-9a), 124.4 (C-8a), 119.9 (C-7), 116.9 (C-5), 62.1 (1-OCH3), 16.8 (3-CH3).

Compound 13. C16H10O5. ESI-MS m/z 281 [M-H]−; 1H NMR (CDCl3, 800 MHz) δH
12.55 (1H, s, 1-OH), 8.46 (1H, d, J = 1.6 Hz, H-4), 8.39 (2H, s, H-5,8), 7.87 (1H, dd, J = 1.6,
0.9 Hz, H-2), 7.72 (2H, s, H-6,7), 4.02 (3H, s, H-3); 13C NMR (CDCl3, 200 MHz) δC 187.7
(C-9), 181.8 (C-10), 165.3 (3-COOCH3), 162.7 (C-1), 137.0 (C-3), 135.2 (C-6), 135.0 (C-7), 133.3
(C-8a), 133.2 (C-10a), 133.1 (C-4a), 128.3 (C-5), 127.7 (C-8), 124.7 (C-2), 119.8 (C-4), 119.5
(C-9a), 52.8 (3-COOCH3).

Compound 14. C15H10O3. ESI-MS m/z 237 [M-H]−; 1H NMR (CD3OD, 600 MHz) δH
8.23 (1H, s, 3-OH), 8.22 (1H, s, J = 8.0, 2.0 Hz, H-8), 8.21 (1H, d, J = 8.0, 2.0 Hz, H-5), 8.01
(1H, s, H-1), 7.90 (1H, s, J = 8.0, 2.0 Hz, H-7), 7.81 (1H, d, J = 8.0, 2.0 Hz, H-6), 7.54 (1H, s,
H-4), 2.34 (3H, s, 2-CH3); 13C NMR (CD3OD, 150 MHz) δC 184.5 (C-10), 183.7 (C-9), 163.2
(C-3), 135.3 (C-4a), 135.2 (C-7), 134.9 (C-6), 133.8 (C-10a), 131.3 (C-8a), 133.1 (C-2), 130.8
(C-1), 127.9 (C-9a), 127.9 (C-5), 127.0 (C-8), 112.5 (C-4), 16.7 (2-CH3).

Compound 15. C29H36O15. ESI-MS m/z 623 [M-H]−; 1H NMR (CD3OD, 500 MHz) δH
7.58 (1H, d, J = 15.9 Hz, H-β′), 7.05 (1H, d, J = 2.0 Hz, H-2′), 6.95 (1H, dd, J = 8.2, 2.0 Hz,
H-6′), 6.77 (1H, d, J = 8.2 Hz, H-5′), 6.66 (1H, d, J = 7.8 Hz, H-5), 6.55 (1H, dd, J = 7.8 Hz,
H-6), 6.28 (1H, s, J = 15.9 Hz, H-α′), 5.18 (1H, d, H-1′′ ′), 4.37 (1H, d, J = 7.5 Hz, H-1′′), 2.78
(1H, t, J = 7.5 Hz, H-β); 13C NMR (CD3OD, 125 MHz) δC 168.2 (C=O), 149.7 (C-3′), 148.0
(C-β′), 146.8 (C-4′), 146.1 (C-4), 144.6 (C-3), 131.4 (C-1), 127.6 (C-1′), 123.2 (C-6′), 121.2 (C-6),
117.0 (C-2), 116.4 (C-5′), 116.2 (C-5), 115.1 (C-2′), 114.6 (C-α′), 104.1 (C-1′′), 103.0 (C-1′′ ′),
81.6 (C-3′′), 76.1 (C-2′′), 76.0 (C-5′′), 73.7 (C-4′′ ′), 72.3 (C-2′′ ′), 72.2 (C-α), 72.0 (C-3′′ ′), 70.5
(C-5′′ ′), 70.4 (C-4′′), 62.3 (C-6′′), 36.5 (C-β), 18.4 (C-6′′ ′).

Compound 16. C9H7NO2. ESI-MS m/z 160 [M-H]−; 1H NMR (CD3OD, 600 MHz) δH
8.08 (1H, s, J = 7. 0 Hz, H-8), 7.95 (1H, s, H-2), 7.43 (1H, s, H-5), 7.21–7.15 (2H, m, H-6,7);
13C NMR (CD3OD, 150 MHz) δC 169.3 (C-8), 138.3 (C-7a), 133.5 (C-2), 127.7 (C-3a), 123.7
(C-6), 122.5 (C-5), 122.1 (C-4), 113.0 (C-7), 108.8 (C-3).

Compound 17. C10H10O3. ESI-MS m/z 177 [M-H]−; 1H NMR (500 MHz, CD3OD) δH
δ 9.55 (1H, d, J = 7.9 Hz, H-9), 7.58 (1H, d, J = 15.6 Hz, H-7), 7.23 (1H, d, J = 1.9 Hz, H-2),
7.16 (1H, dd, J = 8.2, 1.9 Hz, H-6), 6.85 (1H, d, J = 8.2 Hz, H-5), 6.63 (1H, dd, J = 15.6, 7.9 Hz,
H-8), 3.89 (3H, s, 4-OCH3); 13C NMR (125 MHz, CD3OD) δC 196.5 (C-9), 156.5 (C-4), 149.4
(C-3), 127.6 (C-8), 126.5 (C-1), 125.2 (C-7), 117.8 (C-6), 116.6 (C-2), 112.1 (C-5), 56.5 (4-OCH3).

