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Abstract: Bacterial sepsis induces the production of excessive pro-inflammatory cytokines and
oxidative stress, resulting in tissue injury and hyperinflammation. Patients recovering from sepsis
have increased rates of central nervous system (CNS) morbidities, which are linked to long-term
cognitive impairment, such as neurodegenerative pathologies. This paper focuses on the tissue injury
and hyperinflammation observed in the acute phase of sepsis and on the development of long-term
neuroinflammation associated with septicemia. Here we evaluate the effects of Coriolus versicolor
administration as a novel approach to treat polymicrobial sepsis. Rats underwent cecal ligation and
perforation (CLP), and Coriolus versicolor (200 mg/kg in saline) was administered daily by gavage.
Survival was monitored, and tissues from vital organs that easily succumb to infection were harvested
after 72 h to evaluate the histological changes. Twenty-eight days after CLP, behavioral analyses
were performed, and serum and brain (hippocampus) samples were harvested at four weeks from
surgery. Coriolus versicolor increased survival and reduced acute tissue injury. Indeed, it reduced the
release of pro-inflammatory cytokines in the bloodstream, leading to a reduced chronic inflammation.
In the hippocampus, Coriolus versicolor administration restored tight junction expressions, reduce
cytokines accumulation and glia activation. It also reduced toll-like receptor 4 (TLR4) and neuronal
nitric oxide synthase (nNOS) and the NLR family pyrin domain containing 3 (NLRP3) inflammasome
components expression. Coriolus versicolor showed antioxidant activities, restoring glutathione
(GSH) levels and catalase and superoxide dismutase (SOD) activities and reducing lipid peroxidation,
nitrite and reactive oxygen species (ROS) levels. Importantly, Coriolus versicolor reduced amyloid
precursor protein (APP), phosphorylated-Tau (p-Tau), pathologically phosphorylated tau (PHF1),
phosphorylated tau (Ser202 and Thr205) (AT8), interferon-induced transmembrane protein 3 (IFITM3)
expression, and β-amyloid accumulation induced by CLP. Indeed, Coriolus versicolor restored
synaptic dysfunction and behavioral alterations. This research shows the effects of Coriolus versicolor
administration on the long-term development of neuroinflammation and brain dysfunction induced
by sepsis. Overall, our results demonstrated that Coriolus versicolor administration was able to
counteract the degenerative process triggered by sepsis.

Keywords: cecal ligation and perforation; Coriolus versicolor; pathway; inflammation; neurodegenerative
disorders

Antioxidants 2023, 12, 635. https://doi.org/10.3390/antiox12030635 https://www.mdpi.com/journal/antioxidants

https://doi.org/10.3390/antiox12030635
https://doi.org/10.3390/antiox12030635
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://orcid.org/0000-0003-0389-3871
https://orcid.org/0000-0001-9492-3161
https://orcid.org/0000-0002-3980-0043
https://orcid.org/0000-0001-7868-2505
https://orcid.org/0000-0002-5910-2832
https://orcid.org/0000-0003-0223-1403
https://orcid.org/0000-0002-0478-985X
https://orcid.org/0000-0001-6131-3690
https://orcid.org/0000-0001-6725-8581
https://doi.org/10.3390/antiox12030635
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com/article/10.3390/antiox12030635?type=check_update&version=1


Antioxidants 2023, 12, 635 2 of 26

1. Introduction

Sepsis is described as a life-threatening organ dysfunction induced by dysregulated
host answers to infection [1]. It is among the top disorders for the most expensive hospital
stays worldwide.

Inflammatory mediators and oxidative stress have a key role in the development and
management of sepsis. Clinical evidence shows that following bacterial peritonitis, a huge
intraperitoneal cytokine response occurs, with high levels of pro-inflammatory cytokines
and oxidative mediators [2]. This mediator response is responsible for the uncontrolled
activation of the systemic inflammation via the MD2–toll-like receptor 4 (TLR4). It causes
the production of the inflammatory cytokines (interleukin (IL)-6, tumor necrosis factor
(TNF)-α, IL-1β) responsible for hyper-inflammation [3,4]. Up to 80% of patients affected
by sepsis potentially develop irreversible cerebral dysfunction [5,6], caused by systemic
inflammation [7]. Previous researchers have underlined many long-lasting results follow-
ing sepsis recovery, including brain disorders [8]. In particular, animals subjected to cecal
ligation and perforation (CLP) showed important difficulties in performing behavioural
tests [9]. In septic patients, persistent difficulties in brain functional activities and quality
of life have been observed [10], which may be related to long-lasting difficulties in cogni-
tive function associated with executive and memory tasks [11]. This impairment in brain
activity has been proposed to result from ischemic or neurodegenerative pathways acti-
vated by systemic inflammation [12]. Peripherally released cytokines can reach the central
nervous system (CNS), as sepsis may induce the disruption of the blood–brain barrier
(BBB) [13,14]. Local release of cytokines may induce astrocyte/microglia activation, which
in turn produces reactive oxygen species (ROS) and pro-inflammatory mediators [15,16].
However, aspects of the molecular cascades relating systemic inflammation to neuroinflam-
mation and brain dysfunction still need to be clarified. A detailed understanding of these
pathways may provide important information useful to enact new strategies to counteract
sepsis co-morbidities. Novel knowledge on the molecular mechanisms connecting systemic
inflammation to brain diseases may also be helpful to understand the onset of neuroin-
flammation itself [17]. Neurodegenerative progressions may evolve over the years, and
the diagnosis is mostly performed only in the late stages of the disease, when a significant
neuronal loss impairs the brain functions. Neuroinflammation is characterized by gradual
neuronal death accompanying by the accumulation of aberrant, misfolded forms of proteins
or peptides with neurotoxic activity. Although the complete molecular steps of these events
need to be clarified, the occurrence of reduced tight junctions and augmented Aβ accumu-
lation in amyloid plaques in the hippocampus, together with the previous data mentioned
above, are highly indicative of neurotoxic processes that could represent the early molecular
processes of neurodegenerative cascades during activation. Therefore, we propose that
compounds with antioxidant, anti-inflammatory and neuroprotective activities may be a
good approach for the prevention of sepsis-related neurodegenerative diseases.

