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Abstract: Reduced glutathione (GSH) and ascorbic acid (AA) are the two most abundant low-
molecular-weight antioxidants in mammalian tissues. GclmKO knockout mice lack the gene encoding
the modifier subunit of the rate-limiting enzyme in GSH biosynthesis; GclmKO mice exhibit 10–40% of
normal tissue GSH levels and show no overt phenotype. GuloKO knockout mice, lacking a functional
Gulo gene encoding L-gulono-γ-lactone oxidase, cannot synthesize AA and depend on dietary ascor-
bic acid for survival. To elucidate functional crosstalk between GSH and AA in vivo, we generated
the GclmKO/GuloKO double-knockout (DKO) mouse. DKO mice exhibited spontaneous epileptic
seizures, proceeding to death between postnatal day (PND)14 and PND23. Histologically, DKO mice
displayed neuronal loss and glial proliferation in the neocortex and hippocampus. Epileptic seizures
and brain pathology in young DKO mice could be prevented with AA supplementation in drinking
water (1 g/L). Remarkably, in AA-rescued adult DKO mice, the removal of AA supplementation for
2–3 weeks resulted in similar, but more severe, neocortex and hippocampal pathology and seizures,
with death occurring between 12 and 21 days later. These results provide direct evidence for an
indispensable, yet underappreciated, role for the interplay between GSH and AA in normal brain
function and neuronal health. We speculate that the functional crosstalk between GSH and AA
plays an important role in regulating glutamatergic neurotransmission and in protecting against
excitotoxicity-induced brain damage.
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1. Introduction

Reactive oxygen radicals, derived from molecular oxygen, are often products of nor-
mal cellular metabolism. These molecules, commonly referred to as reactive oxygen species
(ROS), are highly reactive to induce oxidation-reduction (redox) reactions. Under physiolog-
ical conditions, low or moderate concentrations of ROS are recognized as playing important
regulatory roles in a number of cellular signaling pathways and the induction of mitogenic
responses [1,2]. On the other hand, excessive ROS can cause damage to intracellular nucleic
acids, lipids, and proteins, thereby initiating pathological processes [1,2]. These harmful
effects of ROS leading to potential biological damage typically arise under conditions of
oxidative stress, wherein cellular redox homeostasis is disrupted due to an overproduction
of ROS, a deficiency in antioxidants, or both [3,4]. The brain generates large amounts of
ROS during rapid cellular metabolism and, therefore, is highly vulnerable to oxidative
insults; as such, the antioxidant systems in brain cells are essential in protecting against
oxidative stress and in maintaining functional integrity of the brain [5,6].
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Reduced glutathione (GSH) and ascorbic acid (AA) are the two most abundant low-
molecular-weight antioxidants in the brain. GSH is a ubiquitous tripeptide, synthesized
in all cell types. The rate-limiting enzyme in GSH de novo biosynthesis is glutamate-
cysteine ligase (GCL), which is a heterodimer comprising a catalytic (GCLC) and a modifier
(GCLM) subunit [7]. GSH levels in mammalian nerve cells range between ~2 and 4 mM
and are slightly higher in glial cells than in neurons [5,6]. Because of its abundance, GSH
acts as a scavenger of free radicals and a cofactor for other antioxidant enzymes [6,7].
AA is synthesized in most mammals from glucose exclusively in liver [8]. Extrahepatic
tissues obtain AA from plasma by means of sodium-dependent vitamin C transporters
SLC23A1 and SLC23A2 [8,9]. However, humans must obtain AA from dietary sources
due to nonsynonymous mutations in the normal L-gulonolactone oxidase gene, rendering
it a pseudogene (GULOP); consequently, these amino acid alterations cause GULO, the
rate-limiting enzyme in AA biosynthesis, to be inactive in humans [10]. The human
GULOP pseudogene is orthologous to the mouse Gulo functional gene. AA is most
abundant in the brain, and its level is under strict control, such that 30% of normal levels
must be maintained—even under conditions of severe AA deficiency [11,12]. The cellular
concentration of AA in neurons (~10 mM) is roughly10-fold higher than that in astrocytes
(~1 mM). Like GSH, the biological functions of AA are attributed to its reducing properties,
including scavenging free radicals and serving as enzyme co-factors in biosynthesis [13–15].
Notably, in addition to their antioxidant functions, both GSH and AA have been implicated
to act as endogenous neuromodulators in regulating glutamatergic neurotransmission, by
which means they may be involved in the inhibition of neuronal excitability and, therefore,
neuroprotection [16–22].

