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Abstract: The cytokine oncostatin M (OSM) is regarded as a critical mediator in various inflammatory
responses. While the gaseous signaling molecule hydrogen sulfide (H2S) plays a role in a variety
of pathophysiological conditions, such as hypertension, inflammatory pain, osteoarthritis, ischemic
stroke, oxidative stress, retinal degeneration, and inflammatory responses, the underlying mechanism
of H2S action on OSM expression in neutrophils needs to be clarified. In this work, we studied how
H2S reduces OSM expression in neutrophil-like differentiated (d)HL-60 cells. To evaluate the effects
of H2S, sodium hydrosulfide (NaHS, a donor that produces H2S), ELISA, real-time PCR (qPCR),
immunoblotting, and immunofluorescence staining were utilized. Although exposure to granulocyte–
macrophage colony-stimulating factor (GM-CSF) resulted in upregulated levels of production and
mRNA expression of OSM, these upregulated levels were reduced by pretreatment with NaHS in
dHL-60 cells. Similarly, the same pretreatment lowered phosphorylated levels of phosphatidylinositol
3-kinase, Akt, and nuclear factor-kB that had been elevated by stimulation with GM-CSF. Overall, our
results indicated that H2S could be a therapeutic agent for inflammatory disorders via suppression of
OSM.

Keywords: oncostatin M; hydrogen sulfide; neutrophil-like differentiated HL-60 cells; phosphatidyli-
nositol 3-kinase; Akt; nuclear factor-κB

1. Introduction

Hydrogen sulfide (H2S) is a gaseous signaling molecule that has a role in numerous
pathophysiological conditions, including hypertension, inflammatory pain, osteoarthritis,
ischemic stroke, oxidative stress, retinal degeneration, and inflammatory responses [1–6].
Our previous work also demonstrated that sodium hydrosulfide (NaHS) inhibited inflam-
matory cytokine TSLP levels and improved immune function [7,8]. However, the regulatory
mechanism of NaHS on oncostatin M (OSM) expression has not been determined. Thus, in
this work, we examined how NaHS regulates OSM expression in neutrophil-like differenti-
ated (d)HL-60 cells.

Because of its elevated levels in patients with cancer, OSM is regarded as a cancer-
related cytokine [9,10]. More broadly, OSM is regarded as a proinflammatory cytokine and
is produced by a wide range of cells, such as macrophages, dendritic cells, activated T cells,
monocytes, and neutrophils [11–15]. It is known that OSM plays a role in a variety of physi-
ologic and pathologic conditions, including the growth regulation of cancers, reconstruction
of the extracellular matrix, hematogenesis, liver regeneration, cardiac reconstruction, and

Antioxidants 2023, 12, 417. https://doi.org/10.3390/antiox12020417 https://www.mdpi.com/journal/antioxidants

https://doi.org/10.3390/antiox12020417
https://doi.org/10.3390/antiox12020417
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://orcid.org/0000-0002-2345-430X
https://doi.org/10.3390/antiox12020417
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com/article/10.3390/antiox12020417?type=check_update&version=1


Antioxidants 2023, 12, 417 2 of 11

inflammatory responses [10,16–19]; further, it is key in diverse inflammatory conditions [10].
The proinflammatory cytokine OSM is involved in inflammatory reactions in arthritic as
well as hepatic disorders [10,20] and is implicated in respiratory inflammatory diseases,
including rhinitis and asthma [21,22]. It has been reported that augmented inflammatory
reactions have resulted from exposure to recombinant human OSM in normal human
intestinal cells [11], and in human HaCaT keratinocytes, stimulation with recombinant
human OSM has led to increased inflammatory responses [15]. In our previous work,
stimulation with recombinant human OSM led to increased IL-1β secretion in human
HaCaT keratinocytes, denoting the contribution of OSM to inflammatory responses [23].
Pothoven et al. [22] revealed that the main sources of OSM in pulmonary inflammatory
disorders are neutrophil cells. There is no study that suggests the mechanisms of OSM
regulation by NaHS in neutrophil cells. We thus researched how NaHS regulates OSM
production and expression in dHL-60 cells.