Mushrooms contain many bioactive compounds that suggest their use for human
health and the prevention of diseases related to CNS. Coriolus versicolor is a well character-
ized mushroom that has shown important neuroprotective effects [18]. Previous studies
displayed the anti-inflammatory, antioxidant, antibacterial, anticancer and immunomod-
ulatory properties [19–22]. In particular, it has been suggested that Coriolus versicolor
increases the cellular redox potential, inducing the vitagene defense system, including
lipoxin A4, thioredoxin and heat shock protein 70 [23]. Based on these findings, this paper
aims to evaluate the role of Coriolus versicolor administration in acute inflammation and
long-term development of neuroinflammation and brain dysfunction triggered by chronic
inflammation, induced by polymicrobial sepsis.

2. Materials and Methods
2.1. Animals

Male Wistar rats (250–280 g, 6–8 weeks old) (Envigo, Milan, Italy) were housed in a
controlled environment and provided with standard chow (Teklad, Milan, Italy) and water.
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The University of Messina Review Board for Animal Care (OPBA) approved the study that
followed the Italian D.Lgs 2014/26 and EU regulations (EU Directive 2010/63).

2.2. Preparation of Coriolus versicolor Extract

Coriolus versicolor biomasses, containing mycelium and primordia, generously donated
by Mycology Research Laboratories Ltd. (MRL, Luton, UK), as a commercially available
product, were used for the research. The optimal dose (200 mg/kg) was chosen based
on the dose used in human trials with cancer or HPV patients (3 g/day), a regimen also
verified by rat investigations [18].

The characterization of the two fungi was performed by Chromatography-Orbitrap-
Mass Spectrometry (LC-Orbitrap-MS) and by Gas Chromatography-Tandem Mass Spec-
trometry (GC-MS/MS).

2.3. CLP Induction

Animals were subjected to sham-surgery or CLP, as already described [24]. Rats were
anesthetized (Sevorane 2%), and a midline laparotomy was performed to expose the cecum.
This was tightly ligated below the ileocecal valve, perforated and squeezed to extrude
a small amount of feces. The cecum was then returned to the peritoneal cavity, and the
abdomen was sutured. In the animals assigned to the sham group (Control), the laparotomy
and cecal exposure were performed, but no further manipulations were applied. After
surgery, 50 mL/kg of saline was subcutaneously injected with 30 mg/kg ceftriaxone and
25 mg/kg clindamycin every 6 h for 3 days. These drugs were administered to both sham
and CLP groups. Immediately after surgery, animals were monitored for twenty-eight days
for survival and daily activity.

2.4. Experimental Groups

Animals were randomly divided as following:
Control: rats were subjected to the surgical procedures, but no ligation or perforation

were performed, and vehicle (saline) was administered daily by gavage;
Control + Coriolus versicolor: rats were subjected to the surgical procedures, but no

ligation or perforation were performed and Coriolus versicolor (200 mg/kg dissolved in
saline) was administered daily by gavage for 28 days;

CLP: rats were subjected to the procedure previously described and vehicle was
administered daily by gavage;

CLP+ Coriolus versicolor: rats were subjected to the procedure previously described,
and Coriolus versicolor (200 mg/kg dissolved in saline) was administered daily by gavage
for 28 days.

The dose of Coriolus versicolor was chosen based on previous studies [23]. A “pilot”
evaluation, using n = 10 animals per group, was performed in order to investigate the effect
of Coriolus versicolor administration on organ dysfunction and tissue damage induced
by sepsis. In accordance with what was previously described in the literature [25], a high
mortality rate was observed at 72 h. Therefore, in the second part of the work, due to the el-
evated mortality observed in the pilot study, we employed n = 50 animals for each group. G
power software (3.1 version) was employed to determine the minimum number of animals
required to obtain a statistically significant outcome (effect size f = 0.25; α err prob = 0.05;
power (1-β err prob) = 0.95). After twenty-eight days from the surgery, the behavioral tasks
were performed, and the animals were sacrificed (euthanasia: Sevorane overexposure).

2.5. Histological Analysis

Kidney, liver, lungs and gut from all experimental groups were harvested, fixed in
buffered formaldehyde solution (10% in PBS), dehydrated and embedded in Paraplast [26].
Tissue slides were stained with H & E and evaluated using a Leica DM6 microscope (Leica
Microsystems SpA, Milan, Italy). Histopathologic scores were evaluated following the
methodology adapted by a board-certified pathologist [27].
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2.6. Behavioral Task
2.6.1. Morris Water Maze (MWM)

Spatial learning and memory consolidation were evaluated by MWM test [28]. To
conduct the experiment, a circular water container measuring 60 cm in height and 152 cm
in diameter was filled with water maintained at 23 ◦C to a depth of 30 cm. An escape
platform measuring 10 cm in diameter and located 2 cm below the water surface was fixed
in a quadrant of the tank throughout the experiment. A white curtain was draped around
the tank, and four types of black paper with different shapes were attached to the inside of
the curtain. Each animal was subjected to a daily trial session for four days, followed by a
probe trial 24 h after the last training session. The time spent in the target quadrant and the
percentage of distance covered were measured. The experimental setup was obtained from
Ugo Basile in Milan, Italy.

