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Abstract: Since the gut microbiota plays a pivotal role in host homeostasis and energy balance, changes
in its composition can be associated with disease states through the promotion of immune-mediated
inflammatory disorders and increasing intestinal permeability, ultimately leading to the impairment
of intestinal barrier function. Za’atar is one of the most popular plant-based foods in the Eastern
Mediterranean region. Za’atar is a mixture of different plant leaves, fruits, and seeds and contains
hundreds of antioxidant compounds, especially polyphenols, and fiber, with pre-clinical and clinical
evidence suggesting health-promoting effects in cardiovascular and metabolic disease. Za’atar com-
pounds have also been studied from a gastrointestinal perspective, concerning both gut microbiota and
gastrointestinal diseases. Antioxidants such as Za’atar polyphenols may provide beneficial effects in the
complex interplay between the diet, gut microbiota, and intestinal permeability. To our knowledge, no
studies have reported the effects of the whole Za’atar mixture, however, based on the pre-clinical studies
published on components and single compounds found in Za’atar, we provide a clinical overview of the
possible effects on the gastrointestinal tract, focusing mainly on carvacrol, rosmarinic acid, gallic acid,
and other polyphenols. We also cover the potential clinical applications of Za’atar mixture as a possible
nutraceutical in disorders involving the gastrointestinal tract.

Keywords: Za’atar; microbiota; gastrointestinal diseases; polyphenols; antioxidants

1. Introduction

The gastrointestinal tract is considered the largest surface of the human body exposed
to the external environment [1]. The gut barrier has several essential functions, especially
the absorption of nutrients and defense against harmful macromolecules [2]. The gut
barrier is a complex multilayer system consisting of both an external “physical” barrier
and an inner “functional” immune barrier. The physiological “healthy” interaction of
both barriers ensures the selective permeability of nutrients, water, and bacterial products.
Different factors can alter the function, physiology, and homeostasis of the gastrointestinal
tract potentially leading to the development of a wide range of functional and inflammatory
gastrointestinal disorders. Furthermore, the long-term effects of stress could affect gut-
liver and gut-brain interactions. Stress-related factors include altered gastrointestinal
motility and increased intestinal permeability with negative effects on the diversity of gut
microbiota [3]. A close relationship exists between nutrients (dietary fiber, protein, fat),
gut microbiota and its products (e.g., short-chain fatty acids, lipopolysaccharides), and the
intestinal barrier in both health and disease [1]. Although enormous effort has been put into
studies to investigate the role of dietary intervention in improving intestinal barrier function
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and preventing increased intestinal permeability in animals, the relevance of these results
for human health is still poorly understood. Za’atar mixture is the most popular plant-based
food in the Eastern Mediterranean area. The original traditional Lebanese mixture consists
of various plants, fruits, and seeds. These plants contain a panel of biologically active
compounds—such as polyphenolic compounds (PC), essential oils (EOs), and fiber—some
of which have displayed potential health-promoting effects in cardiovascular disease and
metabolic syndrome. The effects of the whole Za’atar mixture are still missing, however,
studies on some components and compounds found in Za’atar on the gastrointestinal tract
have also been studied regarding gut microbiota and intestinal permeability in both animals
and humans. Herein we provide an overview of the intestinal barrier from a functional
perspective, as well as in terms of intestinal permeability and its association with gut
microbiota. In addition, we focused on the Za’atar mixture, described its general history
and cultural aspects, and then we detailed the components, chemical/phytochemical
composition, and nutritional profile. Finally, we implemented the review with all available
data on the potential effects of Za’atar components on the gastrointestinal tract and gut
microbiota including cellular, animal, and human studies. Since there are no studies
describing the effects of the whole Za’atar mixture, here we focused on the effects of
single components and/or single (poly)phenolic compounds to highlight to possible health-
promoting effects of the mixture.

2. Gut Physiology and Microbiota

The microbial barrier comprises the first level of the gut barrier and consists of hundreds
of trillions of resident microorganisms including bacteria, viruses, fungi, bacteriophages,
and protists [4]. In the human gut, the two major phyla include Firmicutes (mainly gram-
positive bacteria with facultative anaerobes, anaerobes, bacilli, and cocci) and Bacteroidetes
(mainly gram-negative Bacteroides, Alistipes, Parabacteroides, and Prevotella spp.) [5,6]. The gut
microbiota plays an essential role in the digestion of nutrient and non-nutrient molecules,
vitamin synthesis and metabolism, and the biotransformation of intestinal primary bile acids
(BAs) to secondary BAs, which play a key role in lipid digestion and hormone-like agonist
signaling. In addition, the gut microbiota has a crucial impact on the induction and function of
the human immune system by influencing the maturation of several immune cells in intestinal
lymphoid tissue and mucosa. The gut microbiota produces physiologically active molecules
such as short-chain fatty acids (SCFAs) that have direct effects on the gut barrier and distant
organs including, but not limited to, the brain, liver, and heart [7]. In addition, gut microbiota
modulate nutritionally derived metabolites such as tryptophan which exerts a protective effect
against intestinal inflammation and bacterial overgrowth [8]. The gut microbiota converts
tryptophan to serotonin, transforms food polyphenols to bioactive smaller polyphenols, and
affects the availability of neurotransmitters [9,10].

The mucosal barrier is the first line of defense against external pathogens. It separates
the external from the internal environment, protects against toxins and the passage of
bacteria, and facilitates the transport of water, nutrients, ions, and solutes [11] (Figure 1).
The intestinal mucosa plays the dual role of enforcing both defense and digestion by
adapting to the colonization by commensal bacteria that participate in digestive processes
and the induction of the intestinal immune system [12]. The epithelial intestinal barrier
consists of a highly organized complex of intercellular apical tight junction proteins and
tight junction-associated proteins including claudin, occludin, intracellular plaque zonula
occludens (ZO) 1 and 2, cingulin, and other junctional adhesion proteins [13]. These tight
junctions distribute cells into apical and basolateral regions. Despite being the first line of
defense in the intestinal lumen, the epithelial barrier manages to simultaneously regulate
the passive diffusion of macromolecules and solutes beneficial to the host and to prevent
the passage of harmful pathogens [14] (Figure 1).

The dysbiosis of gut microbiota is defined as an altered microbial community with
an increased population of pathogenic bacteria resulting in the increased release of bacterial
endotoxins, especially lipopolysaccharides (LPS) that can alter the function of the intestinal
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barrier on a fundamental level by LPS-induced damage of enterocytes, leading to increased
intestinal permeability. The intestine becomes “leaky,” allowing for the passage of LPS
into the bloodstream, in turn activating inflammatory pathways resulting in systemic
inflammation and potentially metabolic disorders [15–18].
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Figure 1. The transition from a balanced (Eubiosis) to an unbalanced (dysbiosis) gut microbiota and
the different factors involved in gut dysbiosis. Abbreviations: LPS: lipopolysaccharide; ROS: reactive
oxygen species; ↑ increased; ↓ decreased. The figure is developed using https://biorender.com/
(accessed on 12 December 2022).