Compound 18. C42H68O16. ESI-MS m/z 827 [M-H]−; 1H NMR (DMSO-d6, 600 MHz)
δH 5.24 (1H, s, H-1′), 5.17 (1H, d, J = 7.4 Hz, H-12), 4.44 (1H, t, J = 7.8 Hz, H-1′′), 3.91 (1H, t,
J = 11.4 Hz, H-2), 3.61 (1H, d, J = 3.2 Hz, H-3), 3.49 (1H, s, J = 10.4 Hz, Ha-23), 3.43 (1H, t,
J = 10.4 Hz, Hb-23), 2.25 (1H, m, H-18), 1.22 (3H, d, J = 14.3 Hz, H-27), 1.12 (3H, d,
J = 14.3 Hz, H-25), 0.91 (3H, d, J = 5.5 Hz, H-29), 0.85–0.83 (3H, m, H-30), 0.64 (3H, s, H-24),
0.54 (3H, s, H-26); 13C NMR (DMSO-d6, 150 MHz) δC 175.6 (C-28), 138.2 (C-13), 127.0 (C-12),
103.0 (C-1′′), 94.0 (C-1′), 76.8 (C-5′), 76.8 (C-2′), 76.7 (C-3′), 76.6 (C-3′′), 76.5 (C-5′′), 73.5
(C-2′′), 72.1 (C-19), 71.6 (C-4′′), 69.9 (C-3), 69.9 (C-2), 69.2 (C-4′), 63.8 (C-23), 60.9 (C-6′′), 60.9
(C-6′), 53.1 (C-18), 47.4 (C-17), 47.3 (C-9), 46.7 (C-5), 43.1 (C-1), 42.5 (C-4), 42.5 (C-8), 41.2
(C-14), 41.1 (C-20), 37.3 (C-22), 36.6 (C-10), 32.0 (C-7), 28.1 (C-15), 26.4 (C-29), 25.8 (C-21),
24.5 (C-16), 24.2 (C-27), 23.9 (C-11), 16.8 (C-6), 16.7 (C-25), 16.5 (C-26), 16.2 (C-30), 13.7
(C-24).

Compound 19. C20H24O6. ESI-MS m/z 383 [M+Na]+; 1H NMR (CD3OD, 600 MHz)
δH 6.95 (1H, s, H-2′), 6.83 (1H, d, J = 8.1 Hz, H-6′), 6.76 (1H, d, J = 8.1 Hz, H-5′), 6.73 (1H,
s, H-4), 6.72 (1H, m, H-6), 5.49 (1H, d, J = 6.3 Hz, H-2), 3.86 (3H, s, 7-OCH3), 3.82 (3H, s,
3′-OCH3), 3.78–3.73 (2H, m, H-3a), 3.57 (1H, s, H-5c), 3.47 (1H, q, J = 6.3 Hz, H-3), 2.63
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(1H, s, J = 7.6 Hz, H-5a), 1.84–1.81 (1H, m, J = 7.6 Hz, H-5b); 13C NMR (CD3OD, 150 MHz)
δC 149.2 (C-3′), 147.6 (C-7a), 147.6 (C-4′), 145.3 (C-7), 137.0 (C-5), 134.9 (C-1′), 130.0 (C-4a),
119.8 (C-6′), 118.0 (C-4), 116.2 (C-5′), 114.2 (C-6), 110.6 (C-2′), 89.1 (C-2), 65.1 (C-3a), 62.3
(C-5c), 56.8 (7-OCH3), 56.4 (3′-OCH3), 55.6 (C-3), 35.9 (C-5b), 33.0 (C-5a).

Compound 20. C22H28O9. ESI-MS m/z 437 [M+H]+; 1H NMR (CD3OD, 500 MHz) δH
7.58 (1H, d, J = 15.6 Hz, H-6′), 7.23 (1H, d, J = 1.9 Hz, H-2′), 7.16 (1H, dd, J = 8.2, 1.9 Hz,
H-6), 6.85 (1H, d, J = 8.2 Hz, H-7′), 6.63 (1H, dd, J = 15.6, 7.9 Hz, H-8′), 4.91 (1H, overlapped,
H-7), 4.25 (1H, s, H-9′), 4.19 (1H, s, H-8), 3.91 (6H, s, 3′,5′-OCH3), 3.88 (1H, s, H-9b), 3.56
(1H, overlapped, H-9a); 13C NMR (CD3OD, 125 MHz) δC 155.6 (C-3′,5′), 149.2 (C-3,5), 139.0
(C-4′), 136.2 (C-1), 134.1 (C-4), 133.9 (C-1′), 131.8 (C-7′), 127.4 (C-8′), 105.5 (C-2′,6′), 105.5
(C-2,6), 85.8 (C-8), 73.1 (C-7), 64.1 (C-9′), 62.1 (C-9), 56.9 (3′,5′-OCH3), 56.4 (3,5-OCH3).

Compound 21. C15H20O6. ESI-MS m/z 295 [M-H]−; 1H NMR (CD3OD, 500 MHz) δH
7.97 (1H, d, J = 16.0 Hz, H-4), 6.39 (1H, d, J = 16.0 Hz, H-5), 5.84 (1H, s, H-2), 3.84 (1H,
m, J = 14.3, 6.4 Hz, H-3′ax), 2.26 (1H, dd, J = 14.3, 6.4 Hz, H-2′eq), 2.06 (3H, s, 3-CH3),
1.89 (1H, dd, J = 13.5, 6.4 Hz, H-4′eq), 1.83 (1H, dd, J = 14.3, 6.4 Hz, H-2′ax), 1.72 (1H, dd,
J = 13.5, 11.1 Hz, H-4′ax), 1.34 (3H, s, 1′-CH3), 1.07 (3H, s, 5′-CH3); 13C NMR (CD3OD,
125 MHz) δC 181.0 (C-6′), 171.1 (C-1), 148.8 (C-3), 133.4 (C-4), 131.3 (C-5), 122.1 (C-2), 89.8
(C-1′), 82.7 (C-8′), 65.2 (C-3′), 53.4 (C-5′), 42.2 (C-2′), 40.9 (C-4′), 20.9 (3-CH3), 18.4 (1′-CH3),
14.5 (5′-CH3).