2.6.2. Elevated Plus Maze (EPM)

Memory-related processes were evaluated by the EPM test performed as already
described [29]. The animals were placed individually at the open end of the maze’s open
arm, facing towards the opposite end of the maze, using equipment from Ugo Basile in
Milan, Italy. The time taken by the animal to move from the open arm to the closed arm
was recorded as the initial acquisition latency (IAL). After recording the IAL, the animal
was permitted to explore the maze for 20 s before being returned to its home cage. If the
animal failed to enter the enclosed arms within 90 s, it was pushed into one of the enclosed
arms, and the IAL was recorded as 90 s. On the 28th day following CLP, the rat’s memory
retention was evaluated by placing it in an open arm, and the retention transfer latency
(RTL) was noted during the re-test session.

2.6.3. Novel Object Recognition (NOR)

Changes in cognitive function were assessed by NOR [30]. Recognition index (RI) was
identified as the time spent exploring the novel object and was calculated by dividing the
time spent investigating the novel object (TN) by the time spent exploring the TN and a
familiar object (TF), [RI = TN/(TN + TF)].

2.6.4. Open Field Test

An open field test was executed to check the mental condition of an animal via locating
the rats in a bright light-illuminated box noticeably bigger than the home confine [31]. The
apparatus consisted of a large square box of 100 cm length × breadth with 40 cm height
made up of plywood walls (Ugo Basile, Milan, Italy). The number of nurturing and squares
in a 5 min break was noted and tabulated, and it was regarded as a locomotion activity
parameter [32].

2.7. BBB Permeability Studies

BBB permeability was measured in terms of sodium fluorescein [33]. Rats were
intravenously injected with 100 mg/mL of sodium fluorescein (350 Da). Thereafter, they
were perfused with PBS, and brain tissues were collected. The hippocampi were weighed
and homogenized. Proteins were precipitated with 20% trichloroacetic acid, and samples
were centrifuged. The fluorescent intensity was red at 480–538 nm [34].

2.8. Immunohistochemical Analysis

Brain samples were collected, processed, and embedded in paraffin [35]. Sections
of 7 µm thickness were prepared. Immunohistochemical localization was performed as
already described [36]. After deparaffinization, endogenous peroxidase was quenched with
0.3% (v/v) hydrogen peroxide in 60% (v/v) water for 30 min. The slides were permeabilized
with 0.1% (w/v) Triton X-100 in PBS for 20 min [37]. Tissue sections were incubated in 2%
(v/v) normal goat serum in PBS to block non-specific binding. Sequential incubation for
15 min with avidin and biotin (Vector Laboratories, Burlingame, CA, USA) was performed
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to block, respectively, endogenous avidin or biotin binding sites [38]. The sections were
incubated overnight with primary antibodies (Table 1).

Table 1. Primary antibodies.

Antibody Product Name

Anti-TLR4 Santa Cruz Biotechnology, sc-293072, Milan, Italy
Anti-nNOS Invitrogen, Milan, Italy
Anti-IFITM3 Santa Cruz Biotechnology, sc-100768, Milan, Italy
Anti-NLRP3 Cell Signaling Technology, Danvers, MA, USA
Anti-ASC Santa Cruz Biotechnology, sc-271054, Milan Italy
Anti-Caspase-1 Cell Signaling Technology, Danvers, MA, USA
Anti-p-Tau Santa Cruz Biotechnology, sc-32275, Milan, Italy
Anti-APP Santa Cruz Biotechnology, sc-32277, Milan, Italy
Anti-occludin Santa Cruz Biotechnology, sc-133255, Milan, Italy
Anti-ZO Santa Cruz Biotechnology, sc-33725, Milan, Italy
Anti-AT8 Invitrogen MN1020, Milan, Italy
Anti-PHF1 Santa Cruz Biotechnology, sc-515013, Milan, Italy
Anti-GAP-43 Santa Cruz Biotechnology, sc-33705, Milan, Italy
Anti-PSD-95 Abcam, ab2723, Milan, Italy
Anti-GFAP Santa Cruz Biotechnology, sc-33673, Milan, Italy
Anti-Iba-1 Santa Cruz Biotechnology, sc-32725, Milan, Italy
Anti-β-amyloid Sigma AB5078P, Milan, Italy

All sections were washed with PBS and then treated as previously reported [39]
and incubated with secondary antibody. Specific labelling was identified with a biotin-
conjugated goat anti-rabbit IgG and avidin–biotin peroxidase complex [40]. Stained sections
were observed using a Leica DM6 microscope (Leica Microsystems SpA, Milan, Italy)
following a typical procedure [41].

The photographs obtained (n = 5 photos from five slides for each sample) were col-
lected from all animals in each experimental group. The digital images were opened in
ImageJ, followed by deconvolution using the color deconvolution plug-in. When the IHC
profiler plug-in is selected, it automatically plots a histogram profile of the deconvoluted
DAB image, and a corresponding scoring log is displayed. The histogram profile corre-
sponds to the positive pixel intensity value obtained from the computer program. All
immunohistochemical analyses were carried out by two observers blinded to the treatment.

2.9. Western Blot Analysis

Western blot analyses were performed as previously described [42]. Tissues were lysed
with RIPA buffer containing a cocktail of protease inhibitors and phosphatase inhibitors.
Lysate was centrifuged at 10,000× g at 4 ◦C for 15 min, and the supernatant was collected.
The total protein concentration was determined using the Bradford assay (Bio-rad Labora-
tories). Equal amounts of protein were loaded onto SDS-PAGE gel and then transferred
onto a PVFD membrane. After blocking with 5% skimmed milk, filters were probed with
one of the primary antibodies (Table 1) mixed in a 5% w/v nonfat dried milk solution and
incubated at 4 ◦C overnight. Blots were incubated with a peroxidase-conjugated bovine
anti-mouse IgG secondary antibody or a peroxidase conjugated goat anti-rabbit IgG for
1 h at room temperature [43]. Membranes were also incubated with an antibody against
β-actin (Santa Cruz Biotechnology, Dallas, TX, USA) to verify that the amounts of protein
were equal. Signals were detected with an enhanced chemiluminescence detection system
reagent (Super-Signal West Pico Chemiluminescent Substrate, Pierce). The relative expres-
sion of the protein bands was quantified by densitometry with Bio-Rad ChemiDoc XRS
software and standardized to β-actin levels. Images of blot signals were imported to an
analysis software (Image Quant TL, v2003) [44].
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2.10. Cytokines Measurement

Serum and Hippocampal levels of IL 6, TNF-α, IL-1β, IL 18 and β-amyloid were
determined using an ELISA kit (Diaclone Research, Biosource Europe, USCN life Sciences;
Invitrogen, Milan, Italy). Briefly, tissues were homogenized in 1 mL PBS with 10 µL protease
inhibitor at low speed. The samples were centrifuged at 14,000× g at 4 ◦C for 15 min;
supernatants were employed, using respective ELISA kits according to the manufacturer’s
protocol, and analyzed using a microplate reader [29,45].