3. Za’atar Mixture

Over the past ten years, interest in Za’atar has greatly increased within the scientific
and industrial communities. Recent advances have been made in unraveling the multilevel
properties of Za’atar plants or mixtures in terms of health-promoting effects, as well as
cultivation, processing, production, and packing [19–21]. Za’atar is of economic and cultural
importance in the Mediterranean region. More interestingly, it possesses nutraceutical and
bio-functional properties as it is rich in (poly)phenolic compounds (PC), minerals, and
fiber. So, it comes as no surprise, that there is both national and international interest in
Za’atar [22–24].

The term “Za’atar” is used to refer to both a type of plant as well as to a mixture of
plants and spices [25]. Za’atar plants include Origanum, Satureja, Thymbra, and Thymus
with high content of essential oil content, especially carvacrol and thymol [22–24]. As
a mixture, the composition of Za’atar can vary by region and household, usually depending
on the local availability of ingredients. Typically, in Lebanon, Za’atar mixture includes
dried leaves of Origanum syriacum (also referred to as Za’atar) and Thymbra spicata (also
known as wild Za’atar) mixed with Rhus coriaria ground fruit (sumac), toasted sesame
seeds, and salt (Figure 2). Za’atar is commonly mixed with olive oil to form a spread for
Lebanese flatbreads named “Mankoushe” [26]. The detailed components and polyphenolic
composition and contents of the Za’atar mixture are shown in Figure 2.

https://biorender.com/
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Figure 2. The composition of Za’atar mixture with polyphenols.

In traditional books on Lebanese herbal medicine Za’atar (or Sa’atar) is presented as
a special and distinct class of edible and medicinal herbs (O. syriacum and T. spicata) for the
treatment of gastrointestinal diseases. Specifically, it is described that these herbs protect
the intestinal mucosal barrier, reduce abdominal pain, and help prevent constipation by
keeping the stool moist. These traditional books on herbal medicine also describe the
gastroprotective and hepatoprotective effects of Za’atar plants [23]. Sumac, a component
of the Za’atar mixture, is traditionally used in folk medicine for the treatment of chronic
diarrhea, vomiting, and hemorrhoids. Water infusions of sumac could reduce inflammation,
relax and protect the stomach, protect the liver, and help the bile reach the intestine [27].

3.1. Chemical and Phytochemical Composition of Mixed Za’atar

O. syriacum and T. spicata extracts contain high amounts of antioxidant compounds
such as polyphenols including phenolic acids and flavonoids with a wide range of bio-
logical and pharmacological activities [28–32]. Rosmarinic acid (RA) is one of the main
polyphenolic substances in both plants [24,33–35]. Ursolic and oleanolic acids are also
present in high quantities in O. syriacum extracts [35]. Phenolic monoterpenes, especially
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carvacrol (CVL), are abundant in both essential oils and organic extracts, with the total
essential oil content ranging from 60 to 70% [36,37]. One of the most abundant subclasses
of polyphenols present in O. syriacum and T. spicata extracts are flavonoids—mostly luteolin
and apigenin in aglycone or glucoside form [38,39] (Figure 2).

Sesame (Sesamum indicum L.) is an annual plant belonging to the Pedaliaceae family.
Sesame seeds have been used for several thousands of years in Eastern, Mediterranean, and
African cultures to flavor foods [40]. Nutritionally, sesame seeds are rich in oil (50–60%)
and protein (18–25%) and contain carbohydrates (13.5%) and ash (5%) [41]. Sesame seeds
contain high levels of unsaturated fatty acids—mainly oleic (43%), linoleic (35%), palmitic
(11%), and stearic acids (7%)—collectively comprising 96% of the total fatty acid content [42].
Sesame seeds also contain protein, especially high levels of methionine, tocopherol, and
phytosterol, as well as minerals and lignans, such as sesamol and sesamin—natural phenolic
compounds and major lignans [43] (Table 1).

Rhus coriaria or sumac is rich in hydrolyzable tannins such as gallic acid, methyl gallate,
and their derivatives, [44,45]. The most abundant organic acids found in R. coraria fruit are
malic acid isomers and their derivatives. Sumac is abundant also in phenolic acids [46]
and flavonoids including myricitrin, apigenin, quercetin, and kaempferol as aglycone or
glycoside derivatives [46,47]. Cyanidin and delphinidin derivatives are the most abundant
anthocyanin present in sumac and give its fruits their rich red color [44].

Table 1. The components of Za’atar mixture by name and useful contents.

Scientific
Name

Local Name
(Lebanon)

Used
Part

Phenolic
Contents
mgGAE/g
Dry Extract

Fiber g/100 g Oils/Fatty Acids
g/100 g Essential Oils

Minerals (in
Order of
Abundance)

Vitamins References

Origanum
Syriacum

Za’atar
(Zouba’a) Leaves 120–250 15 0.13 Carvacrol,

thymol ND C [38,48–50]

Thymbra
spicata

Wild Za’atar
(Za’atar
dakki)

Leaves 90–250 ND PA
OA Carvacrol ND ND [37–39]

Rhus coriaria Sumac Fruits 48–140 14

7–18
(37.7% OA, 34.8%
LA, 27.4% PA,
17.3% SA)

β-caryophyllene,
α-pinene K, Ca, Mg, P B1, B2, B6,

B12, C [51–54]

Sesamum
indicum Sesame Seeds 7–80 6–10.8

51.9
OA (43%) LA
(35%), PA (11%)
SA (7%)

ND Ca, K, P, Mg,
Fe

Carotene,
B1, B2,
B3, E

[55–57]

Abbreviations: PA—palmitic acid; OA—oleaic acid; SA—stearic acid; LA—linoleic acid, K-Potasium; Ca-calcium;
Mg-magnesium; Fe-iron.

3.2. Effects of Za’atar Compounds on Microbiota and Intestinal Disorders: Cellular and Animal
Studies

Preclinical evidence including cellular and animal studies explored the potential
effects of polyphenols on gut microbiota and gut diseases. These compounds interact
bidirectionally with the gut microbiota and can modulate the composition by exerting
prebiotic-like mechanisms and inhibiting pathogenic bacteria [58,59]. On the other hand„
after the intake of polyphenol-rich foods, the gut microbiota plays a fundamental role in
enhancing biotransformation and bioavailability and, thus, the bio-activity of polyphenols.
The effect of polyphenols and polyphenol-rich foods on microbial growth, in vitro, in vivo,
and ex vivo is well documented [59]. Studies reported that polyphenols can inhibit the
growth of several pathogens, including E. coli, S. enteritidis, S. typhimurium and C. perfringens,
L. monocytogenes, H. pylori, B. cereus, P. aeruginosa, and S. aureus [60–63]. Polyphenols and
their metabolites showed a prebiotic-like effect on shaping gut microbiota and modulation
of inflammatory responses by enhancing the abundance of beneficial bacteria including
Lactobacillus, Bifidobacterium, Faecalibacterium prausnitzii, and Roseburia [64–67]. In the
following paragraphs we report the available studies about the effects of Za’atar compounds
on microbiota and gastrointestinal disorders, all findings summarized in the Table 2.
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Table 2. Summary of in vitro and in vivo studies on the effects of Za’atar bioactive compounds on
gastrointestinal disorders and gut microbiota.