Compound 22. C16H12O5. ESI-MS m/z 283 [M-H]−; 1H NMR (CDCl3, 800 MHz) δH
13.77 (1H, s, 5-OH), 13.35 (1H, s, 8-OH), 8.19 (1H, d, J = 8.0 Hz, H-4), 8.09 (1H, s, H-1), 7.57
(1H, dd, J = 8.0 Hz, H-3), 6.76 (1H, d, J = 10.0 Hz, H-6), 2.53 (3H, s, 7-OCH3), 1.59 (3H, s,
2-CH3); 13C NMR (CDCl3, 200 MHz) δC 186.6 (C-9), 185.0 (C-10), 156.0 (C-5), 156.0 (C-7),
150.1 (C-8), 145.7 (C-2), 134.6 (C-3), 133.8 (C-4a), 131.5 (C-1a), 131.0 (C-1), 127.0 (C-4), 112.5
(C-9a), 106.5 (C-6), 106.5 (C-10a), 65.5 (2-CH3), 22.0 (7-OCH3).

Compound 23. C7H6O5. ESI-MS m/z 169 [M-H]−; 1H NMR (CD3OD, 500 MHz) δH
7.05 (2H, s, H-2,6); 13C NMR (CD3OD, 125 MHz) δC 170.4 (C-7), 146.3 (C-3,5), 139.5 (C-4),
122.0 (C-1), 110.3 (C-2,6).

Compound 24. C30H48O3. ESI-MS m/z 455 [M-H]−; 1H NMR (CDCl3, 500 MHz) δH
5.27 (1H, t, J = 3.4 Hz, H-12), 3.21 (1H, dd, J = 11.3, 4.3 Hz, H-3), 1.13 (3H, s, H-27), 0.98 (3H,
s, H-30), 0.92 (3H, s, H-29), 0.91 (3H, s, H-26), 0.90 (3H, s, H-25), 0.77 (3H, s, H-24), 0.74 (3H,
s, H-23); 13C NMR (CDCl3, 125 MHz) δC 183.4 (C-28), 143.5 (C-13), 122.6 (C-12), 79.0 (C-3),
55.2 (C-5), 47.6 (C-9), 46.5 (C-17), 45.8 (C-19), 41.5 (C-14), 40.9 (C-18), 39.2 (C-8), 38.7 (C-1),
38.3 (C-4), 37.0 (C-10), 33.7 (C-21), 33.0 (C-29), 32.6 (C-7), 32.4 (C-22), 30.6 (C-20), 28.1 (C-23),
27.9 (C-2), 27.4 (C-15), 25.9 (C-27), 23.5 (C-16), 23.4 (C-11), 22.9 (C-30), 18.2 (C-6), 17.1 (C-26),
15.5 (C-25), 15.3 (C-24).

Compound 25. C29H50O. ESI-MS m/z 437 [M+Na]+; 1H NMR (CDCl3, 500 MHz) δH
5.35 (1H, s, H-6), 3.54–3.51 (1H, m, H-3), 1.00 (3H, s, H-19), 0.92 (1H, d, J = 6.6 Hz, H-21),
0.84 (1H, d, J = 7.8 Hz, H-29), 0.82 (3H, s, H-27), 0.81 (1H, d, J = 6.8 Hz, H-26), 0.68 (3H, s,
H-18); 13C NMR (CDCl3, 125 MHz) δC 140.7 (C-5), 121.7 (C-6), 71.8(C-3), 56.7 (C-14), 56.0
(C-17), 50.1 (C-9), 45.8 (C-24), 42.3 (C-4), 42.3 (C-13), 39.7 (C-12), 37.2 (C-1), 36.5 (C-10), 36.1
(C-20), 33.9 (C-22), 31.9 (C-2), 31.9 (C-8), 31.6 (C-7), 29.1 (C-25), 28.2 (C-16), 26.0 (C-23), 24.3
(C-15), 23.0 (C-28), 21.0 (C-11), 19.8 (C-27), 19.4 (C-21), 19.0 (C-19), 18.7 (C-26), 11.9 (C-18),
11.8 (C-29).

Compound 26. C35H60O6. ESI-MS m/z 577 [M+H]+; 1H NMR (CDCl3, 500 MHz) δH
5.33–5.30 (1H, m, H-6), 4.88 (1H, s, H-1′), 4.20 (1H, m, H-6′), 3.63 (1H, m, H-5′), 3.10 (1H, m,
H-4′), 3.04 (1H, m, H-3′), 3.00 (1H, m, H-2′), 0.94 (3H, s, H-19), 0.89 (1H, s, H-29), 0.88 (1H, s,
H-27), 0.81(1H, s, H-26), 0.79 (1H, s, H-21), 0.64 (3H, s, H-18); 13C NMR (CDCl3, 125 MHz)
δC 140.4 (C-5), 121.2 (C-6), 100.7 (C-1′), 76.9 (C-3′), 76.7 (C-3), 76.7 (C-5′), 73.4 (C-2′), 70.1
(C-4′), 61.1 (C-6′), 56.1 (C-14), 55.4 (C-17), 49.6 (C-9), 45.1 (C-24), 41.8 (C-13), 38.3 (C-12),
36.8 (C-1), 36.2 (C-10), 35.5 (C-20), 33.3 (C-22), 31.4 (C-7), 31.3 (C-8), 29.2 (C-2), 28.7 (C-25),
27.8 (C-16), 25.4 (C-23), 23.8 (C-15), 22.6 (C-28), 20.6 (C-11), 19.7 (C-26), 19.1 (C-19), 18.9
(C-27), 18.6 (C-21), 11.8 (C-29), 11.7 (C-18).
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3.2. Antioxidant Activity Assays