Generally, phosphatidylinositol 3-kinase (PI3K) is regarded as an important factor
in the modulation of various intracellular signaling cascades [24]. Akt, which is known
as a downstream kinase of PI3K, plays an essential role in inflammatory responses [25].
Thus, PI3K/Akt signaling processes play a pivotal role in the modulation of the cytokine
system [26]. It has been reported that the PI3K/Akt pathway is critical in a wide range of
disorders from tumors to heart disorders and inflammatory disorders [27]. Akt activation
results in nuclear factor (NF)-κB (i.e., a downstream factor of Akt) activation [26]. It is
known that NF-κB also plays a pivotal role in inflammatory reactions [28], and research
has shown that OSM production and expression are controlled by PI3K/Akt/NF-κB signal
cascade in osteoblast cells [28]. In the current work, we studied how NaHS reduces OSM
expression in dHL-60 cells.

2. Materials and Methods
2.1. Materials

NaHS was prepared by Samchun Pure Chemical Co., Ltd. (Pyeongtaek, Gyeonggi, Re-
public of Korea). We obtained all the antibodies for ELISA from R&D Systems (Minneapolis,
MN, USA), phosphorylated (p)-PI3K p85 from Cell Signaling Technology (Danvers, MA,
USA), and most of the antibodies for Western blot analysis from Santa Cruz Biotechnology
(Santa Cruz, CA, USA).

2.2. Cell Culture

For the HL-60 cell culture, RPMI 1640 (Gibco, Grand Island, NY, USA) containing
10% FBS was used. For differentiation, HL-60 cells were exposed to 1.3% DMSO for
7 days. Neutrophil markers (CD11b and TERT) were checked (Figure S1). Human GM-CSF
(5 ng/mL) was utilized to activate the cells, according to previous work [23,29].

2.3. Cell Viability

NaHS or PBS was pretreated in dHL-60 cells (1 × 105/mL) for 1 h, and GM-CSF
(5 ng/mL) was treated for 4 h. Cell viability was measured, as previously described [30–35].

2.4. OSM Measurement

NaHS or PBS was pretreated in dHL-60 cells (5 × 105/mL) for 1 h, and GM-CSF
(5 ng/mL) was treated for 4 h. OSM production was assessed using ELISA, as detailed
elsewhere [36–39].

2.5. Real-Time Quantitative PCR

NaHS or PBS was pretreated in dHL-60 cells (1 × 106/mL) for 1 h, and GM-CSF
(5 ng/mL) was treated for 30 min. Real-time quantitative PCR was performed, as already
described [40,41].
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2.6. Western Blot Analysis

NaHS or PBS was pretreated in dHL-60 cells (5 × 106/mL) for 1 h, and GM-CSF
(5 ng/mL) was treated for the indicated time (15 min for PI3K, 30 min for Akt, and 30 min
for NF-κB). Western blot analysis was conducted, as already reported [42–48].

2.7. Immunofluorescence Analysis

NaHS or PBS was pretreated in dHL-60 cells (1 × 106/mL) for 1 h, and GM-CSF
(5 ng/mL) was treated for 30 min. Immunofluorescence analysis was conducted, as per the
literature [49,50].

2.8. Statistical Analysis

The data were analyzed by one-way analysis of variance (ANOVA) with Tukey’s post
hoc test as well as an independent t-test for statistical analysis (IBM SPSS Statistics version
25, Armonk, NY, USA). p < 0.05 was considered to indicate statistical significance.