Plants Sample Used Model Disorder Main Funding Refs.

O. syracium and
derived compounds

EOs In vitro
Anisakis simplex Parasite Gastrointestinal Parasite ↑ Parasite mortality

↓ Penetration ability [68]

Extract
In vivo

Ethanol-induced ulcer in
Swiss albino mice

Peptic ulcer ↓ Ulcer score
↓ Gastric damage [69]

EOs In vivo
Pigs Microbiota ↑ Bacilli, Lactobacillales,

Streptococcaceae, Veillonellaceae [70]

OEO In vivo
Pigs Microbiota

↑ Lactobacillaceae, Fibrobacteriaceae,
Akkermansiaceae,
Lachnospiraceae
↓ Enterobacteriaceae

[71]

OEO In vivo
Ducks Microbiota-performance ↓ Coliforms, total aerobes,

lactose-negative Enterobacteria [72]

RA

In vivo
Ethanol-induced gastric
mucosal injury in Male

BALB/c mice

Peptic ulcer
↓ Oxidative stress
↓ Inflammation
↓ Apoptosis

[73]

RA-rich extract In vivo
Male BALB/c mice Microbiota

↑Muribaculaceae and
Ruminococcaceae families
↓ Prevotellaceae family

↑ SCFAs

[73]

RA
In vivo

Streptozotocin-induced
diabetic rats

Diabetes-Microbiota
↑ Actinobacteria,

Bacteroides, Faecalibacterium,
Lachnospiraceae, Prevotella

[74]

CVL
In vivo

Clostridium difficile-infected
C57BL/6 mice

Gut dysbiosis-Microbiota
↓ Diarrhea
↑ Firmicutes
↓ Proteobacteria

[75]

CVL-Thymol
In vivo

C. perfringens-infected broiler
chickens

Necrotic enteritis

↓ Gut lesions
↓ TLR2, TNF-α
↑ Occludin

↑ Lactobacillus crispatus,
Lactobacillus agilis

↓ Lactobacillus salivarius,
Lactobacillus johnsonii

[76,77]

EO
In vivo

Hybrid Tilapia-Germ Free
Zebrafish

Immunity-Microbiota ↓ IL-1β, IL-8
↑ Claudin1, Occludin2 [78]

CVL

In vivo
Chickens and mice

In vitro
Caco2 cells

Campylobacter jejuni infection
(campylobacteriosis)

↓ C. jejuni adhesion, invasion,
and translocation
↑ Lactobacillus spp
↓ Inflammation
↓ Apoptosis

↓ IFN-γ, TNF, MCP-1 and IL-6

[79–82]

CVL-thymol blend In vivo
Weaning piglets Gut disorders

↓ Oxidative stress markers
↑ Lactobacillus genus
↓ Enterococcus genus

[83]

Oleanolic acid
Ursolic acid

In vivo
Mice Colitis

↓ NF-κB and MAPK activation
pathway

↓ IL-1β, TNF-α, IL-6
↑ IL-10

↓ Colon shortening,
myeloperoxidase activity
↑ ZO-1, occludin, claudin-1

[84–87]

Ursolic acid In vivo
Hamster

Hypercholesterolemia-Gut
Microbiota

↓ Intestinal cholesterol absorption
↓ Firmicutes, Ruminococcaceae
↑ Bacteroidetes, Rikenellaceae,

Bifidobacteriaceae

[88]

Ursolic acid In vivo
Mice

Liver fibrosis-intestinal
damage

↓ TNF-α, MDA, LPS
↑ ZO-1, occludin

↑ Intestinal antimicrobial
peptides, angiogenin-1

↑ Lactobacillus, Bifidobacterium,
Ruminiclostridium

[89,90]
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Table 2. Cont.

Plants Sample Used Model Disorder Main Funding Refs.

Ursolic acid In vivo
Mice

Antibiotic
Resistance-Microbiota

↓ TNF-α, IL-6, LPS, DAO
↑ ZO-1, occludin
↑ Lactobacillus,
↓ Burkholderiales,

Alphaproteobacteria,
Betaproteobacteria,

Gammaproteobacteria

[91]

Oleanolic acid In vivo
Mice

Diarrhea-intestinal
inflammation

↑ ZO-1, occluding
↓ Intestinal damage

↓ NF-κB and MAPK activation
pathway

↓ IL-1β, TNF-α, IL-6

[92]

Oleanolic acid In vivo
Pigs Gut atrophy

↑ Gut mass
↑ Villous/crypt ratio
↑ TGR5 expression

[93]

Oleanolic acid In vivo
Rats

MetS-intestine
damage-Microbiota

↓ LPS, DAO, d-lactate
↑ ZO-1, occluding
↓ Intestinal damage

↓ NF-κB
↓ IL-1β, TNF-α, IL-6
↓ Firmicutes/

Bacteroidetes ratio
↑ Ruminiclostridium,

Ruminococcaceae

[94,95]

Rhus coriaria and
derived compounds

Extract In vitro
Bacterial microbita culture Microbiota ↑ SCFA

↑ Fructose [96]

Extract
In vivo

Streptozotocin
(STZ)-induced diabetic rats

Diabetes-gut damage
↓ Blood glucose
↓ TG, TC

↓ AST, ALT, LDH, ALP, MDA
[97]

extract In vitro
Rat pups necrotizing enterocolitis

↓ Oxidative stress markers
↓ Apoptosis
↓ Inflammation

[98]

Penta-O-galloyl-β-
D-glucose

In vivo
Rats Colitis

↓ NF-κB and MAPK activation
pathway

↓ IL-1β, TNF-α, IL-6
↑ IL-10

↓ Colon shortening,
myeloperoxidase activity

[99]

GA In vivo
Rats ulcerative colitis

↑ Lactobacillaceae, Prevotellaceae
↓ Firmicutes, Proteobacteria
↑ Carbohydrate and bile acid

metabolism
↓ Amino acid metabolism

[100]

GA In vivo
Rats Colon toxicity

↓ Oxidative stress markers
↓ Apoptosis
↓ Inflammation

↓ Goblet cell disintegration
↓Mucin depletion

↑ GPx, GR, GST, CAT, GSH

[101]

Sesame and derived
compounds

Sesame sauce In vivo
Mice Colonic Carcinogenesis ↓ TNF-α, IL-6, IF-γ, IL-17α,

iNOS, COX-2 [102]

Sesamol In vivo
Mice Intestinal integrity-Microbiota

↑ Gut barrier integrity
↓ LPS release
↓ TNF-α, IL-6

↑ Bacillales, Fusobacterium
Lactococus
↑ SCFAs

[103]

Sesamol In vivo
Mice Aging-systemic inflammation

↑ Gut barrier integrity ↓ LPS
release

↑ Bifidobacterium, Akkermansia
↓ Clostridium

[104]

Sesamol In vivo
Mice

Alzheimer-Intestinal
Integrity-Microbiota

↑ Gut barrier integrity
↓ LPS release

↑ Gut barrier integrity
↓ LPS release

↓ Helicobacter hepaticus,
Clostridium

↑ Rikenellaceae, Bifidobacterium

[105]

Sesame oil In vivo
Rats Acute colitis

↓ Colitis index
↓ Inflammation
↓ Fibrosis

↓ Acidic mucin
↑ Natural mucin

[106]
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Table 2. Cont.