An interplay between GSH and AA has been proposed based on the following observa-
tions: (i) GSH can reduce dehydroascorbate to regenerate AA [23,24]; (ii) GSH depletion and
its associated pathology in rodent model systems can be prevented by AA treatment [25,26];
and (iii) there is a compensatory increase in either one of them, following depletion of the
other [24,27]. To date, little information exists for GSH-AA interactions in the brain, partic-
ularly in the intact animal. In this regard, genetic mouse models of GSH deficiency (GclmKO

mice) [28] and AA deficiency (GuloKO mice) [29], respectively, have been developed to inves-
tigate the in vivo physiological/toxicological roles of these antioxidants. GclmKO mice have
10–40% of normal GSH levels in all tissues examined, yet they show no overt phenotype
when unchallenged [28,30]. GuloKO mice, like humans, require dietary AA for survival [29].
When deprived of AA supplementation for 5 weeks, GuloKO mice show symptoms of clini-
cal AA deficiency, commonly referred to as scurvy [29]. We have previously investigated
neurobehavioral phenotypes in GSH deficient GclmKO mice [31] and AA deficient GuloKO

mice [32]. These studies revealed that the depletion of a single antioxidant is associated
with rather subtle neurological changes. To test the hypothesis that the existing antioxidant
in the single-knockout mouse provides compensatory neuroprotection, the main aim of the
current study is to evaluate phenotypic outcome(s) of depleting both antioxidants in the
intact animal. Therefore, we generated a GclmKO/GuloKO double-knockout (DKO) mouse
model by intercrossing the two single-knockout strains. The resultant DKO mice showed a
dramatic neurological phenotype—manifested as spontaneous generalized seizures and
premature death.

2. Materials and Methods
2.1. Chemicals and Reagents

All chemicals and reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA)
unless otherwise specified.

2.2. Animals

The GclmKO mouse line was previously characterized [28] and has been backcrossed
to C57BL/6J (B6) background for more than 10 generations. The GuloKO mouse line was
previously described [29], and its heterozygous breeders, also on the B6 background, were
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purchased from the Mutant Mouse Regional Resource Centers (MMRRC, http://www.
mmrrc.org, accessed on 1 March 2005). Mice were housed in a temperature-controlled room
(21–22 ◦C) on a 12-h light/dark cycle and supplied with a standard rodent diet (#7012,
Harlan Teklad) and water ad libitum, unless specified otherwise. Animals were treated
humanely, and all animal experiments were approved by and conducted in compliance
with the Institutional Animal Care and Use Committees (IACUC) of the University of
Cincinnati (Protocol #05-08-11-01).

2.3. Generation of GclmKO/GuloKO DKO Mice and Ascorbic Acid Supplementation

We generated the DKO mice by intercrossing GclmKO mice with GuloKO mice. GclmKO

females are subfertile [33]; therefore, the breeding scheme was designed to avoid any
issue with fertility (Figure 1A). GuloKO female and male breeders were provided with
L-ascorbic acid (AA) in the drinking water (1 g/L) at all times to keep them healthy and
fertile. The genotypes of the offspring were determined by PCR analysis of genomic DNA
extracted from a 2-mm ear punch collected at postnatal day (PND) 12; PCR primers and
protocols used for the detection of Gclm and Gulo alleles, respectively, have been previously
described [28,29]. All pups were weaned between postnatal day (PND) 21 and 28. Body
weights were recorded every other day starting at PND12 till PND22. For AA rescue
experiments, AA supplementation to pre-weanling mice started at PND16 by providing
small bottles of AA-containing drinking water (1 g/L) inside the nursing cages; at this
time, pups had begun to walk around and could drink water voluntarily. Surviving post-
weanling DKO mice were kept on AA-containing drinking water (1 g/L) until specified
ages—when AA was removed from the drinking water or until the study was concluded.
Freshly prepared AA-containing water was supplied twice weekly.
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DKO lines. (B), Representative electrophoresis images of PCR genotyping of offspring for Gclm and 
Gulo alleles. PCR products derived from wild-type (WT) or knockout (KO) alleles of respective 
genes are labeled. (C), Body weight as a function of postnatal day (PND). N = 7–8/genotype. Data 
are expressed as means ± S.D. * p < 0.05, ** p < 0.01, when compared to age-matched HET mice by 
Student’s unpaired t-test. (D), survival rate of HET, MKO, GKO (N = 23–25/genotype) offspring vs 

Figure 1. Genetic deficiency in GSH and AA biosynthesis leads to growth retardation, spontaneous
generalized seizure and premature death. (A), Breeding scheme—to obtain HET, MKO, GKO and
DKO lines. (B), Representative electrophoresis images of PCR genotyping of offspring for Gclm and
Gulo alleles. PCR products derived from wild-type (WT) or knockout (KO) alleles of respective genes
are labeled. (C), Body weight as a function of postnatal day (PND). N = 7–8/genotype. Data are
expressed as means ± S.D. * p < 0.05, ** p < 0.01, when compared to age-matched HET mice by
Student’s unpaired t-test. (D), survival rate of HET, MKO, GKO (N = 23–25/genotype) offspring
vs DKO (N = 26) offspring. First death occurred at PND14, and last death happened on PND23.
(E), Representative EEG of a spontaneous seizure recorded in a DKO mouse at age PND19. The EEG
pattern of the onset (Line 1) and the termination of a 90-s seizure (Line 2) are compared with that of a
control HET mouse (Line 3).

http://www.mmrrc.org
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2.4. Electroencephalography (EEG) Recording