2.11. Biochemical Analysis

Biochemical analyses were conducted on the hippocampus:
To evaluate superoxide dismutase (SOD) activity, samples were homogenized in

Tris buffer (pH 8.2) and centrifuged at 10,000× g. TritonX-100 was added; samples were
incubated at 4–8 ◦C for 20 min and then centrifuged at 8000× g. The absorbance was
measured at 420 nm. [46]. To evaluate catalase (CAT) activity, tissues were homogenized
in phosphate buffer at 800 g, then hydrogen peroxide was added and absorbance was
measured for 0–10 min at 240 min [47]. To evaluate glutathione (GSH) levels, trichloroacetic
acid solution was added to homogenized samples (0.2 M phosphate buffer (pH 7.6)). Then,
the mixture was centrifuged at 3900× g. 5,5′-dithiobis-(2-nitrobenzoic acid) was added, and
samples were incubated at room temperature for 5 min and the absorbance was measured at
412 nm [48]. To evaluate nitrite levels, Griess reagent was added to homogenized samples.
The absorbance was measured at 548 nm [28]. To evaluate lipid peroxidation, thiobarbituric
acid-reactant substance evaluation was performed [49]. Samples were homogenized in
Hank’s balanced salt solution at 2000 g. Pellets were incubated in a solution containing
sodium dodecyl sulfate, acetic acid, thiobarbituric acid, and water for 1 h at 95 ◦C. After
cooling, water, n-butanol, and pyridine were added, and the mixture was centrifuged
at 2000× g. The absorbance was measured at 532 nm. To evaluate the production of
ROS in the brain, dichlorofluorescein diacetate (DCFH-DA) was added to homogenized
samples. The conversion of non-fluorescent DCFH-DA to the highly fluorescent compound
20,70-dichlorofluorescein (DCF) by esterase activity was used to monitor the presence of
ROS due to the oxidative burst in the brain [28].

2.12. Statistical Evaluation

All values are expressed as mean± standard error of the mean (SEM) of N = 30 observations.
For in vivo studies, N represents the number of animals used. Results were analyzed by Log-
rank (Mantel–Cox) test or one-way ANOVA, followed by a Bonferroni post hoc test for multiple
comparisons. A p-value of less than 0.05 was considered significant. * p < 0.05 vs. Control,
# p < 0.05 vs. CLP, ** p < 0.01 vs. Control, ## p < 0.01 vs. CLP, *** p < 0.001 vs. Control,
### p < 0.001 vs. CLP.

3. Results
3.1. Effects of Coriolus versicolor on Survival after CLP Induction

Male Wistar rats were subjected to CLP, and Coriolus versicolor (200 mg/kg in saline)
was administered daily by gavage (Figure 1A). Survival was monitored over 28 days
(Figure 1B). No mortality was detected in the Control and Control + Coriolus versicolor
groups. Animals from the CLP group showed a survival of 82% at day 1, 71% at day 2, 32%
at day 3, and 13% at day 4 to day 28 from the surgery. The CLP + Coriolus versicolor group
showed a survival of 95% at day 1, 91% at day 2, 83% at day 3, and 70% at day 4 to day
28 from the surgery.
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Figure 1. Coriolus versicolor reduced CLP-induced mortality: Experimental timeline (A), Percent
survival (B). For these analysis n = 10 animals for each group were employed. Results were analyzed
by Log-rank (Mantel-Cox) test. A p-value of less than 0.05 was considered significant. *** p < 0.001 vs.
Control, ### p < 0.001 vs. CLP.

3.2. Effects of Coriolus versicolor on Organ Damage CLP Induced

The high bacterial load induced by sepsis caused an exaggerated inflammatory re-
sponse, resulting in organ dysfunction and tissue damage. To test whether Coriolus versicolor
restored organ damage against sepsis-induced injury, we analyzed tissues from vital organs
that easily succumb to infection such as the kidney, liver, lungs, and gut from all experimen-
tal groups to study histopathological changes. All the tissues from different experimental
groups were harvested after 72 h. This is because the CLP group showed a high mortality
beyond 72 h, while the CLP + Coriolus versicolor group lived longer. No histological damage
was detected in the Control groups (Figure 2A,B,E,F,I,J,M,N). Tissues from the CLP group
showed microthrombi and congestion in the kidney (Figure 2C,Q), liver (Figure 2G,Q), and
lungs (Figure 2K,Q) and increased necrosis of villi in gut (Figure 2O,Q), as compared to
controls. Treatment with Coriolus versicolor reversed these changes in all organs studied
(Figure 2D,H,I,P).