Plants Sample Used Model Disorder Main Funding Refs.

Sesamol In vivo
Rats Inflammatory bowel disorders ↓MPO, MDA. NO [107]

Sesamol In vivo
Mice Gastrointestinal injury

↓Mortality
↓ Lipid peroxidation
↓ Apoptosis

↑ Regeneration of crypt cells
↓ Gut bacteria translocation

[108]

Abbreviation: Eos—essential oils; SCFAs—short-chain fatty acids; OEO—oregano essential oil; RA—rosmarinic acid;
MPO—myeloperoxidase; NO—nitric oxide; DAO—diamine oxidase; MetS-metabolic syndrome; CVL—carvacrol;
GA—gallic acid; TLR-2—toll-like receptor 2; TNF—tumor necrosis factor; IL—Interleukin; MCP-1—Monocyte Chemoat-
tractant Protein-1; NFkB—nuclear factor kappa b; MAPK—Mitogen-activated protein kinases; ZO-1—Peripheral
membrane protein; STZ—streptozotocin; LPS—lipopolysaccharide; DAO—diamine oxidase; TGR5—G protein-coupled
bile acid receptor; TG—triglyceride; TC—total cholesterol; AST—glutamic oxalacetic transaminase; ALP—alkaline
phosphatase; LDH—lactate dehydrogenase; CAT—catalase; GR—glutathione reductase, GPx—glutathione peroxidase,
GST—glutathione-S-transferase; GSH: Glutathione; iNOS-inducible nitric oxide synthase; COX—cyclooxygenase;
↑—increased; ↓—decreased.

3.2.1. Origanum syriacum and Thymbra spicata Extracts

O. syriacum and T. spicata are considered ancient herbal remedies are known as biblical
hyssop [109]. O. syriacum showed protective effects in an animal peptic ulcer model with a sig-
nificant decrease in ulcer number and size, similar to that of clinically approved lansoprazole
in the prophylactic model [69]. The antiparasitic potential of O. syriacum essential oils (EOs)
against the nematode Anisakis simplex has been demonstrated by Lopez et al. [68]. It must be
noted that patients infected with Anisakis simplex developed allergic responses and increased
intestinal permeability [110,111]. The EOs obtained from O. syriacum demonstrated potent
antifungal activity against several species of fungi potentially involved in intestinal infection
and disease [112]. Similarly to O. syriacum, several studies have evaluated the composition
and antimicrobial and antiparasitic effects of EOs derived from T. spicata [37,113–115].

3.2.2. Carvacrol, Thymol, and Essential Oils (EOs)

Over the past two decades, increasing evidence suggests that EOs derived from
aromatic plants could exert a positive effect on gut microbiota and associated intesti-
nal disorders. These oils exert selective antimicrobial effects against pathogenic bacteria,
fungi, and parasites, and favorable effects on commensal and beneficial bacteria [116–118].
Supplementation with EOs rich in carvacrol and thymol in weaned piglets resulted in bene-
ficial changes in gut microbiota composition demonstrated by an increase in the relative
abundance of some beneficial species such as Bacilli, Lactobacillales, and Veillonellaceae [70].
Similarly, supplementation with oregano essential oil (OEO) rich in carvacrol and thymol
resulted in changes in the gut microbiota accompanied by improved piglet health and
performance [71]. OEO supplementation during lactation showed an increase in the relative
abundance of Lactobacillaceae, as well as Fibrobacteriaceae and Akkermansiaceae involved in
fiber digestion. At two and four weeks, a relative decrease in Enterobacteriaceae and an in-
crease in butyrate-producing Lachnospiraceae was observed. The authors suggested that the
beneficial effects of EOs containing mainly CVL were exerted through the modulation of
gut microbiota. [71]. Ceppa et al. [119] observed that EOs mixture of oregano and thyme
had a modulatory effect on gut microbiota in rainbow trout (Oncorhynchus mykiss). In
a mouse model of antibiotic-associated gut dysbiosis and Clostridium difficile infection, CVL
supplementation significantly reduced the incidence of diarrhea and improved gut dysbio-
sis. CVL had a positive effect on microbiome composition by enhancing the abundance
of beneficial bacteria such, as Firmicutes, and reducing the proportion of harmful bacteria
such as Proteobacteria [75]. These effects could also be attributed to the direct antibacte-
rial properties of CVL against pathogenic bacteria. Infection with Clostridium perfringens
can cause necrotic enteritis. In a C. perfringens infected broiler chicken model, EO sup-
plementation (25% thymol, 25% carvacrol) alleviated gut lesions and enhanced serum
antibody titers against the Newcastle disease virus. In the ileum, EOs increased the ex-
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pression of occludin mRNA and inhibited TLR2 and TNF-α expression [76]. Additionally,
supplementation with EOs resulted in changes in the host ileal microbial population—
an increase in Lactobacillus crispatus and Lactobacillus agilis accompanied by a decrease
in Lactobacillus salivarius and Lactobacillus johnsonii [77]. In a duck model, supplementation
with EOs primarily containing thymol and carvacrol decreased microbial populations of
coliforms, total aerobes, and lactose-negative Enterobacteria [72]. In addition to the direct
immunostimulatory effects of EOs containing thymol and carvacrol demonstrated in a Ju-
venile hybrid tilapia animal model [78], EOs exerted an indirect effect through changes
mediated by the microbiota. This is backed up by the observation that the treatment of
germ-free zebrafish colonized by microbiota with EOs exerted a suppressive effect on
levels of inflammatory markers such as serum amyloid and interleukin 1β, 8 and upreg-
ulated the expression of claudin-1 and occludin-2, two important tight junction proteins
for intestinal permeability and integrity [78]. In a model using human intestinal epithe-
lial cells Caco-2, CVL treatment resulted in a significant reduction of C. jejuni adhesion,
invasion, and translocation to Caco-2 cells, as well as a reduction in C. jejuni motility,
toxin production, and pathogenic gene expression [79]. Mooyotto et al. showed that CVL
reduced C. difficile toxin production using an in vitro bacterial culture method and reduced
C. difficile cytotoxicity using Vero cells [120] CVL was also able to reduce the invasive ability
of Salmonella typhimurium in intestinal epithelial cells IPEC-J2 and inhibit bacterial viability
and motility in vitro [121]. Additionally, CVL increased the relative abundance of Lacto-
bacillus spp. in the chicken gut [80]. In a murine infection model of acute campylobacteriosis,
CVL reduced disease symptoms by reducing intestinal apoptosis and pro-inflammatory
immune responses not only in the intestine, but also in extra-intestinal organs such as
the liver, as indicated by decreased serum levels of IFN-γ, TNF, MCP-1 and IL-6 [81].
Michiels et al., showed that CVL and thymol improved gut health in weaning piglets by
reducing the number of intra-epithelial lymphocytes and concurrently increasing the villus
height to crypt depth ratio in the distal small intestine [122]. Moreover, supplementation
with carvacrol and thymol in weaning pigs reduced the intestinal oxidative stress caused by
weaning, increased the Lactobacillus population, and decreased the number of Enterococcus
and E. coli in the jejunum along with a significant decrease in the expression of TNF-α [83].
Another study showed that the supplementation of EOs containing CVL and thymol in
pigs resulted in increased nitrogen digestibility and decreased emission of ammonia and
total fecal nitrogen. Additionally, microbial protease and urease activities were inhibited by
EO supplementation [123]. Recently, an integrative study investigating the transcriptional
response and microbiota modulation in the intestine in response to a diet enriched with
carvacrol and thymol essential oils was conducted using a gilthead seabream (sparus aurata)
animal model [124]. Several remarkable changes in inflammation and the expression of
immunity genes were observed. The activation of the NF-kB pathway, which could impair
the maintenance of intestinal epithelial integrity and immune homeostasis, was inhibited.
The fish supplemented with EOs also had downregulated expression of NF-kB mediated
proinflammatory cytokines such as interleukin-1 beta (il-1β) [124]. Using chicken and mice
models, CVL supplementation prevented Campylobacter (a common foodborne pathogen)
infection and colonization by reducing the expression of a vast number of genes involved
in motility, adhesion, growth, metabolism, and anaerobic respiration [82]. In a model using
human intestinal epithelial cells Caco-2, CVL treatment resulted in a significant reduction
of C. jejuni adhesion, invasion, and translocation to Caco-2 cells, as well as a reduction
in C. jejuni motility, toxin production and pathogenic gene expression [79]. In another
cellular study, Mooyotto et al., showed that CVL reduced C. difficile toxin production us-
ing an in vitro bacterial culture method and reduced C. difficile cytotoxicity using Vero
cells [120] CVL was also able to reduce the invasive ability of Salmonella typhimurium in
intestinal epithelial cells IPEC-J2 and inhibit bacterial viability and motility in vitro [121].
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3.2.3. Rosmarinic Acid