Oxidative stress (OS) refers to the imbalance between oxidation and antioxidation
in the body. Studies have found that oxidative stress is related to a variety of diseases,
such as cardiovascular diseases, diabetes and metabolic disorders [56]. Therefore, the
ME, PEE, EAE, NBE, WE and isolated compounds 1–23 of T. grandis were evaluated for
their antioxidant activities according to DPPH, ABTS, and FRAP assays and the half
maximal scavenging concentration (SC50). As shown in Table 1, the ME had antioxidant
activity. This result supported the benefits of using T. grandis in herbs and food. The NBE
showed significant antioxidant activity, and the EAE showed moderate antioxidant activity.
The PEE showed weak antioxidant activity. The WE exhibited no significant antioxidant
activity. Furthermore, in the DPPH test, we found that methanolic extract and different
fractions were capable of scavenging DPPH free radicals in a concentration-dependent
manner (Figure 2). The results showed that the DPPH free radical scavenging ability was
ME > NBE > EAE > PEE > WE (Figure 2), and the scavenging capacity of DPPH was related
to the accumulative effect of each extract. The results suggested that the main antioxidant
compounds of T. grandis might present in the NBE and EAE.

Table 1. Antioxidant activities of methanolic extract and fractions from T. grandis.

Samples DPPH Assay A ABTS Assay B FRAP Assay C

SC50 (µg/mL) mmol Trolox/L mmol Trolox/L

ME 26.98 ± 2.73 d 0.83 ± 0.02 b 0.58 ± 0.00 c

PEE 86.63 ± 4.06 b 0.91 ± 0.00 a 1.45 ± 0.04 b

EAE 64.56 ± 1.92 c 0.98 ± 0.00 a 2.25 ± 0.04 a

NBE 32.27 ± 2.91 d 0.95 ± 0.01 a 2.70 ± 0.02 a

WE 153.7 ± 2.15 a 0.75 ± 0.01 c 0.48 ± 0.02 c

Ascorbic acid A 3.39 ± 0.98 e 0.99 ± 0.00 a 1.35 ± 0.02 b

Data were expressed as the mean value ± SD (n = 3). Means followed by different superscript letters (a–e) are
significantly different (p < 0.05); SC50: half scavenging concentration; A Positive control (DPPH assay, ABTS and
FRAP assay); B The ABTS and C the FRAP values mean that each gram of sample corresponds to the number of
millimoles of Trolox or each mole of sample corresponds to the number of moles of Trolox at the same absorbance.
All values are mean ± SD from three independent experiments. ME: methanolic extract, PEE: petroleum ether
extract, EAE: EtOAc extract, NBE: n-BuOH extract and WE: water extract.

The scavenging capacities of compounds 1–23 are shown in Table 2. Compounds 13,
15, 21 and 23 exhibited significant DPPH antioxidant activities (SC50 = 0.32–3.56 µmol/L),
compounds 2, 5–8, 15, 17, 19 and 23 exhibited significant ABTS antioxidant activities
(SC50 = 0.8–1.1 mmol Trolox/L) and compounds 5, 15 and 23 exhibited significant FRAP
antioxidant activities (SC50 = 1.02–1.22 mmol Trolox/L). These results indicated that com-
pounds 15 and 23 had a potent free radical scavenging ability and ferric reducing power,
which might be developed into effective natural antioxidants. In addition, compared with
quinones (9–10, 12–14, 22), flavonoids (2, 5–8) and phenolic acids (15, 17, 19, 23) exhibited
stronger ABTS and FRAP scavenging activities. The antioxidant capacities of flavonoids
might be related to the degree of methylation. Methylation has been documented to en-
hance the entry of flavonoids into cells and to prevent degradation, and this might help
to enhance antioxidant capacities [57]. Compounds 15 and 23 in T. grandis had significant
antioxidant capacities, which was consistent with the significant antioxidant capacities of
phenolic acids reported in the literature [58]. Interestingly, the potent antioxidant properties
of the NBE and EAE might be due to their flavonoid and phenolic ingredients [59], which
reminded us that we should pay more attention to the antioxidant activities of polyphenols
and flavonoids in T. grandis.
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Figure 2. The scavenging effects of T. grandis methanolic extract and fractions on DPPH free rad-
icals. (a) Log concentration–scavenging rate fitting curve of ascorbic acid. (b) Log concentration–
scavenging rate fitting curve of ME. (c) Log concentration–scavenging rate fitting curve of PEE.
(d) Log concentration–scavenging rate fitting curve of EAE. (e) Log concentration–scavenging rate
fitting curve of NBE. (f) Log concentration–scavenging rate fitting curve of WF. All values are mean
± SD from three independent experiments. ME: methanolic extract, PEE: petroleum ether extract,
EAE: EtOAc extract, NBE: n-BuOH extract and WE: water extract.

Table 2. Antioxidant activities of compounds 1–23 from T. grandis.

Compounds DPPH Assay A ABTS Assay B FRAP Assay C

SC50 (µmol/L) mmol Trolox/L mmol Trolox/L

1 8.09 ± 1.05 c 0.08 ± 0.01 d n.d.
2 17.38 ± 1.08 b 0.92 ± 0.01 a 0.03 ± 0.01 c

3 5.22 ± 0.19 cd 0.05 ± 0.00 d 0.01 ± 0.01 c

4 31.52 ± 1.75 a 0.21 ± 0.01 b 0.02 ± 0.00 c

5 9.92 ± 0.36 c 0.92 ± 0.00 a 1.02 ± 0.01 a

6 22.12 ± 1.24 a 0.99 ± 0.07 a 0.37 ± 0.05 b

7 16.94 ± 0.67 b 0.92 ± 0.07 a 0.33 ± 0.04 b

8 n.d 1.05 ± 0.01 a 0.01 ± 0.00 c

9 n.d n.d n.d
10 n.d 0.13± 0.00 c 0.01 ± 0.01 c

11 n.d 0.65 ± 0.00 b 0.01 ± 0.00 c

12 n.d 0.03 ± 0.00 d n.d
13 3.56 ± 0.53 d 0.04 ± 0.00 d 0.01± 0.01 c

14 25.77 ± 0.57 a 0.09 ± 0.06 d 0.03 ± 0.00 c

15 1.99 ± 0.34 d 1.10 ± 0.77 a 1.22 ± 0.11 a

16 12.31 ± 0.53 b 0.78 ± 0.01 a 0.28 ± 0.01 b

17 n.d 0.80 ± 0.01 a n.d
18 8.45 ± 0.57 c n.d 0.39 ± 0.00 b

19 6.17 ± 0.06 c 0.85 ± 0.03 a 0.25 ± 0.01 b

20 8.66 ± 0.43 c 0.67 ± 0.01 b 0.29 ± 0.00 b
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Table 2. Cont.