EEG live recordings were performed on three to four mice from each genotype group
at the age of PND18-20 as described [34,35]. Briefly, on the day of recording, mice were
anesthetized with 3.5% isoflurane in oxygen for the implantation of electrodes (Plastics
One Inc., Roanoke, VA, USA) and the connection to a 32-channel EEG machine (Cadwell
Laboratories, Kennewick, WA, USA). Mice were allowed to recover from anesthesia and
move freely before recording. EEGs were recorded in awake and unrestrained mice for
360 min continuously, after which mice were euthanized by carbon monoxide asphyxiation.
EEG data were digitally recorded and analyzed using the Easy EEG II software V. 1.5
(Cadwell Laboratories, Kennewick, WA, USA). Electrographic seizures were defined as
the sudden onset of high amplitude (>2 × background) activity with signal progression (a
change in amplitude and frequency over the course of the event) and a duration greater than
ten seconds. EEG records were inspected by a clinically-qualified electroencephalographer
(KDH) blinded to genotype groups.

2.5. Histological and Immunohistochemical Analyses

Mice were anesthetized with an intraperitoneal injection of avertin then perfused
transcardially with freshly made 4% paraformaldehyde. Brains were excised and post-
fixed in 4% paraformaldehyde at 4 ◦C overnight and then sent to the Department of
Comparative Pathology at the University of Cincinnati for the processing of paraffin
embedding, preparation of coronal sections (5 µm thick) through the dorsal hippocampus,
and staining of brain coronal sections by hematoxylin and eosin (HE) and toluidine blue O
(TBO) following standard procedures. Terminal deoxynucleotidyl-transferase-mediated
dUTP-biotin nick-end-labeling (TUNEL) staining was performed on paraffin sections
using In Situ Cell Death Detection kit (Roche; Indianapolis, IN, USA) according to the
manufacturer’s protocol. Immunohistochemical (IHC) staining for glial fibrillary acidic
protein (GFAP) was conducted on paraffin sections using TSA Biotin System Kit (NEN
Life Science Products, Boston, MA, USA), according to the manufacturer’s protocol. The
primary antibody against mouse GFAP (ThermoFisher, Waltham, MA, USA) was used
at a dilution of 1:100, and horseradish peroxidase (HRP)-conjugated secondary antibody
(ThermoFisher, Waltham, MA, USA) was used at a dilution of 1:200. Images were obtained
using a Nikon Eclipse TE-300 microscope.

2.6. Biochemical Measurements of Redox Molecules

Mice were euthanized by carbon dioxide asphyxiation and decapitated. Neocortex,
hippocampus, and cerebellum regions were carefully dissected out, snap-frozen in liquid
nitrogen, and stored at −80 ◦C for later biochemical assays. At the time of assay, frozen
brain tissues were homogenized in ice-cold redox-quenching buffer (20 mM HCl, 5 mM
diethylenetriaminepentaacetic acid, 5% trichloroacetic acid), followed by centrifugation at
12,000× g for 10 min. The resulting supernatants were processed for the determination of
GSH and glutathione disulfide (GSSG, oxidized glutathione) levels using the fluorescent
probe o-phthalaldehyde as described [36] and of AA levels by spectrophotometric measure-
ment of ferritin iron released by AA, as previously described [37]. Results are expressed
as µmol/g tissue weight. The malondialdehyde (MDA) levels were measured using the
Bioxytech Lpo 586 Kit (Oxis International, Inc., Foster City, CA, USA) according to the
manufacturer’s protocol. Protein concentrations of tissue homogenates were measured
using the BioRad protein-assay reagents (BioRad, Hercules, CA, USA), according to the
manufacturer’s protocol. MDA levels are expressed as nmol/mg protein.

2.7. Measurements of Hematocrit and Plasma Glucose and Lipid Profile

Mice were euthanized by carbon dioxide asphyxiation and blood was collected by
cardiac puncture. Droplets of blood were collected with hematocrit capillary tubes and
centrifuged for 2 min, using a hematocrit centrifuge (Fisher Scientific, Waltham, MA,
USA). Hematocrit values were manually determined as the percentage of blood composed
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of red blood cells. Whole blood was centrifuged at 2000× g for 5 min at 4 ◦C, and the
supernatant plasma was stored at −80 ◦C for later metabolite measurements. Plasma
glucose, electrolyte levels, and lipid profiles (including triglyceride (TG), phospholipids
(PL), cholesterol (Chol), and nonesterified free fatty acids (NEFA)) were measured by
the Mouse Metabolic Phenotyping Center at the University of Cincinnati Medical Center,
according to established protocols.

2.8. Statistics

Group differences were analyzed using Graphpad Prism software (San Diego, CA,
USA). Differences between two groups were analyzed by Student’s unpaired t-test. Multiple-
group comparisons were performed by one-way ANOVA. A post-hoc Bonferroni test was
performed to accommodate multiple comparisons. Results are presented as means ± S.D.
A score of p < 0.05 was considered statistically significant.