Rosmarinic acid (RA) is a phenolic acid commonly found in the Lamiaceae plant species.
RA is the most abundant phenolic acid present in O. syriacum and T. spicata. Alongside
antioxidant and anti-inflammatory effects in several diseases, RA demonstrated a protec-
tive effect within in vitro and in vivo models of gastric mucosal injury [73]. RA exhibited
cytoprotective, antioxidant, anti-apoptotic, and wound healing properties in the gastric
mucosal epithelial cell line RGM-1 insulted with 5% ethanol. The results were further vali-
dated in vivo with ethanol-induced gastric mucosal lesions in mice, where pre-treatment
with extract rich in RA promoted gastric mucosal healing by decreasing oxidative stress,
inflammatory response, proapoptotic protein expression, and gastric mucosal damage.
In addition, the group treated with extract rich in RA showed higher microbial diversity
when compared to the control group. In particular, an increase in Muribaculaceae and
Ruminococcaceae and a decrease in Prevotellaceae was observed in mice treated with RA-rich
extract. Additionally, levels of SCFAs such as acetic acid and propionic acid were slightly
increased, and butyric acid was notably increased in RA-treated mice compared to control
mice [73]. In another study, the prebiotic effects of RA on gut microbiota were demon-
strated by an increase in the population of diabetes-resistant bacteria and a decrease in
diabetes-sensitive bacteria in diabetic rats [74].

3.2.4. Oleanolic and Ursolic Acid

Oleanolic acid (OA) and ursolic acid (UA) are pentacyclic terpenoids with pharma-
cologic properties found in olive oil and medicinal herbs such as O. syracum [125]. OA
and UA show antibacterial and antiparasitic activity in the gastrointestinal tract [126]. OA
and UA inhibited E. coli enterotoxin-induced diarrhea in mice by blocking the binding
of enterotoxins to the surface of intestinal epithelial cells [127]. Oral administration of
OA in a mice model of colitis significantly inhibited colon shortening and myeloperoxi-
dase activity, displayed potent anti-inflammatory properties by reducing the activation
of TNF-α, IL-1β, IL-17, NF-κB, and MAPK, and increasing the expression of IL-10. The
study also showed that OA protected intestinal integrity by increasing the expression
of tight junction proteins ZO-1, occludin, and claudin-1 in the colon [84]. Similarly, UA
exerted anti-inflammatory and antioxidant effects in mice with ulcerative colitis [85,86],
and regulated intestinal microbiota composition and inflammatory cell infiltration [87]. UA
also displayed protective effects on the intestinal mucosal barrier by attenuating intestinal
injury an ileal epithelial cells apoptosis, decreasing LPS, procalcitonin, and intestinal mal-
ondialdehyde levels, and increasing the expression of the tight junction proteins claudin
1 and occludin in the ileum of rats [128]. In a mice model of liver fibrosis, UA reduced
intestinal damage by inhibiting TNF-α, increasing the expression of tight junction proteins
ZO-1 and occludin, as well as intestinal antimicrobial peptide angiogenin-1 to protect the
gut barrier. Considerable effects of UA were observed in an antibiotic-resistant mice model.
Treatment with UA protected the intestinal barrier by increasing the height of jejunal villi,
decreasing jejunal crypt depth, and upregulating the expression of tight junction proteins
ZO-1, claudin-1 and occludin. Additionally, UA decreased serum LPS and diamine oxidase
levels and downregulated the expression of pro-inflammatory TNF-α and IL-6 cytokines.
Supplementation with UA had beneficial effects on gut microbiota composition, resulting
in a decrease in Firmicutes and Ruminococcaceae, an increase in Bacteroidetes, and enhanced
the growth of SCFA-producing bacteria including the Rikenellaceae and Bifidobacteriaceae
families [88]. Additionally, UA treatment improved gut dysbiosis by increasing Lactobacillus
and Bifidobacterium populations [89,90].

UA modified the gut microbiota by promoting the growth of Lactobacillus, inhibiting
the proliferation of harmful bacteria such as Burkholderiales, Alphaproteobacteria, Betapro-
teobacteria, and Gammaproteobacteria, as well as downregulating the expression of antibiotic
resistance genes [91].

OA displayed a direct effect on intestinal tight junctions and inflammation in a mice
model with Salmonella typhimurium-induced diarrhea. OA alleviated intestinal damage
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and maintained gut barrier integrity by enhancing the expression and localization of
occludin, claudin-1, and ZO-1. OA displayed its anti-inflammatory potential by reducing
the levels of standard inflammatory markers such as COX-2, iNOS, pro-inflammatory
cytokines IL-1β, IL-6, and TNF-α, as well as the physphorylation and degradation of
IκB, nuclear translocation of p65, TLR4, and the activation of the MAPK pathway [92].
OA prevented gut atrophy induced by parenteral nutrition in pigs. OA is an agonist
of the bile acid-activated G protein-coupled receptor TGR5. The activation of TGR5 by
OA ameliorated gut atrophy [93]. Recently, the role of OA in the gut-liver axis was
investigated by Xue et al. in HFD rats with interesting results. In addition to combatting
obesity and hepatic steatosis, OA supplementation attenuated HFD-induced metabolic
endotoxemia and intestinal barrier damage by decreasing LPS and pro-inflammatory
cytokines. OA also displayed an intestinal protective effect by increasing the expression of
intestinal tight junction proteins ZO-1 and occludin, decreasing serum diamine oxidase
(DAO) activity and d-lactate concentrations, and reducing intestinal inflammation by
inhibiting the TLR4/NF-κB pathway [94]. The authors found that OA could modulate
gut microbiota and improve gut immunity by enhancing microbial diversity, reducing the
ratio of Firmicutes to Bacteroidetes, and increasing the abundance of butyrate-producing
bacteria [94,95]. In addition, oleanolic acid glycosides (3-O-glycoside moiety) accelerated
gastrointestinal transit and prevented ileus in mice [129]. UA-modulated sphingomyelinase
(SMase) activity, is associated with several inflammatory diseases and tumors including
inflammatory bowel disease and colon cancer [130,131].