Compounds DPPH Assay A ABTS Assay B FRAP Assay C

SC50 (µmol/L) mmol Trolox/L mmol Trolox/L

21 2.61 ± 0.26 d 0.13 ± 0.01 c 0.02 ± 0.00 c

22 n.d 0.32 ± 0.01 bc n.d
23 0.32 ± 0.07 e 0.95 ± 0.02 a 1.03 ± 0.01 a

Ascorbic acid A 13.45 ± 0.02 b 0.85 ± 0.00 a 1.01 ± 0.06 a

Data were expressed as the mean value ± SD (n = 3). Means followed by different superscript letters (a–e) are
significantly different (p < 0.05); SC50: half scavenging concentration; A Positive control (DPPH assay, ABTS
and FRAP assay); B The ABTS and C the FRAP values mean that each gram of sample corresponds to the
number of millimoles of Trolox or each mole of sample corresponds to the number of moles of Trolox at the
same absorbance. Positive control (ascorbic acid); n.d., not determined. All values are mean ± SD from three
independent experiments.

3.3. Prevention of AAPH-Induced DNA Oxidative Damage Assay

As the most important genetic material in human beings, oxidative damage of DNA
can accelerate cell aging and apoptosis, leading to neurodegenerative diseases, inflam-
mation, cancer and other diseases [60,61]. Studies have confirmed that the level of DNA
oxidation products in the brain tissues of Alzheimer’s patients is significantly increased [62].
DNA is a target for excess oxidative stress, which attacks the bases and sugar moieties,
creating strand breaks, altered gene expression and, ultimately, mutagenesis [63]. As shown
in Figure 3, when AAPH was added to the model control group, only open circular form
(ocDNA) and linear form (linDNA) occurred, resulting in the cleavage of supercoiled
circular DNA (scDNA) to ocDNA and linDNA, which indicated that AAPH successfully
induced DNA oxidative damage at 20 mM. DNA derived from pBR322 plasmid showed
two bands on agarose gel electrophoresis. The faster moving band corresponded to the
native form of scDNA and the slower moving band was the ocDNA. The addition of
samples to the reaction mixture of AAPH suppressed the formation of linDNA and induced
a partial recovery of scDNA.

In this study, Figure 3 shows the electrophoretic pattern of the DNA oxidative damage
protection effect induced by AAPH (20 mM) from methanolic extract, different fractions
and compounds 15, 19 and 23 of T. grandis. Compared with the positive control vitamin C,
the EAE showed a remarkable protective effect against DNA oxidative damage induced by
AAPH. The EAE showed a protective effect at 12.5 µg/mL (p < 0.0001) and the NBE showed
a protective effect at 25.0 µg/mL (p < 0.0001). The ME and PEE began to be protective at
50.0 µg/mL (p < 0.0001). The results showed that the protective ability against DNA
oxidative damage was EAE > NBE > ME > PEE > WE. Compounds 15, 19 and 23 showed
obvious protective effects against oxidative damage. Compounds 15 and 23 began to have
protective effects at 0.6 mM (p < 0.0001) and compound 19 began to have a protective
effect at 5.0 mM (p < 0.0001), which suggests that compounds 15, 19 and 23 could be
developed into effective natural antioxidants. In addition, it is worth noting that the
EAE, NBE and compounds 15, 19 and 23 with significant antioxidant capacities showed
significant protective activities against oxidative damage of DNA induced by AAPH, which
suggests that the protective effect against DNA oxidative damage might be related to the
antioxidant capacities.

3.4. Prevention of AAPH-Induced Protein Oxidative Damage Assay

The literature reports that AAPH is a free radical generator that can generate alkoxy
and alkylperoxy radicals, thereby inducing oxidative damage to macromolecules [64].
Protein degradation and the formation of protein carbonyl groups are the main charac-
teristics of protein oxidation [65,66]. Studies have found that many diseases, such as
Alzheimer′s disease, diabetes, cardiovascular and cerebrovascular diseases, are associated
with increased protein carbonylation levels [67]. As shown in Figure 4, compared with the
control group without AAPH, BSA was induced by AAPH, the BSA bands were noticeably
shallower and the carbonylation level of BSA was increased, indicating that hydroxyl free
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radicals produced by the AAPH induced system can significantly degrade and carbonize
BSA. In this experiment, the content of residual protein was used to reflect the abilities of
samples to prevent protein oxidative damage.
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Figure 3. Prevention of 2,2′−Azobis (2−methylpropionamidine) dihydrochloride (AAPH)−induced
DNA oxidative damage by T. grandis methanolic extract, fractions and compounds 15, 19 and 23.
(a) Prevention AAPH−induced DNA oxidative damage by VC (ascorbic acid). (b) Prevention of
AAPH−induced DNA oxidative damage by ME. (c) Prevention of AAPH−induced DNA oxidative
damage by PEE. (d) Prevention of AAPH−induced DNA oxidative damage by EAE. (e) Prevention
of AAPH−induced DNA oxidative damage by NBE. (f) Prevention of AAPH−induced DNA ox-
idative damage by WE. (g) Prevention of AAPH−induced DNA oxidative damage by compound
15. (h) Prevention of AAPH−induced DNA oxidative damage by compound 19. (i) Prevention of
AAPH−induced DNA oxidative damage by compound 23. −, inexistent; +, existent. Each group is
compared with the model group, significance is denoted by symbols: ** p < 0.01, and **** p < 0.0001
and all values are mean ± SD from three independent experiments. ME: methanolic extract, PEE:
petroleum ether extract, EAE: EtOAc extract, NBE: n-BuOH extract and WE: water extract.
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pounds 1, 12, 13, 15, 18 and 23 on LPS-stimulated macrophages were studied. Compared 
with blank control cells, pro-inflammatory cytokines were increased in the model and 
positive groups (Dexamethasone) stimulated by LPS (Figure 5). As seen in Figure 6a, com-
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compared to the model controls (p < 0.01). Meanwhile, in Figure 6b, compounds 1, 13, 18 
and 23 produced a significant decrease in IL-1β inflammatory factors levels at 40 µM (p < 
0.0001). As shown in Figure 6c, compounds 1, 13 and 18 showed significant activities in 