3. Results
3.1. Concomitant Deficiency in GSH and AA Biosynthesis Leads to Growth Retardation,
Spontaneous Seizures, and Premature Death

Both GclmKO and GuloKO mouse strains have been maintained on the C57BL/6J back-
ground. The two KO mouse strains were intercrossed to generate DKO mice following
the breeding scheme shown in Figure 1A. Given that one allele of either the Gclm [28] or
Gulo [29] gene is sufficient to maintain normal tissue GSH and AA levels, respectively, the
breeding scheme was designed to simplify the breeding process and used the compound
heterozygote as our control, when comparing the homozygous knockout of either gene
alone, or both genes together. Offspring of GclmHET/GuloHET (HET), GclmKO/GuloHET

(MKO), GclmHET/GuloKO (GKO), and GclmKO/GuloKO (DKO) genotypes (Figures 1B and S1)
were born in the expected Mendelian ratios, indicating that the double ablation of Gclm and
Gulo genes did not cause embryonic lethality. By weaning time—i.e., around PND28—the
HET, MKO, and GKO mice all displayed similar growth curves (Figure 1C); however,
DKO mice of both genders showed growth retardation (Figure 1C) and increased mortality
(Figure 1D), with the first death observed at PND14 and zero survival beyond PND23.

Within 24 h preceding death, by visual observation, DKO mice exhibited seizure
behavior—including ataxia, wild running, freezing posture, straub tail, and tonic-clonic
generalized seizures; in some mice, status epilepticus leading to immediate death was
noted. In agreement with epileptic seizure behavior, spontaneous electrographic seizures
were detected in all examined DKO mice (N = 4) by EEG at PND18 to PND20 (Figure 1E).
At the same ages, HET, MKO, and GKO mice showed neither seizure behavior nor elec-
trographic seizures in all mice examined (N = 3/genotype; Figure 1E). Considering the
global disruption of Gclm and Gulo genes in these mice, to exclude the possibility that
seizure activity was induced by metabolic changes, we examined plasma cations (Na+, K+,
Ca++), glucose levels, and lipid profiles (Table 1). No abnormalities and no differences were
found among the four genotype groups. Measurements of hematocrit showed that GKO
and DKO mice did not develop clinical AA deficiency (e.g., scurvy) at this age (Table 1);
this finding had been expected because these pre-weanling mice were nursed by dams
supplied with AA (1 g/L) in the drinking water. Based on all these findings, and the link
between epileptic seizures and death due to persistent apnea and/or airway obstruction,
we concluded that the epileptic seizure was likely to be the cause of premature deaths seen
in DKO mice.

3.2. DKO Mice Show Neuronal Loss and Glial Proliferation in the Neocortex and Hippocampus

The epileptic seizure phenotype of DKO mice prompted us to examine the histomor-
phology of the brain. At PND18-PND20, no gross morphological changes were found. The
brain mass, as a percentage of body weight, was 5.5 ± 0.3, 5.9 ± 0.5, 5.5 ± 0.4, and 6.0 ± 0.3
in HET, MKO, GKO (N = 7/genotype), and DKO mice (N = 9), respectively (p > 0.05 by
one-way ANOVA). HE staining of brain coronal sections (Figure 2A) revealed no apparent
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abnormalities, except that the neocortex of DKO mice appeared thinner, when compared to
that of other genotypes. However, TBO staining (Figure 2B) revealed neuronal loss and
reactive glial-cell proliferation in the neocortex (predominantly in the II/III layers) and in
the hippocampal dentate gyrus/cornu ammonis-3 and hilus (DG/CA3-H) fields of DKO
mice (Figure 2B, red arrow heads). TUNEL-positive cells (Figure 2C)—indicating apoptotic
cells—were sporadic in the neocortex of DKO mice (Figure 2C, black arrow heads), but they
were more predominant in the CA3 (Figure 2C, red arrows) and DG/H regions (Figure 2C,
blue arrows) as well as in the DG granule-cell layer (Figure 2C, black arrows). IHC staining
for GFAP, a marker for astroglial cells, confirmed the reactive glial proliferation in these
areas with neuronal death (Figure 2D). It should be noted that this brain pathology was
observed in DKO mice, which both did and did not exhibit epileptic behavior at the time of
sacrifice. We did not find similar lesions in the hippocampus proper or other brain regions
of the DKO mice, nor in any brain regions of HET, MKO, or GKO mice.

Table 1. Plasma metabolites profile and hematocrit.