3.2.5. Rhus coriaria (Sumac)

Plants belonging to the Rhus genus have been commonly used in traditional medicine
to treat gastrointestinal disorders [27,51]. Several Rhus species that share various phyto-
chemicals with R. coriaria have demonstrated beneficial effects in intestinal disorders in
animal and cellular models of gastrointestinal inflammation [132,133], diarrhea [134,135],
ulcerative colitis [136], and Vibrio vulnificus infection [137]. In streptozotocin-induced dia-
betic rats with intestinal oxidative damage, supplementation with sumac extract enhanced
the antioxidant defense system by increasing the level of GSH, GST, GR, CAT, GPx, and
SOD in the small intestine, and decreasing MDA levels and α-glucosidase activity [97]. In
a necrotizing enterocolitis model using newborn rat pups, Isik et al. evaluated the protective
effects of sumac supplementation on intestinal injury. Sumac ameliorated histopathologic
and biochemical markers in the ileum and proximal colon, and also showed anti-apoptotic
and anti-inflammatory effects in the rat colon. Additionally, sumac reduced oxidative stress
by reducing lipid peroxidation and DNA and protein oxidation [98]. The inhibitory effect of
sumac on the enzyme urease was tested in vitro. Urease is essential for the colonization of
the gastric mucosa by Helicobacter pylori, a bacterium that induces gastrointestinal diseases
such as gastritis and peptic ulcer disease, potentially leading to gastric cancer. Sumac
showed a potent inhibitory effect against Jack bean urease activity [138]. The effects of
sumac on microbiota were evaluated by using a metabolomic approach in an in vitro model
of gut microbiota. Farag et al. investigated the response of the gut microbiota to sumac by
analyzing changes in metabolites in bacterial cultures. Overall, a decrease in amino acid
levels, nitrogenous compounds, and sugar levels was observed in samples treated with
sumac. These changes were accompanied by an increase in levels of SCFA and nucleic
acids [96].

Gallic acid (GA), the most abundant phenolic compound in sumac, and plant extract
rich in gallic acid showed potential prebiotic effects associated with a decrease in intestinal
inflammation and the promotion of intestinal integrity [139]. A recent study reported
that GA may have a protective effect against colon toxicity. Colon toxicity induced by
1,2-dimethylhydrazine in female Waster rats was characterized by increased inflammation,
apoptosis, oxidative stress, goblet cell disintegration, and mucin depletion. Treatment with
GA reduced all these parameters and increased glutathione content and the activity of the
detoxifying enzymes GPx, GR, GST, and CAT [101]. Several studies have reported that GA
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exerted inhibitory effects on intestinal pathogenic bacteria, such as Clostridium histolyticum,
Clostridium difficile, and Bacteroides spp., which have been associated with several intestinal
diseases [140]. Penta-O-galloyl-β-D-glucose—a gallotannin present in the Rhus plant
family and sumac-inhibited NF-κB and MAPK activation in stimulated peritoneal and
colonic macrophages and suppressed IL-1β, TNF-α, and IL-6 in LPS-stimulated peritoneal
macrophages, while increasing the expression of the anti-inflammatory cytokine IL-10
in vitro. In a mice model of colitis, supplementation with penta-O-galloyl-β-D-glucose
inhibited colon shortening and myeloperoxidase activity, reduced the activation of NF-κB
and levels of IL-1β, TNF-α, and IL-6, but increased IL-10 levels [99].

In addition, GA showed a protective effect against ulcerative colitis mediated by
gut microbiota g modulation in the rat. Treatment with GA increased the growth of
probiotic bacteria, such as Lactobacillaceae and Prevotellaceae, and decreased the number
of several pathogenic species, such as Firmicutes and Proteobacteria families. GA also
induced metabolic changes by increasing carbohydrate bile acid metabolism and decreas-
ing amino acid metabolism [100]. A mixture of GA and anthocyanins, which are com-
pounds abundant in sumac, significantly enhanced the growth of Bifidobacterium spp.
and Lactobacillus spp. [141]. Anthocyanins are primarily transformed into GA by the gut
microbiota, contributing to their anti-inflammatory effects [142].

To summarize, the potential bioactivity of GA, GA-rich extracts, and GA metabolites
from gallotannins and anthocyanins against inflammatory disorders and intestinal dis-
ease, as well as their potential for microbiota modulation, have been recently extensively
reviewed [139,143,144]. The evidence available so far suggests that along with its direct
antioxidant and anti-inflammatory effects, GA may modulate the gastrointestinal immune
system by modifying the composition of gut microbiota.

3.2.6. Sesamum indicum (Sesame)

Sesame sauce displayed anti-inflammatory and anti-cancerogenic effects in a mouse
colon carcinogenesis model. Specifically, supplementation with sesame sauce decreased
the expression and serum levels of tumor necrosis factor-α, interferon-γ, interleukin (IL)-6,
IL-17α, inducible nitric oxide synthase, and cyclooxygenase-2 in mice colon mucosa [102].
Sesamol, a lignan present in sesame oil with antioxidant and anti-inflammatory properties,
suppressed cyclooxygenase-2 transcriptional activity in colon cancer cells and modified
the development of intestinal polyps in mice [145]. Sesamol protected gut barrier integrity
and reduced the release of LPS in aging mice and HFD models. Treatment with sesamol
increased the length of intestinal villi and muscularis mucosa thickness and elevated mRNA
expression of tight junction complex claudin-1 in the colon. Moreover, sesamol was able
to attenuate HDF-induced inflammation in the colon by reducing the expression of IL-
1β and TNF-α [103,104]. Sesaminol glucosides alleviated premalignant lesions of the rat
colon [146]. These findings indicate that sesame may possess chemopreventive properties.