Figure 4. Prevention of AAPH−induced protein oxidative damage by T. grandis methanolic extract,
fractions and compounds 15 and 23. (a) Prevention of AAPH−induced protein oxidative damage
by VC (ascorbic acid). (b) Prevention of AAPH−induced protein oxidative damage by ME. (c) Pre-
vention of AAPH−induced protein oxidative damage by PEE. (d) Prevention of AAPH−induced
protein oxidative damage by EAE. (e) Prevention of AAPH−induced protein oxidative damage
by NBE. (f) Prevention of AAPH−induced protein oxidative damage by WE. (g) Prevention of
AAPH−induced protein oxidative damage by compound 15. (h) Prevention of AAPH−induced
protein oxidative damage by compound 23. −, inexistent; +, existent. Each group is compared
with the model group, significance is denoted by symbols: * p < 0.05, ** p < 0.01, and *** p < 0.001,
**** p < 0.0001 and all values are mean ± SD from three independent experiments. ME: methanolic
extract, PEE: petroleum ether extract, EAE: EtOAc extract, NBE: n-BuOH extract and WE: water extract.

The results showed that when the concentration of AAPH was 160 mM, the content
of residual protein increased with the increase of the sample concentration. As shown in
Figure 4d,e, compared with the positive control group (VC), the EAE and NBE showed
significant protective effects against protein oxidative damage at 63 µg/mL. In an increased
sample concentration, the protective effect became more significant; the EAE and NBE
at 1000 µg/mL almost completely inhibited the oxidative damage of BSA induced by
AAPH (p < 0.0001), the ME and PEE began to show protective effects against protein
oxidative damage at 500 µg/mL (p < 0.0001) and the WE began to show protective effects
against protein oxidative damage at 1000 µg/mL (p < 0.0001). The results showed that the
protective ability against protein oxidative damage was EAE > NBE > ME > PEE > WE,
and this might be related to their better antioxidant capacities. As shown in Figure 4g,h,
compounds 15 and 23 have significant protective effects against protein oxidative damage
induced by AAPH (160 mM) in a concentration-dependent manner. Compound 15 began
to show a protective effect against protein oxidative damage at 40 µM, and compound 23
began to show a protective effect against protein oxidative damage at 320 µM. The results
showed that compounds 15 and 23 might be natural antioxidants, which could inhibit the
oxidative damage of protein by free radicals.
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3.5. Anti-Inflammatory Activity Assay

LPS is widely used as a stimulator to activate macrophages, inducing the release of
pro-inflammatory mediators from macrophages, in particular TNF-α, interleukins (IL-1β,
IL-6), NO and ROS [68]. It is involved in various pathological processes of acute and chronic
inflammation. The levels of TNF-α, IL-1β and IL-6 in macrophage culture supernatants
were measured using an ELISA kit, and then the anti-inflammatory effects of compounds
1, 12, 13, 15, 18 and 23 on LPS-stimulated macrophages were studied. Compared with
blank control cells, pro-inflammatory cytokines were increased in the model and positive
groups (Dexamethasone) stimulated by LPS (Figure 5). As seen in Figure 6a, compounds
1, 18 and 23 could decrease TNF-α inflammatory factors levels at 40 µM when compared
to the model controls (p < 0.01). Meanwhile, in Figure 6b, compounds 1, 13, 18 and 23
produced a significant decrease in IL-1β inflammatory factors levels at 40 µM (p < 0.0001).
As shown in Figure 6c, compounds 1, 13 and 18 showed significant activities in reducing
the expression of IL-6 inflammatory factors at 40 µM (p < 0.05). The anti-inflammatory
activity of compound 1 might be related to the fact that the flavonoid was connected by
two benzene rings (A and B) through an oxygen-containing heterocycle (C), and with the
glycosylation mode on the A ring [69]. Compound 13 has significant anti-inflammatory
activity, which was consistent with the literature [4]. The activity of compound 18 might be
related to its structure, which is composed of six isoprene and one pentacyclic [70]. The
activity of compound 23 might be related to the phenolic hydroxyl groups contained in the
structure [71]. The inhibitory effects of compounds 1, 13, 18 and 23 on the expression of
inflammatory cytokines develop the therapeutic material basis of T. grandis in the treatment
of inflammation in traditional medicine.
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** p < 0.01, and *** p < 0.001, **** p < 0.0001. NC: blank control group, Model: model control group,
Dex: positive control group.
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3.6. α-Glucosidase Inhibition Assay