3.3. Effects of Coriolus versicolor on Long-Lasting Elevation of Serum Cytokines CLP Induced

In order to evaluate the anti-inflammatory effect of Coriolus versicolor administra-
tion, serum cytokine levels were assessed. No differences in IL6 (Figure 3A), TNF-α
(Figure 3B), IL-1β (Figure 3C), or IL18 (Figure 3D) levels between Control and Control
+ Coriolus versicolor were determined. The CLP group showed increased expression of
cytokines, as compared to the controls. The CLP + Coriolus versicolor group showed reduced
levels of IL6 (Figure 3A), TNF-α (Figure 3B), IL-1β (Figure 3C), and IL18 (Figure 3D) in
serum, as compared to the CLP group.
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Figure 2. Coriolus versicolor reduced histological damage induced by CLP 72 h after surgery. Hema-
toxylin and eosin staining of: kidney: Control (A), Control + Coriolus versicolor (B), CLP (C), CLP +
Coriolus versicolor (D); liver: Control (E), Control + Coriolus versicolor (F), CLP (G), CLP + Coriolus
versicolor (H); lungs: Control (I), Control + Coriolus versicolor (J), CLP (K), CLP + Coriolus versicolor (L);
gut: Control (M), Control + Coriolus versicolor (N), CLP (O), CLP + Coriolus versicolor (P); histological
score (Q). *** p < 0.001 vs. Control, ### p < 0.001 vs. CLP.
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Figure 3. Coriolus versicolor reduced serum cytokines induced by CLP 28 days after surgery.
Levels of serum interleukin (IL)6 (A), tumor necrosis factor (TNF)-α (B), IL-1β (C), IL18 (D).
*** p < 0.001 vs. Control, ## p < 0.01 vs. CLP, ### p < 0.001 vs. CLP.

3.4. Effects of Coriolus versicolor on Long-Lasting Reduction of Hippocampal Tight Junctions
CLP Induced

Basal levels of ZO and occludin expression were detected in Control (Figure 4A,I) and
Control + Coriolus versicolor (Figure 4E,J) groups, and no statistical differences were found
between them (Figure 4I,J). ZO and occludin expression were found to be strongly reduced
in the CLP group (Figure 4C,G), as compared to the controls, while Coriolus versicolor admin-
istration partially restored their levels (Figure 4D,H). The analysis of the BBB permeability,
conducted by the sodium fluorescein dye extravasation, showed increased permeability in
the hippocampi of the CLP group, as compared to the control groups. Coriolus versicolor
administration significantly reduced the dye extravasation (Figure 4K), as compared to
the CLP group. Western blot analysis also confirmed these data. ZO (Figure 4L) and
occludin (Figure 4M) levels decreased in the CLP group, as compared to the controls, while
Coriolus versicolor administration increased their expressions.
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Figure 4. Coriolus versicolor reduced tight junctions alterations in the hippocampus 28 days after
CLP. Immunohistochemical analysis of zona occludens (ZO): Control (A), Control + Coriolus versicolor
(B), CLP (C), CLP + Coriolus versicolor (D), immunohistochemical analysis of occludin: Control (E),
Control + Coriolus versicolor (F), CLP (G), CLP + Coriolus versicolor (H). Graphical quantification of
ZO expression (I); graphical quantification of ZO expression (J). Sodium fluorescein extravasation (K).
Western blot analysis of ZO (L), occludin (M). * p < 0.05 vs. Control, # p < 0.05 vs. CLP, ## p < 0.01 vs. CLP,
*** p < 0.001 vs. control, ### p < 0.001 vs. CLP.

3.5. Effects of Coriolus versicolor on Long-Lasting Elevation of Hippocampal Cytokines
CLP Induced

In order to investigate the neuroprotective effects of Coriolus versicolor administration,
hippocampal cytokine levels were assessed. No differences in IL6 (Figure 5A), TNF-α
(Figure 5B), IL-1β (Figure 5C), and IL18 (Figure 5D) levels between Control and Control
+ Coriolus versicolor were determined. The CLP group showed increased expression of
cytokines, as compared to the controls. The CLP + Coriolus versicolor group showed reduced
levels of IL6 (Figure 5A), TNF-α (Figure 5B), IL-1β (Figure 5C), and IL18 (Figure 5D) in the
hippocampus, as compared to CLP.
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Figure 5. Coriolus versicolor reduced hippocampal cytokines induced by CLP 28 days after surgery.
Levels of hippocampal interleukin (IL)6 (A), tumor necrosis factor (TNF)-α (B), IL-1β (C), IL18 (D).
## p < 0.01 vs. CLP, *** p < 0.001 vs. control, ### p < 0.001 vs. CLP.

3.6. Effects of Coriolus versicolor on Activation of Hippocampal Glial Cell CLP Induced

To investigate the glia activation, immunohistochemical and immunofluorescence analyses
were conducted. GFAP and Iba-1 expression were found strongly increased in the CLP group
(Figures 6C,H and 7C,H), as compared to the control groups (Figures 6A,B,F,G and 7A,B,F,G).
No statistical differences were determined between Control (Figures 6E and 7E) and Control
+ Coriolus versicolor (Figures 6J and 7J) groups. Coriolus versicolor decreased both glial fibrillary
acidic protein (GFAP) (Figures 6D and 7D) and Ionized calcium-binding adapter molecule1
(Iba-1) (Figures 6I and 7I) expressions, as compared to CLP.
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Figure 6. Coriolus versicolor reduced glia activation in hippocampus induced by CLP 28 days after
surgery. Immunohistochemical analysis of glial fibrillary acidic protein (GFAP): Control (A), Control
+ Coriolus versicolor (B), CLP (C), CLP + Coriolus versicolor (D), graphical quantification of GFAP
expression (E); immunohistochemical analysis of Ionized calcium-binding adapter molecule1 (Iba-
1): Control (F), Control + Coriolus versicolor (G), CLP (H), CLP + Coriolus versicolor (I), graphical
quantification of Iba-1 expression (J). *** p < 0.001 vs. control, ### p < 0.001 vs. CLP.