Cecal ligation and puncture is a well-established model for abdominal sepsis. In septic
rats and mice sesame oil significantly decreased markers of oxidative stress such as lipid
peroxidation and serum nitrite levels, consequently attenuating hepatic injury. Moreover,
supplementation with sesame oil increased the survival rate and levels of anti-inflammatory
cytokine IL-10, as well as significantly reduced xanthine oxidase activity [147–150]. Reza-
eipour et al. observed that diets containing sesame meal increased villus height and villus
height to crypt depth ratio in the jejunum [151]. In a rat model of chemically-induced acute
colitis, sesame oil displayed potential healing effects as shown by a significant decrease in
the levels of inflammatory markers (mast cells and CD68+ cells), fibrosis (collagen, laminin),
and modulation of colon mucins by a decrease in acidic mucin and increase in neutral
mucin [106]. Similar results were also observed in colitic mice, with a fermented sauce
containing sesame displaying significant protective and anti-inflammatory effects in the
colon [152]. In a rat model of acetic acid-induced inflammatory bowel disease, the level
of myeloperoxidase, lipid peroxidation, and nitrite in the colon was reduced following
sesamol treatment [107]. Sesamol showed a protective effect against radiation-induced
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gastrointestinal injury in mice, with pre-treatment with a single dose of sesamol partially de-
creasing radiation-induced mortality. Additionally, pre-treatment with sesamol decreased
lipid peroxidation and the translocation of gut bacteria to the spleen and liver and en-
hanced the regeneration of crypt cells in the gastrointestinal tract [108]. The effect of sesame
constituents on gut microbiota is well observed. A significant increase in microbiome
diversity was observed in the group supplemented with sesamol, with higher numbers of
Bifidobacterium and Akkermansia and lower numbers of Clostridium bacteria, when compared
to aging mice [104]. In HFD mice, sesamol significantly improved the relative abundance
of Bacillales, Fusobacterium, and Lactococus, while decreasing the number of Bilophila. In
addition, sesamol significantly increased the level of SCFAs such as acetate, propionate,
and butyrate [103]. Likewise, supplementation with sesamol in an Alzheimer mice model
altered gut microbiota by significantly decreasing the relative abundance of Helicobacter
hepaticus and Clostridium spp. and increasing the relative abundance of Rikenellaceae and
Bifidobacterium [105]. The authors showed that sesamol also has a protective effect on gut
barrier integrity, decreasing LPS leakage into the serum and increasing levels of SCFAs,
including acetate, propionate, isobutyrate, butyrate, and valerate [105]. These findings
indicate that sesamol can decrease systemic inflammation and improve brain disease by
protecting the integrity of the gut barrier, altering the gut microbiota, reducing LPS levels,
and increasing the level of SCFAs in the blood.

3.3. Clinical Studies (Table 3)

The effect of a diet rich in polyphenols on increased intestinal permeability was in-
vestigated by measuring serum zonulin levels in a randomized, controlled, cross-over
clinical trial [153]. Polyphenol intake significantly decreased serum zonulin levels and
blood pressure. This effect was accompanied by a significant increase in fiber-fermenting
and butyrate-producing bacteria such as Ruminococcaceae and Faecalibacterium. Notably,
the effect of a polyphenol-rich diet was greater in subjects with metabolic syndrome,
suggesting an association between intestinal permeability and metabolic syndrome [153].
The polyphenol-rich diet used in the study shares a similar profile with the polypheno-
lic compounds present in the Za’atar mixture. Za’atar contains high concentrations of
polyphenols and ursolic and oleanolic acids, which have also been associated with the
improvement of several components of metabolic syndrome in humans such as the reduc-
tion of inflammatory cytokines, plasma lipid and cholesterol levels [154,155]. Gallotannins
and gallic acid-rich extract (which are also found in high amounts in sumac and Za’atar
mixture) improved chronic constipation, increased levels of gastrin and valeric acid, and
decreased levels of endotoxins and interleukin 6 [156]. After consuming Gallotannins and
gallic acid-rich mango extract for six weeks, lean and obese individuals had increased
levels of tannase-producing Lactococcus lactis and decreased levels of Clostridium leptum
and Bacteroides thetaiotaomicron, which have been shown to be associated with obesity. In
addition, an increase in fecal SCFAs, such as butyric and valeric acid, and a decrease in
endotoxin levels were observed after the consumption of polyphenols [157]. Polyphe-
nols have also demonstrated anti-inflammatory and gut microbiota-modifying effects in
IBD patients. Gallotannins and gallic acid-rich mango pulp intake (200–400 g) for eight
weeks reduced plasma levels of pro-inflammatory cytokines such as interleukin 8 (IL-8),
growth-regulated oncogene and granulocyte-macrophage colony-stimulating factor. The
consumption of polyphenols modulates the composition of gut microbiota by increas-
ing the abundance of Lactobacillus plantarum, Lactobacillus reuteri, and Lactobacillus lactis,
accompanied by increased fecal butyric acid production [139].

A randomized, placebo-controlled, crossover study showed that sesame consumption
improved blood lipids and exerted antioxidant effects [158]. In addition, in subjects with
partial adhesive small bowel obstruction, treatment with sesame oil had a positive effect
on clinical parameters including a decreased need for surgical intervention, and a shorter
convalescence and hospital stay compared to the control group [159].
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Table 3. Clinical studies assessing the effects of a polyphenol-rich diet on gut microbiota and intestinal
permeability in gastrointestinal disorders.

Authors
(Year)

Sample
Size

Gender M/F
(Age) Participants Format, Dose Duration

of Study Main Findings

[153] 51 27/39 (≥60 years) Subjects with
increased IP PR-diet 724 mg/day 8 weeks

↓ Serum zonulin
↓ Blood pressure

↑ Fiber-fermenting bacteria,
butyrate-producing bacteria

[156] 36 11/25 (8–65 years)
Subjects with

chronic
constipation

Mango consumption,
300 g/day 4 weeks

↑ Stool frequency, consistency
↑ Gastrin levels, SCFA (valeric acid)

↓ Endotoxin and IL-6

[157] 32 22/10 (18–50 years) healthy lean and
obese individuals

Mango consumption,
400 g/day 6 weeks ↑ SCFA in lean individuals

[139] 10 5/5 (18–75 years) IBD Subjects Mango pulp intake,
200–400 g/day 8 weeks

↑ SCCAI
↓ IL-8

↓ GRO and GM-CSF
↑ Fecal butyric acid

↓ Inflammation biomarkers
↑ Lactobacillus plantarum, Lactobacillus

reuteri, Lactobacillus lactis

[159] 64 33/31 (19–79)
Subjects with

symptoms and
signs of SBO

Sesame oil in nasogastric
tube, 150 mL/day 1 day

↓ SBO resolution time
↓ Hospital stays
↓ Relaparotomy rate

Abbreviations: PR-diet—polyphenol-rich diet; IP—intestinal permeability; SCFAs—short-chain fatty acids;
IL—interleukin; GRO—growth-regulated oncogene, GM-CSF—colony-stimulating factor; SBO—small bowel
obstruction; SSCAI—squamous cell carcinoma antigen-1; IBD—Inflammatory bowel diseases; ↑—increased;
↓—decreased.