In order to search for active compounds with α-glucosidase inhibition, T. grandis
methanolic extract and different fractions at concentrations of 100, 50, 25, 12.5, 6.25, 3.125
and 1.5625 µg/mL were incubated in 96-well plates for 30 min, and then the α-glucosidase
inhibition rate was examined. The results are shown in Figure 7b–e. Compared to the posi-
tive control acarbose (Figure 7a), the ME and PEE showed the most potent α-glucosidase
inhibition activities with IC50 values of 3.05 ± 0.18 µg/mL and 1.92 ± 0.06 µg/mL, respec-
tively. The EAE and NBE showed moderate α-glucosidase inhibition activities with IC50
values of 7.84 ± 0.49 µg/mL and 8.90 ± 0.79 µg/mL, respectively. The results indicated
that most α-glucosidase inhibitory substances might be small polar compounds present
in the PEE and EAE. Compounds 1–23 were screened for their α-glucosidase inhibitory
activities, and the results are shown in Table 3. The inhibitory rates of compounds 4, 5 and
7 on α-glucosidase were 68.54%, 69.67% and 85.13%, respectively, whereas compounds 1–3,
6 and 8–23 exhibited no significant α-glucosidase inhibitory activities, with IC50 values
greater than 50 µM. Next, the IC50 values for compounds 4, 5 and 7 were measured, and
the results are shown in Figure 7f–h. Compound 7 showed the most potent α-glucosidase
inhibition activity, with an IC50 value of 3.04 ± 0.08 µmol/L. Compounds 4 and 5 showed
moderate α-glucosidase inhibitory activities, with IC50 values of 14.16 ± 0.34 µmol/L and
19.29 ± 0.26 µmol/L, respectively. Furthermore, compounds 4, 5 and 7 had significant
α-glucosidase inhibitory activities, which might be due to the nucleus of 2-phenylchromone,
and the double bond between C2 and C3 in the C ring [72]. Therefore, the α-glucosidase
inhibitory activities of compounds 4, 5 and 7 suggested that flavonoids might have better
α-glucosidase inhibitory activities than the other compounds in T. grandis. Our study
further provides scientific evidence for the efficacy of T. grandis as a herbal medicine in the
treatment of diabetes.

Table 3. α-Glucosidase inhibitory activities of compounds 1–23 from T. grandis.

Compounds Inhibitory Rate (%) A IC50 (µmol/L)

1 10.62 ± 1.39 d >50.00
2 31.35 ± 6.46 c >50.00
3 29.06 ± 1.86 cd >50.00
4 68.54 ± 2.90 b 14.15 a

5 69.67 ± 2.20 b 19.29 a

6 12.96 ± 2.08 d >50.00
7 85.13 ± 0.81 ab 3.04 b

8 1.27 ± 0.25 e >50.00
9 3.13 ± 4.06 e >50.00
10 1.77 ± 4.08 e >50.00
11 4.57 ± 4.37 e >50.00
12 53.04 ± 0.36 bc >50.00
13 13.84 ± 0.93 d >50.00
14 20.03 ± 2.44 c >50.00
15 18.30 ± 2.22 cd >50.00
16 12.53 ± 0.76 d >50.00
17 8.69 ± 1.94 de >50.00
18 22.91 ± 1.10 c >50.00
19 57.40 ± 1.32 bc >50.00
20 40.30 ± 0.76 c >50.00
21 21.41 ± 4.01 c >50.00
22 20.58 ± 1.30 c >50.00
23 21.89 ± 3.03 c >50.00

Acarbose 99.53 ± 0.01 a 0.062 c

Data were expressed as the mean value ± SD (n = 3). Means followed by different superscript letters (a–e) are
significantly different (p < 0.05); IC50: half inhibition concentration; A Percent inhibition at a concentration of
50 µM; IC50 > 50.00, not determined.
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Figure 7. α-Glucosidase inhibitory effects of T. grandis methanolic extract, fractions and compounds
4, 5 and 7. (a) Log concentration–inhibition rate fitting curve of acarbose. (b) Log concentration–
inhibition rate fitting curve of ME. (c) Log concentration–inhibition rate fitting curve of PEE. (d) Log
concentration–inhibition rate fitting curve of EAE. (e) Log concentration–inhibition rate fitting curve
of NBE. (f) Log concentration–inhibition rate fitting curve of compound 4. (g) Log concentration–
inhibition rate fitting curve of compound 5. (h) Log concentration–inhibition rate fitting curve of
compound 7. All values are mean± SD from three independent experiments. ME: methanolic extract,
PEE: petroleum ether extract, EAE: EtOAc extract and NBE: n-BuOH extract.

3.7. α-Glucosidase Enzyme Kinetic Assay

Lineweaver–Burk plotting was used to evaluate the inhibition type of the methanolic
extract, fractions and compounds 5 and 7 partitioned from T. grandis on α-glucosidase.
The concentrations of 1/[pNPG] are displayed on the X-axis, and the 1/v values obtained
from the Lineweaver–Burk plot are shown along the Y-axis. As shown in Figure 8a–d,
all data lines of the ME, PEE, EAE, and NBE on the Lineweaver–Burk plot intersected at
a point in the second and third quadrant; with the increasing of inhibitor concentrations,
the kinetic parameters of Vmax were decreased, and the kinetic parameters of Km were
unchanged. Therefore, all inhibitory effects of samples on the α-glucosidase enzyme
belonged to the mix inhibition type [73], which suggested that the inhibitors presented
in samples ME, PEE, EAE, and NBE might be bound to the enzyme–substrate complex
to inhibit α-glucosidase. Figure 8e,f show the α-glucosidase inhibitory Lineweaver–Burk
double count down diagrams for compounds 5 and 7. All the data lines of compounds 5
and 7 on the Lineweaver–Burk plot intersected in the second quadrant, with the increasing
of inhibitor concentrations, the Vmax of the enzymatic reaction decreased, and the Km
values were unchanged, indicating that compounds 5 and 7 were an uncompetitive type of
α-glucosidase enzyme inhibition [74]. It is possible to find out the enzyme inhibition effects
of the active ingredients through further study of the enzyme reaction, especially of the
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chemical components which showed significant α-glucosidase inhibitory activities in the
preliminary screening, so as to provide a valuable active lead for the study of hypoglycemia
using T. grandis.
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3.8. Glucose Uptake Activity and Cell Viability Assay