3.7. Effects of Coriolus versicolor on Hippocampal Inflammation CLP Induced

To evaluate the neuroinflammation CLP induced, Western blot analyses were conducted.
Increased expression of TLR4 (Figure 8A) and nitric oxide synthase (nNOS) (Figure 8B) were
found in tissues harvested from the CLP group, as compared to the Control and Control +
Coriolus versicolor groups. Tissues harvested from CLP + Coriolus versicolor group showed
reduced TLR4 (Figure 8A) and nNOS (Figure 8B). CLP also increased the expression of
the NLR family pyrin domain containing 3 (NLRP3) inflammasome components: NLRP3
(Figure 8C), apoptosis-associated speck-like protein containing a CARD (ASC) (Figure 8D),
and Caspase-1 (Figure 8E), as compared to the Control and Control + Coriolus versicolor groups.
Coriolus versicolor administration strongly reduced NLRP3 (Figure 8C), ASC (Figure 8D), and
Caspase-1 (Figure 8E) expression, as compared to CLP. Immunohistochemical analysis con-
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firmed the increased expression of NLRP3 and Caspase-1 in the CLP group (Figure 9C,
Figure 9D, Figure 9H, and Figure 9J, respectively), as compared to the Control (Figure 9A,F)
and Control + Coriolus versicolor groups (Figure 9B,G). Well in line with the Western blot
results, the CLP + Coriolus versicolor group showed reduced NLRP3 (Figure 9D) and Caspase-1
(Figure 9I) expression, as compared to CLP. Indeed, fluorescent-double-staining showed an
increased number of GFAP/NLRP3 and GFAP/Caspase-1-positive cells in samples harvested
from the CLP group (Figure 10C,E,H,J), as compared to the samples harvested from the
Control (Figure 10A,E,F,J) and Control + Coriolus versicolor (Figure 10B,E,G,J) groups. CLP
+ Coriolus versicolor group showed a reduced number of GFAP/NLRP3 (Figure 10D,E) and
GFAP/Caspase-1 (Figure 10I,J) positive cells. Additionally, the CLP group showed an in-
creased number of Iba-1/NLRP3 (Figure 11C,E) and Iba-1/Caspase-1 (Figure 11H,J) positive
cells as compared to controls (Figure 11A,B,E–G,J).

3.8. Effects of Coriolus versicolor on Oxidative Stress CLP Induced

Coriolus versicolor administration restored the GSH levels (Figure 12A) and catalase
(Figure 12B) and SOD (Figure 12C) activity, which were reduced by CLP. CLP also increased
lipid peroxidation (Figure 12D), nitrite (Figure 12E), and ROS levels (Figure 12F), as com-
pared to the controls, which were decreased in the CLP + Coriolus versicolor group. No
statistical differences were detected between Control and ontrol + Coriolus versicolor groups.

3.9. Effects of Coriolus versicolor on AD-like Neuropathology CLP Induced

To evaluate the effect of administration on Coriolus versicolor AD-like pathology, West-
ern blot analysis was conducted. Increased amyloid precursor protein (APP) (Figure 13A),
phosphorylated-Tau (p-Tau) (Figure 13B), pathologically phosphorylated tau (PHF1) (Figure 13C),
phosphorylated tau (Ser202 and Thr205) (AT8) (Figure 13D), and interferon-induced trans-
membrane protein 3 (IFITM3) (Figure 13E) expression was detected in tissues harvested
from the CLP group, as compared to the Control and Control + Coriolus versicolor groups.
Coriolus versicolor administration significantly decreased these levels and also reducedβ-amyloid
accumulation (Figure 13F), as compared to CLP. Immunohistochemical analysis confirmed the
increased expression of p-Tau and β-amyloid in the CLP group (Figure 14C, Figure 14D,
Figure 14H, and Figure 14J, respectively), as compared to the Control (Figure 14A,F) and Con-
trol + Coriolus versicolor groups (Figure 14B,G). Well in line with the Western blot results, the
CLP + Coriolus versicolor group showed reduced p-Tau (Figure 14D) and β-amyloid (Figure 14I)
expression, as compared to CLP.

3.10. Effects of Coriolus versicolor on Behavioral Alteration CLP Induced

Behavioral analyses were performed to evaluate the modification induced by CLP and
the effects of Coriolus versicolor treatment.