4. Summary

A growing number of studies have reported potential gut microbiota-mediated ef-
fects of plant-based functional foods rich in polyphenols on human health and disease.
Moreover, plant-derived polyphenols have attracted much attention in regard to the reg-
ulation of intestinal barrier function [160]. In humans, the bioactivation of polyphenols
happens through intestinal transformation and is mediated partly by digestive enzymes,
but fundamentally by gut microbiota. Once the active “smaller” phenolic compounds and
metabolites are absorbed into the portal vein, they travel to various tissues and organs
to enact their beneficial role [161]. However, polyphenols also exert local cytoprotective
and antioxidant effects, especially on intestinal cells. The plant-based Za’atar mixture is
widely used as a food and ingredient in Lebanon and the Eastern part of the Mediterranean
basin. The mixture is rich in dietary fiber and phenolic compounds, as well as minerals
and vitamins. Za’atar mixture is mainly a blend of O. syriacum (known as the Za’atar plant
in Lebanon) and Thymbra spicata (wild Za’atar), R. coriaria (sumac), and sesame. Despite
its richness in bioactive compounds and its nutraceutical potential, studies on the whole
Za’atar mixture are still missing, however, most of the studies have focused on the single
components or single (poly)phenolic compounds. Here we reviewed the literature avail-
able on chemical and phytochemical profile of Za’atar, and its combined effects on the
gastrointestinal tract.

Studies have shown that even at low doses the components present in Za’atar are able
to prevent and reduce chemically induced acute inflammation in animal models. In addi-
tion, these compounds have exhibited protective and therapeutic effects in pathogen and
chemical-induced colitis. Furthermore, polyphenols can attenuate the mucosal activation of
NF-κB, the production of cytokines, intestinal barrier dysfunction, and apoptosis (Table 2).

Gut dysbiosis is closely related to increased intestinal permeability. Therefore, the
modulation of gut microbiota can have a positive effect on intestinal permeability and vice
versa. Diet can play a modulatory role, although the exact molecular mechanisms involved
in this interplay remain unclear, especially in humans [162].

As shown in Tables 2 and 3, several experimental studies in animals and humans have
reported that Za’atar components may exert prebiotic-like effects on gut microbiota by
enhancing the growth of beneficial bacteria (e.g., Lactobacillus spp., Bifidobacterium spp.,
fiber-fermenting, and butyrate-producing bacteria) and reducing the relative number of
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potentially harmful and pathogenic bacteria (e.g., Clostridium spp.). Additionally, Za’atar
components may be beneficial in the treatment of intestinal inflammatory diseases and
leaky gut syndrome. Numerous studies have reported the potential antioxidant and anti-
inflammatory effects of Za’atar compounds in experimental models of intestinal disease in
animals and humans (Tables 2 and 3). Based on a review of the available studies, we show
that Za’atar compounds may significantly reduce intestinal permeability by increasing the
level of tight junction proteins and by maintaining gut epithelial integrity. The overall
possible effects of Za’atar on gastrointestinal tract are depicted in the Figure 3.
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5. Clinical Perspectives and Future Applications

The use of natural compounds in the prevention and treatment of disease has garnered
increasing clinical and medical interest over the past decades.

The idea of natural compounds is appealing due to their ease of use as dietary supple-
ments, lower associated costs, and a more favorable side effect profile when compared to
synthetic drugs. Another attractive aspect is the potential use of natural compounds in the
treatment of functional gastrointestinal disorders (e.g., dyspepsia, irritable bowel syndrome,

https://biorender.com/
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constipation) as an adjunct to dietary intervention and lifestyle modifications. In fact, indi-
viduals affected by functional gastrointestinal disorders often seek out alternative methods
to improve their symptoms when the limited number of currently available guideline-based
treatment options have failed or provided insufficient improvement of symptoms [163].
Factors implicated in functional gastrointestinal disorders include gastrointestinal dysmotil-
ity, altered intestinal barrier and immune function, dysbiosis, dysregulation of neurologic
and signaling networks, and stress [164]. The effects of Za’atar components reported so
far are related to several of these factors, raising questions as to whether Za’atar and its
components might have beneficial clinical effects.

Although the potential clinical applications of natural compounds such as Za’atar
are attractive, research on this mixture and its components is still in its early stages before
evidence-based conclusions and recommendations can be made. We cover the advantages
and limitations of Za’atar use in the following paragraphs.

Advantages: Za’atar is a low-cost and environmentally friendly plant-based food con-
sisting of locally available herbs. Active compounds found in Za’atar have gained attention
due to their potential role in the prevention and treatment of cardiovascular, metabolic, and
gastrointestinal diseases with no clinically significant side effects reported in studies under-
taken so far. Based on our previous discussion on the properties of its compounds, we raise
the following questions on whether Za’atar could be applied as: (i) a prebiotic-like agent,
(ii) an adjunct to dietary modifications used in the prevention or treatment of metabolic and
gastrointestinal diseases; (iii) a supplement and nutraceutical.

Limitations: Despite the health-promoting effects of the components of Za’atar de-
scribed previously, an understanding of the biological effects of the Za’atar mixture as
a whole is missing. More animal and human studies are necessary to further elucidate
the translational aspects of the effects of Za’atar and to fully characterize the mixture as
a preventive and therapeutic tool to ascertain its viability as a plant-based functional food.
In fact, there is no defined therapeutic dose for the Za’atar mixture, which could partially
explain why there is a lack of clinical trials.

Suggestions concerning and covering the general quality and safety aspects of tradi-
tional herbal medicine or food products are depicted in the following points:

1. Well-designed human studies evaluating drug interaction with herbal supplements
are required.

2. Controlled clinical trials evaluating the acceptance, tolerance, and safety of herbal
preparation are highly needed.

3. Standardized preparations of herbal products or traditional foods should be adjusted
to an exact content of substances with well-known nutraceutical properties.

Regarding the possible effects on the gastrointestinal tract, future clinical trials in-
vestigating Za’atar mixture should consider the following: (i) consider the interaction of
Za’atar with gut microbiota and levels of short-chain fatty acids (SCFAs); (ii) take into
account the effect of Za’atar on intestinal barrier function and selectivity by assessing levels
of oxidative stress, inflammatory markers, and tight junction proteins; (iii) interpret the
effects observed in the context of dietary factors as well as an adjunct to the appropriate
dietary intervention.

In this context, our future molecular and clinical studies on gastrointestinal motility,
intestinal permeability, and microbiota composition and metabolites will address the effects
of the Za’atar mixture whilst testing its clinical efficacy in a selected group of subjects, with
the aim of evaluating the potential health-promoting effects of Za’atar.

6. Conclusions

Several studies on cellular and animal models, as well as in humans, have demon-
strated the beneficial effects of individual plant-based bioactive compounds on the gas-
trointestinal tract. The combination of well-known medicinal and health-promoting herbs
in Za’atar could provide synergistic pharmacological and nutraceutical effects, especially
pertaining to the gastrointestinal tract and gut microbiota. In conclusion, a Za’atar mix-
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ture rich in polyphenols, essential oils, and fiber could provide beneficial effects in the
modulation of gut microbiota and intestinal permeability. Its richness in bioactive com-
pounds, safety, and prebiotic properties make mixed Za’atar a potential promising adjunct
to existing treatments used in gastrointestinal and metabolic diseases. However, studies
of the effects of the whole Za’atar mixture are required to explore the combined effects
and safety of Za’atar, in addition, well-controlled human studies are necessary to improve
our understanding of the molecular mechanisms and effects on microbiota and intestinal
permeability before any conclusions can be made on the clinical application of Za’atar.
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