Genotype
(N of Mice)

AA
Supplement

Glu 1 TG PL Chol NEFA Hct

(mg/dL) (mEq/L) (%)

Pre-weanling mice (PND17-20)
HET (5) none 273 ± 21 88 ± 22 192 ± 20 115 ± 8 0.9 ± 0.2 49 ± 2
MKO (4) none 277 ± 4 107 ± 31 207 ± 14 156 ± 11 1.2 ± 0.3 49 ± 2
GKO (4) none 281 ± 10 77 ± 11 197 ± 18 145 ± 17 1.5 ± 0.4 48 ± 2
DKO (5) none 223 ± 14 85 ± 14 195 ± 15 136 ± 18 0.7 ± 0.1 51 ± 3

AA-rescued mice (1 or 3 mo)
DKO (8) 1 g/L 290 ± 36 49 ± 9 198 ± 39 94 ± 22 0.6 ± 0.1 47 ± 1.2
DKO (9) Removal 2 159 ± 85 † 85 ± 42 269 ± 89 138 ± 35 † 1.0 ± 0.4 49 ± 2.7

1 Glucose levels were taken from non-fasted mice and are not in the diabetic range. 2 Surviving post-weanling
DKO mice were kept on AA-supplemented drinking water (1 g/L) until AA was removed at the age of 1 or 3 mo.
Measurements were taken at 17–20 days after AA removal. Plasma Na+, K+ and Ca2+ levels were determined,
and they were all within the normal range. Values are expressed as means ± S.D. † p < 0.05, when compared to
aged-matched DKO mice kept on AA-supplemented water. AA, ascorbic acid; Glu, glucose; TG, triglyceride; PL,
phospholipids; Chol, cholesterol; NEFA, nonesterified free fatty acids; Hct, hematocrit.

3.3. Brains of Young DKO Mice Show Region-Specific GSH and AA Deficiencies and
Lipid Peroxidation

The above observations indicated that epilepsy and associated pathology occurred
only when GSH and AA biosynthesis were both compromised. In providing GSH and
AA to extrahepatic tissues, the liver is the primary organ of GSH de novo biosynthesis
and the only source of circulating AA in the absence of dietary supplementation [8,28].
As such, we measured GSH and AA levels in the liver and brain at PND18 (Figure 3). It
should be kept in mind that, at this time, these mice were still being breast-fed by dams
supplemented with AA. When comparing HET to GKO mice or MKO to DKO mice, liver
GSH levels were comparable (Figure 3A), indicating that the absence of either one or
both Gulo functional alleles did not affect hepatic GSH concentrations. Similarly, liver AA
levels were no different between HET and MKO mice or between GKO and DKO mice,
indicating that absence of either one or both Gclm functional alleles did not alter hepatic
AA concentrations (Figure 3A).
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Figure 2. Young DKO mice show neuronal death and glial proliferation in the neocortex and
hippocampus at PND18-20. (A), Representative images of HE staining of paraffin-embedded brain
coronal sections from HET, MKO, GKO and DKO mice. (B), Representative images of TBO staining
of paraffin-embedded brain coronal sections from HET and DKO mice. The square area in the top
panel was enlarged in the lower panel. Loss of neurons (N) and reactive glial proliferation (red
arrow heads) were noted in the neocortex and the hippocampal DG/CA3-H fields of DKO brains.
(C), Representative images of TUNEL staining of paraffin-embedded brain coronal sections from
HET and DKO mice. TUNEL-positive (apoptotic) cells were sporadic in the neocortex (black arrow
heads) and more predominant in the CA3 (red arrows) and DG/H regions (blue arrows) and in the
DG granule-cell layer (black arrows) of DKO brains. (D), Representative images of IHC detection
of GFAP (a marker for astroglial cells) in the neocortex and the hippocampus of HET and DKO
brains. HE, hematoxylin and eosin; N, neurons; TBO, toluidine blue O; DG, dentate gyrus; CA3-H,
cornu ammonis-3; H, hilus; TUNEL, terminal deoxynucleotidyl-transferase-mediated dUTP nick-
end-labeling; IHC, immunohistochemistry; GFAP, α-glial fibrillary acid protein. Magnifications: 40×,
100×, and 400× as indicated.
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were processed for measurements of (B), reduced GSH; (C), GSSG (oxidized GSH); (D), GSH/GSSG 
ratios (calculated from GSH and GSSG values of each individual animal); (E), AA; and (F), MDA 
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Figure 3. Redox biochemistry in liver and brain regions of young HET, MKO, GKO and DKO mice at
PND18. (A), Liver tissues were processed for measurements of GSH and AA. Three brain regions
were processed for measurements of (B), reduced GSH; (C), GSSG (oxidized GSH); (D), GSH/GSSG
ratios (calculated from GSH and GSSG values of each individual animal); (E), AA; and (F), MDA (mal-
ondialdehyde is one of the final products of intracellular polyunsaturated fatty acids peroxidation).
Data are expressed as means ± S.D. (N = 4–5/genotype for livers and N = 5–8/genotype/region for
brains). Group differences were analyzed by one-way ANOVA followed by Bonferroni post-hoc test.
a p < 0.05, when compared to HET mice; b p < 0.05, when compared with MKO mice; c p < 0.05, when
compared with GKO mice.