In the training test of the MWM test, on day four the animals from all the groups
displayed a decreasing trend in the escape latency time as compared to that on day one
(Figure 15A). In the probe trial, Coriolus versicolor administration increased the time spent
by the animals in the target quadrant, demonstrating an increase in memory consolidation
as compared to the CLP group (Figure 15B). In the EPM test, the CLP + Coriolus versicolor
group showed a reduced time of travel of the animal from the open arm to the closed arm
(initial acquisition latency, IAL) and reduced retention of memory (RTL), demonstrating an
increase in memory retention as compared to the CLP group (Figure 15C). In the NOR test,
Coriolus versicolor administration significantly increased the RI%, demonstrating an increase
in cognitive function, which was reduced in the CLP group (Figure 15D). No statistical
differences were detected between Control and Control + Coriolus versicolor groups. The
locomotion and additional probing behaviors of rats were inspected via the open field test.
A diminution in the locomotion was observed in the CLP group, with an augmented time
that was spent motionless while comparing it to the controls (Figure 15E). Interestingly,
the Coriolus versicolor administration revealed a noticeable enhancement in the locomotion
and substantial reduction in the time spent motionless phase, as compared to the CLP
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group. Additionally, there were no variations noted between the control and the control +
Coriolus versicolor groups.
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Figure 7. Coriolus versicolor reduced glia activation in hippocampus induced by CLP 28 days after
surgery. Immunofluorescence analysis of glial fibrillary acidic protein (GFAP): Control (A), Control
+ Coriolus versicolor (B), CLP (C), CLP + Coriolus versicolor (D), graphical quantification of GFAP
expression (E); immunofluorescence analysis of Ionized calcium-binding adapter molecule1 (Iba-
1): Control (F), Control + Coriolus versicolor (G), CLP (H), CLP + Coriolus versicolor (I), graphical
quantification of Iba-1 expression (J). *** p < 0.001 vs. control, ### p < 0.001 vs. CLP.
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Figure 8. Coriolus versicolor reduced hippocampal inflammation induced by CLP 28 days after surgery.
Western blot analysis of toll-like receptor 4 (TLR4) (A), nitric oxide synthase (nNOS) (B), NLR family
pyrin domain containing 3 (NLRP3) (C), apoptosis-associated speck-like protein containing a CARD
(ASC) (D), Caspase-1 (E) expression. * p < 0.05 vs. control, # p < 0.05 vs. CLP, ** p < 0.01 vs. control,
## p < 0.01 vs. CLP, *** p < 0.001 vs. control, ### p < 0.001 vs. CLP.
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Figure 9. Coriolus versicolor reduced NLR family pyrin domain containing 3 (NLRP3) and Caspase-1
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expression induced by CLP 28 days after surgery. Immunohistochemical analysis of NLRP3: Control
(A), Control + Coriolus versicolor (B), CLP (C), CLP + Coriolus versicolor (D), graphical quantifica-
tion of NLRP3 expression (E), immunohistochemical analysis of Caspase-1: Control (F), Control +
Coriolus versicolor (G), CLP (H), CLP + Coriolus versicolor (I), graphical quantification of Caspase-1
expression (J). ** p < 0.01 vs. Control, *** p < 0.001 vs. control.
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Figure 10. Coriolus versicolor reduced glial fibrillary acidic protein (GFAP)/NLR family pyrin domain
containing 3 (NLRP3) and GFAP/Caspase-1 colocalization induced by CLP 28 days after surgery.
Immunofluorescence analysis of GFAP/NLRP3: Control (A), Control + Coriolus versicolor (B), CLP
(C), CLP + Coriolus versicolor (D), graphical quantification of GFAP/NLRP3 colocalization (E), im-
munofluorescence analysis of NLRP3/Caspase-1: Control (F), Control + Coriolus versicolor (G), CLP
(H), CLP + Coriolus versicolor (I), graphical quantification of NLRP3/Caspase-1 colocalization (J).
*** p < 0.001 vs. control, ### p < 0.001 vs. CLP.
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Figure 11. Coriolus versicolor reduced Ionized calcium-binding adapter molecule1 (Iba-1)/ NLR family
pyrin domain containing 3 (NLRP3) and Iba-1/Caspase-1 colocalization induced by CLP 28 days
after surgery. Immunofluorescence analysis of Iba-1/NLRP3: Control (A), Control + Coriolus versicolor
(B), CLP (C), CLP + Coriolus versicolor (D), graphical quantification of Iba-1/NLRP3 colocalization
(E), immunofluorescence analysis of Iba-1/Caspase-1: Control (F), Control + Coriolus versicolor (G),
CLP (H), CLP + Coriolus versicolor (I), graphical quantification of Iba-1/Caspase-1 colocalization (J).
*** p < 0.001 vs. control, ### p < 0.001 vs. CLP.
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Figure 12. Coriolus versicolor reduced hippocampal oxidative stress induced by CLP 28 days af-
ter surgery. Glutathione (GSH) levels (A); Catalase (B) and superoxide dismutase (SOD) (C) ac-
tivity; Malondialdehyde (MDA) (D), Nitrite (E) and reactive oxygen species (ROS) levels (F).
*** p < 0.001 vs. control, ## p < 0.01 vs. CLP, ### p < 0.001 vs. CLP.
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Figure 13. Coriolus versicolor reduced AD-like neuropathology induced by CLP 28 days after
surgery. Western blot analysis of amyloid precursor protein (APP) (A), phosphorylated-Tau (p-
Tau) (B), pathologically phosphorylated tau (PHF1) (C), phosphorylated tau (Ser202 and Thr205)
(AT8) (D), and interferon-induced transmembrane protein 3 (IFITM3) (E) expression; β-amyloid
levels (F). * p < 0.05 vs. control, # p < 0.05 vs. CLP, ** p < 0.01 vs. control, ## p < 0.01 vs. CLP,
*** p < 0.001 vs. control, ### p < 0.001 vs. CLP.

3.11. Effects of Coriolus versicolor on Synaptic Plasticity CLP Induced

The expressions of growth-associated protein-43 (GAP-43) and postsynaptic density
protein 95 (PSD-95) were assessed to investigate the synaptic plasticity. Western blot
analysis showed decreased expression of GAP-43 (Figure 16A) and PSD-95 (Figure 16B)
in the CLP group, as compared to Control and Control + Coriolus versicolor groups.
Coriolus versicolor administration restored levels of GAP-43 and PSD-95, as compared
to CLP.
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Figure 14. Coriolus versicolor reduced phosphorylated-Tau (p-Tau) and Aβ expression in hippocampus
induced by CLP 28 days after surgery. Immunohistochemical analysis of p-Tau: Control (A), Control
+ Coriolus versicolor (B), CLP (C), CLP + Coriolus versicolor (D), graphical quantification of p-Tau
expression (E), immunohistochemical analysis of β-amyloid: Control (F), Control + Coriolus versicolor
(G), CLP (H), CLP + Coriolus versicolor (I), graphical quantification of β-amyloid expression (J).
*** p < 0.001 vs. control, ### p < 0.001 vs. CLP.
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Figure 15. Coriolus versicolor reduced behavioral alterations induced by CLP 28 days after surgery.
Morris water maze test: training (A), probe trial (B); Elevated plus maze test (C); Novel object recog-
nition test (D); Open field test (E). ** p < 0.01 vs. control, ## p < 0.01 vs. CLP, *** p < 0.001 vs. control,
### p < 0.001 vs. CLP.
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Figure 16. Coriolus versicolor restored synaptic injury in hippocampus induced by CLP 28 days
after surgery. Western blot analysis of growth-associated protein-43 (GAP-43) (A) and postsynaptic
density protein 95 (PSD-95) (B) expression. A p-value of less than 0.05 was considered significant.
* p < 0.05 vs. control, # p < 0.05 vs. CLP, ## p < 0.01 vs. CLP, ** p < 0.01 vs. control.
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4. Discussion

Numerous studies have examined the acute inflammatory response to sepsis, modeled
either by CLP or high dose LPS in rodent models. In this study, Coriolus versicolor adminis-
tration improved the survival and tissue injury induced by CLP in the acute phase of sepsis.
Indeed, rats surviving sepsis showed brain degeneration strongly associated with the onset
of Alzheimer disease. Here we demonstrated the effect of Coriolus versicolor administration
in the relationship between the enhanced transcription of the pro-inflammatory cytokines
and increased BBB permeability, which induces hippocampal plasticity, neuroinflammation,
and impaired cognitive functions [28,50].