To examine the glucose uptake activities of methanolic extract, different fractions
and the isolated compounds 1–23 of T. grandis, glucose uptake capacities were evaluated
by 3T3-L1 adipocytes. Firstly, the 3T3-L1 preadipocytes were differentiated into mature
adipocytes (Figure 9). Next, 10, 20, 40, 80 and 160 µg/mL concentrations of methanolic
extract and different fractions were added respectively. After 24 h, the glucose uptake was
examined. As shown in Figure 10A, compared with the blank control group, the sample
groups of ME, PEE and EAE significantly promoted the glucose uptake rate of 3T3-L1
adipocytes (p < 0.0001) and the NBE group significantly inhibited the glucose uptake of
3T3-L1 adipocytes (p > 0.0001). The results showed that the main hypoglycemic effect of
T. grandis might be achieved by improving glucose uptake in 3T3-L1 adipocytes. In addition,
the results of the cell viability assay showed that the MEE, PEE, EAE and NBE had no
significant effects on the cell viabilities of 3T3-L1 adipocytes (Figure 10B).

The effects of compounds 1–23 on glucose uptake in 3T3-L1 adipocytes were as follows:
As shown in Figure 11A(a,b), the results showed that the glucose uptake rate at 40 µM was
positively correlated with time, and the glucose uptake rate at 48 h was higher than that at
24 h. As shown in Figure 11A(b), compounds 21 and 23 could significantly promote the
glucose uptake of 3T3-L1 adipocytes at 40 µM (p < 0.01), and the other tested compounds
1–20 and 22 showed no significant promotion effects (p > 0.05). Additionally, compared
with the blank control, except for compounds 5 and 9, the positive control group, and
all the other tested compounds had no significant effects on the cell viabilities of 3T3-L1
adipocytes (Figure 11B).
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Figure 10. Glucose uptake and cell viability of 3T3-L1 adipocytes treated with T. grandis methanolic
extract and fractions. (A) Glucose uptake rates of different groups (ME, PEE, EAE, and NBE). Insulin
and berberine were used as positive controls. (B) Cell viability of different groups. All values are
mean ± SD from three independent experiments. Significance is denoted by symbols: * p < 0.05,
** p < 0.01, and *** p < 0.001, **** p < 0.0001. ME: methanolic extract, PEE: petroleum ether extract,
EAE: EtOAc extract and NBE: n-BuOH extract. NC: blank control group, INS: positive control group,
10–160: sampling group.
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Figure 11. Glucose uptake and cell viability of 3T3-L1 adipocytes treated with T. grandis compounds.
(A) Glucose uptake rate of different groups (1–23). Insulin and berberine were used as positive
controls. (B) Cell viability of different groups. All values are mean ± SD from three independent
experiments. Significance is denoted by symbols: ** p < 0.01, and *** p < 0.001. NC: blank control
group, INS: positive control group, 1–23: sampling group.
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4. Conclusions

In summary, 26 compounds were isolated from T. grandis (EAE, NBE), including nine
flavonoids (1–8, 11), six anthraquinones (9, 10, 12–14, 22), one alkaloid (16), two penta-
cyclic triterpenoids (18, 24), four phenylpropanoids (15, 17, 19, 20), one sesquiterpene (21),
phenolic acid (23) and two sterols (25, 26). Studies of the antioxidant, anti-inflammatory
and anti-diabetic activities of T. grandis methanolic extract, fractions and compounds 1–23
showed that the EAE, NBE fractions, and compounds verbascoside (15), gallic acid (23)
had remarkable antioxidant activities. Furthermore, compounds verbascoside (15) and
gallic acid (23) showed significantly higher antioxidant activities than the positive control
ascorbic acid. Additionally, verbascoside (15) and gallic acid (23) showed significant protec-
tive effects against the oxidative damage of DNA and protein (p < 0.001). Simultaneously,
the results of inflammatory factor detection showed that luteolin-7-O-β-D-glucoside (1),
2β,3β,19α,23-tetrahydroxy-urs-12-en-28-O-[β-D-glucopyranosyl (1-2)-β-D-glucopyranosyl]
ester (18) and gallic acid (23) could degrade the expression of inflammatory factors (TNF-α,
IL-1β, IL-6), and 2β,3β,19α,23-tetrahydroxy-urs-12-en-28-O-[β-D-glucopyranosyl (1-2)-β-
D-glucopyranosyl] ester (18) and gallic acid (23) were similar to the positive control Dex
inhibitory effects on TNF-α and IL-1β, which showed significant inhibitory effects on
inflammatory cytokines (p < 0.001). Meanwhile, ME, PEE fractions, and compounds
apigenin-7-O-β-D-glucuronide methyl ester (4), vitegnoside (5) and rhamnetin (7) had
significant α-glucosidase inhibition capacities. The enzyme kinetic experiments showed
that the inhibitory effects of T. grandis methanolic extract, fractions, and compounds viteg-
noside (5), rhamnetin (7) on α-glucosidase belonged to mixed and uncompetitive inhibition
types. In addition, PEE and EAE significantly promoted the glucose uptake. Our study
suggested that the flavonoid and polyphenolic compounds in T. grandis might be the major
contributors to antioxidant, antiinflammation and α-glucosidase inhibition activities. In
conclusion, our study enriched the diversity of the chemical composition of T. grandis, and
provided potential natural candidate drugs to inhibit oxidative stress and related diseases,
especially inflammation and diabetes.
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