3. Results
3.1. NaHS Represses OSM Secretion in dHL-60 Cells

First of all, we examined whether NaHS repressed OSM secretion in dHL-60 cells,
since the main source of OSM in pulmonary inflammatory disorders is the neutrophil cell.
Since OSM levels reached maximum production 4 h after GM-CSF stimulation [23], NaHS
was pretreated in dHL-60 cells for 1 h and then GM-CSF was treated for 4 h. Upregulated
OSM production, which resulted from exposure to GM-CSF, was similar to that of our
earlier findings [23]. Pretreatment with NaHS induced downregulation of OSM production
in dHL-60 cells (Figure 1A). NaHS (0.01 to 1 mM) treatments showed decreasing OSM levels
(i.e., 33.167 ± 1.443, 31.333 ± 0.600, and 29.667 ± 0.704, respectively), while those of the
control and blank groups were 36.150 ± 0.955 and 24.267 ± 0.966, respectively. Exposure
to NaHS did not affect cell viability (Figure 1B). In addition, OSM production levels did
not increase early on (15 min and 30 min after GM-CSF stimulation, Figure S2A). To have a
convincing result that NaHS can regulate the expression of OSM, we used mast cell—an
important cell in inflammatory disorders—line HMC-1 cells. Stimulation of HMC-1 cells
with phorbol myristate acetate (PMA) plus calcium ionophore A23187 did not result in an
increase in OSM levels (Figure S2B).
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Figure 1. Inhibition of OSM production by NaHS in dHL-60 cells. (A) Cells (5 × 105/mL) were
pretreated with NaHS (0.01 to 1 mM) for 1 h, followed by GM-CSF-stimulation (5 ng/mL) for 4 h.
(B) Cell viability was assessed by means of an MTT assay. Blank (B) corresponds to PBS treated
cells without GM-CSF stimulation, and control (C) corresponds to PBS treated cells stimulated by
GM-CSF. Results are expressed as the mean ± SEM from the three separate experiments. * p < 0.05, as
compared with the PBS treated cells stimulated by GM-CSF.

3.2. NaHS Decreases OSM mRNA Expression in dHL-60 Cells

To investigate whether NaHS could inhibit mRNA expression of OSM, NaHS was
pretreated in dHL-60 cells for 1 h and then GM-CSF was treated for 30 min. As shown in
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the previous work [23], stimulation with GM-CSF led to increased mRNA expression of
OSM (Figure 2). However, this increased mRNA expression was lowered by pretreatment
with NaHS (Figure 2). Pretreatments with NaHS (0.01 to 1 mM) showed reduced OSM
mRNA levels (i.e., 0.897 ± 0.032, 0.753 ± 0.028, and 0.712 ± 0.027, respectively). The control
and blank groups showed 0.935 ± 0.037 and 0.463 ± 0.025, respectively. Co-treatment of
NaHS with a PI3K inhibitor (wortmannin) as well as NaHS with a NF-κB inhibitor (PDTC)
showed a synergy effect in the suppression of OSM mRNA expression in dHL-60 cells,
but was not seen with Akt inhibitor (Figure S3). We investigated the modulatory effect of
1 mM of NaHS in the ensuing experiments (Western blot analysis and immunofluorescence
staining), since the effect of 1 mM of NaHS was the greatest.
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Figure 2. Inhibition of OSM mRNA expression by NaHS in dHL-60 cells. Cells (1 × 106/mL) were
pretreated with NaHS (0.01 to 1 mM) for 1 h, followed by GM-CSF-stimulation (5 ng/mL) for 30 min.
Blank (B) corresponds to PBS treated cells without GM-CSF stimulation, and control (C) corresponds
to PBS treated cells stimulated by GM-CSF. Results are expressed as the mean ± SEM from the three
separate experiments. * p < 0.05, as compared with the PBS treated cells stimulated by GM-CSF.