We acknowledge that our study has potential limitations. First, we did not perform the
same analysis in the “100%” group because of the high lethality rate. We chose animals with
the same genetic background, age, and gender to limit experimental variability secondary
to differences in inflammatory response and maturity of the immune system [51,52]. Fur-
thermore, our study lacked evaluation of anti-inflammatory balance within the first hours
post-procedure. We were not able to determine if the 100% group had a very early pro-
and anti-inflammatory imbalance, which has been shown to be predictive of mortality [53].
Third, we are aware that we have not exhaustively analyzed the cytokine response to cecal
ligation. For example, other cytokines, such as IL-12 or interferon-γ, play a central role in
septic inflammatory response [54].

The dose of Coriolus versicolor was chosen basing on previous studies where it already
displayed neuroprotective effects [23]. Sepsis induced a strong release of pro-inflammatory
cytokines in the bloodstream that can induce inflammation and injury. Coriolus versicolor,
with its antimicrobial, anti-inflammatory, and antioxidant activities, increased survival
and reduced the release of pro-inflammatory cytokines in the bloodstream, leading to
reduced systemic inflammation. Previous studies associated the systemic inflammation to
the sepsis-induced BBB dysfunction [55]. The BBB is a biochemical and structural barrier
that regulates the access of molecules from the plasma to the brain, preserving the CNS
homeostasis. It is constituted by microvascular endothelial cells that are closely linked
by tight junctions [56,57]. These tight junctions are the functionally important part of the
barrier because they modulate its function [58,59]. Previous papers have shown that de-
creasing the loss of occludin and ZO-1 proteins could restore the BBB permeability [60,61].
The CLP-induced BBB impairment was importantly restored by Coriolus versicolor admin-
istration, as shown by the increased expression of ZO-1 and occludin. Once the BBB is
damaged, cytokines and proinflammatory mediators reach the brain and induce neuroin-
flammation. Brain proinflammatory markers increased in animals subjected to CLP [62].
Previous papers have demonstrated the relationship between CLP and microglial activation
and the related long-cognitive disfunctions [16]. Coriolus versicolor administration was able
to reduce cytokines accumulation in the brain and GFAP and Iba-1 expression, which is a
well-known marker of astrocytes and microglia. The glia activation has an important role
in chronic neuroinflammation. In this context, the activation of the NLRP3 inflammasome
complex and TLR4 and nNOS overexpression have been related to astrocytes/microglia
activation [63]. In particular, TLR4 activates the production of nitric oxide (NO), cytokines,
and ROS in CNS. Coriolus versicolor administration by reducing glia stimulation strongly re-
duced the expression of the NLRP3 inflammasome complex components, TLR4 and nNOS.
Coriolus versicolor also has important antioxidant activities: it reduced lipid peroxidation,
nitrite and ROS levels, and restored the activities of the phase II detoxifying enzymes,
including SOD, Catalase, and GSH. In sequence, the pro-inflammatory environment stimu-
lates the formation of IFITM3 protein in astrocytes and neurones [64], which upregulate Aβ

production. Its accumulation in amyloid plaques is regulated by transcriptional directive
of AβPP, modification in activity, and/or expression of the secretases involved in AβPP
cleavage and ROS expression resulting from glial activation [65]. The Aβ deposition further
increased the cerebral inflammatory answer. IFITM3 is a γ-secretase modulatory protein,
which is basally expressed in many cells and found upregulated in AD patients [64]. In-
creased Tau phosphorylation is correlated with numerous neurodegenerative disorders [66].
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The involvement of abnormal Tau phosphorylation in brain impairment following sepsis
is in line with previous studies, including the decline of cognitive function and oxidative
stress to CNS [67,68]. Our works revealed that Coriolus versicolor administration by reducing
neuroinflammation decreased the expression of IFITM3, APP protein, Aβ deposition, Tau
phosphorylation, and PHA1 and AT8 expression.

These molecular events are often associated with behavioral AD-like modifications,
including impairment in memory retention tasks and spontaneous locomotor activities.
Well in line with all these results, Coriolus versicolor administration ameliorated the cognitive
impairment associated with sepsis-induced neuroinflammation. Cognitive impairments
are often associated with synaptic degeneration [69]. Biomarkers for synaptic dysfunction
can be divided into pre- and postsynaptic biomarkers depending on the localization of
the protein [70]. The protein GAP-43, found in high levels in the prefrontal cortex and
hippocampus, plays a crucial role in axonal growth, regeneration, and synaptogenesis [71].
When GAP-43 is phosphorylated, it encourages the growth of neurites and boosts vesicle
cycling, which leads to heightened neuronal plasticity [72]. Furthermore, PSD-95 is a
postsynaptic scaffolding protein that participates in the development and malleability of
synapses [73]. Consistent with prior findings, treatment with Coriolus versicolor boosts
the production of GAP-43, a presynaptic protein, and PSD-95, a postsynaptic protein, in
the hippocampus.

5. Conclusions

Overall, this paper demonstrated that Coriolus versicolor administration was able to
counteract the acute phase of sepsis and the chronic the neurodegenerative processes.
Importantly, Coriolus versicolor reduced microglia and astroglia activation, Aβ deposition,
and the related long-cognitive disfunctions.
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