In the brain (Figure 3B–E), GSH and AA were measured in neocortex and hippocam-
pus, the two regions that showed neuronal damage in epileptic DKO mice; the cerebellum
was examined as a control region, in which no pathology had been observed. For GSH
(Figure 3B), MKO and DKO had comparable low levels (~25–35% of HET) in all three
regions; interestingly, GSH from GKO mice also declined to ~74% in neocortex (p = 0.0002),
~78% in hippocampus (p = 0.007), and ~80% in cerebellum (p = 0.056) of HET levels. For
GSSG levels (Figure 3C), MKO and DKO mice had ~35–50% of HET levels in neocortex
and cerebellum regions; however, in the hippocampus of GKO and DKO mice, GSSG was
increased to ~1.8- to 2.0-fold of HET levels. Such changes in GSH versus GSSG (Figure 3D)
led to significant declines in the GSH/GSSG ratios (an index of the reduction status of
total glutathione pool) in neocortex and hippocampus of GKO and DKO mice, albeit DKO
hippocampus was affected more dramatically. For AA levels (Figure 3E), MKO mice were
no different from HET mice in any of the three regions, and GKO mice had ~40–46% of
HET levels in these brain tissues. However, AA was profoundly depleted (<25% of HET
levels) in the DKO neocortex and hippocampus. Oxidative stress in these brain regions
were assessed by measuring MDA, the by-product of lipid peroxidation (Figure 3F); MDA
levels were found to be ~1.6-fold of HET levels in neocortex and hippocampus of DKO
mice. Lastly, we examined the gene expression of GSH-metabolizing enzymes (Gcl, Gsr, and
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Gpx) and AA transporters (Slc23a1 and Slc23a2) in neocortex and hippocampus (Figure S2).
Intriguingly, no alterations in these genes were observed despite of the dramatic redox
imbalance in these brain regions of DKO mice.

3.4. AA Rescues DKO Mice, but Removal of AA in Rescued DKO Mice Results in Spontaneous
Seizures and Premature Death

Our biochemical assays show that the major effect—caused by loss of both Gclm and
Gulo genes—is profound AA depletion in specific brain regions of the DKO mice at PND18.
Therefore, we attempted to rescue pre-weanling DKO mice with AA supplementation.
Because all DKO mice died by PND23 even when the nursing females were fed AA-
supplemented water, small bottles of freshly made water containing AA (1 g/L) were
provided in nursing cages starting at PND16; this is when pups start to drink water
voluntarily on their own. This regimen was successful in rescuing DKO mice that had not
shown any observable seizure activities by PND16; however, it was only able to rescue one
third of DKO mice that had already exhibited seizures.

Rescued DKO mice had lower body weights when compared to age- and gender-
matched HET mice at ages 1 month and 3 months (Figure 4A). One pilot rescue experiment
lasted till the age of 6 months, at which time two male DKO mice grew up to comparable
body weights of HET mice. Furthermore, no epileptic behavior was visually observed in
these rescued DKO mice. However, when we stopped AA supplementation at the age
of 1 or 3 months, DKO mice appeared normal by 13 days without AA, after which time
they showed a trending loss of body weight (Figure 4B) and increased mortality with zero
survival beyond 22 days on AA removal (Figure 4C). DKO mice on AA removal appeared
less active; tonic-clonic generalized seizures were only seen in one out of eleven mice and
many deaths occurred unexpectedly. EEG analysis, performed on a few adult DKO mice at
14–17 days after AA removal, revealed multiple episodes of electrographic seizures with
high frequency.

Brains collected at 17–20 days after AA removal from adult epileptic DKO mice
showed multiple types of pathology (Figure 5). In all younger (e.g., 1-mo-old; N = 5)
and greater than half the older (e.g., 3-mo-old; N = 3 out of 5 total), DKO mice that were
examined, gross morphology of the brain was preserved (Figure 5A). However, TBO
staining (Figure 5B) revealed extensive neuronal degeneration in the neocortex and the
CA1-3 pyramidal-cell layers and DG granule-cell layers in the hippocampus. TUNEL-
positive cells, indicating cell death (Figure 5C), and GFAP-immunopositive cells denoting
glial proliferation (Figure 5D) were striking in these regions. On the other hand, two
older DKO mice that we examined exhibited severe morphological abnormalities in brain,
including atrophy of the neocortex, dilated lateral ventricles, and substantial damage in the
hippocampus (Figure 5A). The above noted pathological changes were not observed in the
brains of HET mice or DKO mice kept on AA supplementation (Figure 5A). Moreover, the
same panel of plasma metabolites were measured in adult DKO mice (Table 1). Compared
to those kept on AA supplementation, DKO mice with AA removal for 17–20 days had
lower glucose and higher cholesterol levels in plasma. Similarly, as seen in young DKO
mice, adult epileptic DKO mice had normal hematocrit levels, suggesting that AA removal
for up to 20 days did not cause clinical AA deficiency (e.g., scurvy) in these adult mice.
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Figure 4. AA-rescued DKO mice die 2-3 weeks after AA removal. Small bottles of freshly-prepared
water containing AA (1 g/L) were provided for pre-weanling pups in nursing cages starting at
PND16. AA-rescued DKO mice were weaned at PND21-23 and kept on AA-supplemented drinking
water (1 g/L) until at the age of 1 or 3 months when AA was removed from the drinking water or
until conclusion of the study. (A), body weights (BW) of male and female HET and AA-rescued DKO
mice at ages of 1 and 3 months (N = 6–8/group). (B), BW change of AA-rescued DKO mice after AA
removal (−AA) or maintained on AA (+AA) (N = 5–6/group). (C), survival rate of AA-rescued DKO
mice after AA removal (−AA; N = 19) or maintained on AA (+AA; N = 15). Data are expressed as
means ± S.D. * p < 0.05, ** p < 0.01, *** p < 0.001, when compared to age- and gender-matched HET
mice by Student’s unpaired t-test.
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Figure 5. Brain pathology in AA-rescued DKO mice at 17–20 days after AA removal. (A), Rep-
resentative images of HE staining of paraffin-embedded brain coronal sections from HET mice,
AA-rescued DKO mice kept on AA supplementation, and AA-rescued DKO mice with AA removal
(starting at age 1 month or 3 months) for 17–20 days. Representative images of (B), TBO staining,
(C), TUNEL staining, and (D), IHC staining for GFAP of paraffin-embedded brain coronal sections
from AA-rescued DKO mice with AA removal (starting at age 1 month) for 20 days. In (B), the square
area in the left panel was enlarged in the right panel. In (C), arrows showing TUNEL-positive (apoptotic)
cells. HE, hematoxylin and eosin; TBO, toluidine blue O; DG, dentate gyrus; CA1, cornu ammonis-1;
CA3, cornu ammonis-3; H, hilus; TUNEL, terminal deoxynucleotidyl-transferase-mediated dUTP
nick-end-labeling; IHC, immunohistochemistry; GFAP, α-glial fibrillary acid protein. Magnifications:
40×, 100×, and 400× as indicated.

4. Discussion

Cellular antioxidant systems are redundant and diverse. These antioxidants cooperate
to maintain the overall cellular redox balance on one hand, and they have specific pref-
erences for substrates and subcellular locations, on the other hand [38–40]. It is therefore
likely that interactions among antioxidants might be physiologically important in different
tissues. Herein, we report, for the first time, that the combined deficiency of GSH and
ascorbate in mice is a direct cause of epileptic seizures leading to premature death—not
only in pre-weanling pups, but also in adult rescued mice when dietary AA was removed.
This dramatic neurological phenotype, observed in DKO (GclmKO/GuloKO) mice, implies a
fundamental and yet underscored role of the interplay between GSH and AA in normal
brain function and neuronal health. At the redox biochemistry level, our data show that:
(i) GSH or AA supplied by the mother’s breast feeding was not sufficient to sustain normal
levels of these antioxidants in the brain of the offspring, when de novo biosynthesis in the
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offspring was compromised; (ii) GSH concentration and/or oxidation were altered by AA
deficiency in a region-specific way; and (iii) AA depletion was worsened by GSH deficiency
in the neocortex and hippocampus, where lipid peroxidation was greatly enhanced.

Epileptic seizures stem from abnormal electrical activities in the brain, commonly
associated with disruption of synaptic excitation/inhibition balance—leading to neuronal
hyperexcitability [41,42]. The contribution of an excitatory glutamatergic mechanism
to epileptogenesis is supported by numerous lines of evidence [43–46]. In this context,
both GSH and AA have been implicated in modulating glutamatergic neurotransmis-
sion. First, GSH may modulate synaptic transmission and plasticity via redox-sensitive
proteins, including N-methyl-D-aspartate (NMDA) receptors, calcium channels, and glu-
tamate transporters [16–18,20]. Second, GSH has been proposed to bind to glutamate
receptors (e.g., NMDA receptors) via its γ-glutamyl moiety and to displace glutamate
agonists [47–49]. Third, AA has been suggested to regulate glutamatergic neurotransmis-
sion through glutamate-ascorbate hetero-exchange at glutamatergic synapses [21,50]. It is
proposed that micromolar increases in AA release might facilitate uptake of intersynaptic
glutamate; at millimolar concentrations, AA is known to display inhibitory effects on
NMDA receptors [19]. Thus, the fine-tuning effect by GSH and AA on glutamatergic neu-
rotransmission agrees with a neuroprotective role through controlling neuronal excitability.
We speculate that loss of this coordinated regulation, such as that seen in DKO mice, may
promote seizure activities.

It is well documented that oxidative stress is an important consequence of glutamate
receptor activation and excitotoxicity in experimental epileptic models—as indicated by
common sequelae of ROS formation including lipid peroxidation [51,52] and oxidative
DNA damage [53,54]. An increase in ROS formation seems to be a major molecular event
preceding neuronal cell death after seizure attack [55,56]. In this regard, the antioxidant
functions of GSH and AA are pivotal in maintaining neuronal redox homeostasis at physi-
ological levels of excitatory neurotransmission, as well as in protecting against oxidative
brain damage following seizure activities. In the current study, either in pre-weanling or in
adult epileptic DKO mice, we observed neuronal death and reactive glial proliferation in
neocortex and more severe in hippocampus, the two brain areas most commonly involved
in generating seizures [57]. These types of brain pathology likely reflect a consequence of
excessive excitotoxicity, arising from seizure episodes in DKO mice. Furthermore, redox
biochemistry analyses revealed the presence of enhanced oxidative stress in these brain
tissues of pre-weanling DKO mice, as evidenced by the oxidation of already-depleted
GSH pools and elevated lipid peroxidation. However, it is unknown whether oxidative
stress—intrinsic to GSH and AA deficiency in the DKO brain—was causally involved in
seizure development, aside from being an early cellular change resulting from seizure
activities. In addition, in our mouse model, we have not examined the status of other
antioxidants that have been implicated in altering susceptibility to seizure, such as vitamin
E [58], uric acid [59], and L-carnitine [60]. Thus, the possibility that changes in one or
more of other antioxidant molecules may contribute to the epilepsy phenotype of DKO
mice cannot be excluded. Future studies with a careful characterization of the temporal
progression of redox biochemistry, glutamatergic neurotransmission, seizure activities, and
brain pathology—as well as antioxidant intervention studies—in these mice are warranted
to define the exact cause-and-effect relationship.

Epilepsy is a common neurological disorder that can last a lifetime. It is a major public
health problem due to the significant consequences and costs incurred in afflicted individu-
als and society. Despite these challenges, our understanding of the molecular mechanisms
underlying epileptogenesis remains limited. To date, more than 100 epilepsy mouse models
have been reported. Data obtained from these studies [61–63] confirm the essential role of
perturbed synaptic function in seizure development; more importantly, they suggest the
complexity of this process, which begs for the need of a more precise understanding of the
regulatory mechanisms of synaptic neurotransmission. The fatal-seizure phenotype associ-
ated with compromised biosynthesis in both GSH and AA in mice highlights an important
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function of the crosstalk between these two molecules in the brain. We hypothesize such
crosstalk has two layers (Figure 6): first, both molecules may act as neuromodulators that
coordinately regulate excitatory glutamatergic neurotransmission; second, through mutual
compensatory effects, they are antioxidants responsible for maintaining cellular redox
homeostasis and for protecting neuronal cells against oxidative injury. Thus, although not
intended to exemplify the human situation, the DKO mouse strain nevertheless represents
an intriguing model system that could elucidate novel redox mechanisms underlying
regulation of synaptic neurotransmission and associated neurological disorders.
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Figure 6. Proposed functional crosstalk between GSH and AA in glutamatergic neurotransmis-
sion. We speculate that the interplay between glutathione and ascorbate in brain has two major
functions: (1) Both molecules likely act as neuromodulators that coordinately control excitatory
glutamatergic neurotransmission. GSH may modulate synaptic transmission and plasticity via redox-
sensitive proteins, including glutamate receptors, calcium channels, and glutamate transporters. GSH
may bind to glutamate receptors via its γ-glutamyl moiety and displace glutamate agonists. AA
may regulate glutamatergic neurotransmission through GSH-AA hetero-exchange at glutamatergic
synapses. (2) Through mutual compensatory effects as antioxidants (e.g., recycling, sparing and com-
pensating), GSH and AA are responsible for maintaining cellular redox homeostasis and protecting
against excitotoxicity.

Lastly, the current study has implications for human neuronal health. It is well
established that GSH deficiency is intimately involved in the pathogenesis of a variety of
neuronal diseases [6,64]. Individuals carrying functional mutations in GSH biosynthesis
genes are reported to manifest progressive neurological degeneration—including mental
retardation, ataxia, and seizures [65]. In patients with epilepsy, a widespread impairment
of the GSH biosynthetic pathway, independent of seizure activity, has been reported [66].
On the other hand, although the clinical deficiency of AA leading to scurvy is rare in
modern days, recent reports highlight the underestimated high prevalence of subclinical
AA deficiency worldwide, including the U.S., particularly in low- and middle-income
communities [67–69]. Furthermore, epidemiological studies show that low AA is common
during pregnancy, accounting for up to 25–30% of parturient women [70,71]; the status
of low AA may be worsened in individuals who are heavy smokers and/or consume
excessive alcohol [70,71], both of which habits are known to cause systemic decreases
in GSH levels [72,73]. Thus, the potential co-occurrence of GSH and AA deficiencies
in susceptible populations, and particularly during pregnancy, may have unrecognized
detrimental impacts on the brain of the developing embryo and fetus.
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5. Conclusions

In summary, we report a fatal epilepsy phenotype in mice that is caused by the
dual deficiency in de novo biosynthesis of GSH and AA, the two major endogenous
antioxidants. This severe neurological phenotype is accompanied by excessive oxidative
stress and neuronal death noted predominantly in the neocortex and hippocampus of
affected animals, supporting the necessity of GSH and AA interplay in the maintenance
of redox homeostasis and neuronal integrity in these brain regions. The aforementioned
mouse model holds promise in elucidating novel redox-associated mechanisms underlying
epileptogenesis, such as redox regulation of glutamatergic neurotransmission and cellular
defense against excitotoxicity.
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