3.3. NaHS Inhibits PI3K Phosphorylation in dHL-60 Cells

To investigate the inhibitory mechanism of OSM suppression by NaHS, 1 mM of
NaHS was pretreated in dHL-60 cells for 1 h, and then GM-CSF was treated for 15 min,
since PI3K reached maximum phosphorylation 15 min after GM-CSF stimulation [23]. As
demonstrated in previous work [23], GM-CSF stimulation led to increased phosphoryla-
tion of PI3K (Figure 3). However, this increased PI3K phosphorylation was reduced by
pretreatment with NaHS (Figure 3).
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Figure 3. Inhibition of PI3K phosphorylation by NaHS in dHL-60 cells. (A) Cells (5 × 106/mL) were
pretreated with NaHS (1 mM) for 1 h, followed by GM-CSF-stimulation (5 ng/mL) for 15 min. (B)
The protein levels were quantitated by densitometry. Blank (B) corresponds to PBS treated cells
without GM-CSF stimulation, and control (C) corresponds to PBS treated cells stimulated by GM-CSF.
Results are expressed as the mean ± SEM from three separate experiments. * p < 0.05, as compared
with the PBS treated cells stimulated by GM-CSF.
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3.4. NaHS Suppresses Akt Phosphorylation in dHL-60 Cells

To study the inhibitory mechanism of OSM repression by NaHS, 1 mM of NaHS
was pretreated in dHL-60 cells for 1 h, and then GM-CSF was treated for 30 min. As
demonstrated elsewhere [23], GM-CSF stimulation led to increased phosphorylation of Akt
(Figure 4). However, this elevated phosphorylation of Akt was reversed by pretreatment
with NaHS (Figure 4). The Akt phosphorylation was lowered by pretreatment with a PI3K
inhibitor, suggesting that Akt is a downstream factor of PI3K (Figure S4A).
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Figure 4. Inhibition of Akt phosphorylation by NaHS in dHL-60 cells. (A) Cells (5 × 106/mL) were
pretreated with NaHS (1 mM) for 1 h, followed by GM-CSF-stimulation (5 ng/mL) for 30 min. (B)
The protein levels were quantitated by densitometry. Blank (B) corresponds to PBS treated cells
without GM-CSF stimulation, and control (C) corresponds to PBS treated cells stimulated by GM-CSF.
Results are expressed as the mean ± SEM from three separate experiments. * p < 0.05, as compared
with the PBS treated cells stimulated by GM-CSF.

3.5. NaHS Downregulates NF-κB Phosphorylation in dHL-60 Cells

To identify the inhibitory mechanism of OSM downregulation by the NaHS, 1 mM
of NaHS was pretreated in dHL-60 cells for 1 h, and then GM-CSF was treated for 30
min. As per previous work [23], upregulated phosphorylation of NF-κB resulted from
GM-CSF stimulation (Figure 5). However, this elevated phosphorylation of NF-κB was
abated by pretreatment with NaHS (Figure 5). The NF-κB phosphorylation was diminished
by pretreatment with an Akt inhibitor, suggesting that NF-κB is a downstream factor of
Akt (Figure S4B).
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Figure 5. Inhibition of NF-κB phosphorylation by NaHS in dHL-60 cells. (A) Cells (5 × 106/mL)
were pretreated with NaHS (1 mM) for 1 h, followed by GM-CSF-stimulation (5 ng/mL) for 30 min.
(B) The protein levels were quantitated by densitometry. Blank (B) corresponds to PBS treated cells
without GM-CSF stimulation, and control (C) corresponds to PBS treated cells stimulated by GM-CSF.
Results are expressed as the mean ± SEM from three separate experiments. * p < 0.05, as compared
with the PBS treated cells stimulated by GM-CSF.
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3.6. NaHS Decreases p-NF-κB and OSM Immunofluorescence Staining in dHL-60 Cells

To clarify the inhibitory mechanism of NaHS using immunofluorescence analysis, we
performed immunofluorescence staining for p-NF-κB, which is an important and final factor
of the PI3K/Akt/NF-κB signal pathway, in dHL-60 cells. An amount of 1 mM of NaHS
was pretreated in dHL-60 cells for 1 h, and then GM-CSF was treated for 30 min. Increased
p-NF-κB immunofluorescence staining resulted from GM-CSF stimulation, however, the
increased p-NF-κB immunofluorescence staining was downregulated by pretreatment with
NaHS (Figure 6A). To confirm the suppression of OSM by NaHS using immunofluorescence
analysis, we performed immunofluorescence staining for OSM in dHL-60 cells. An amount
of 1 mM of NaHS was pretreated in dHL-60 cells for 1 h and then GM-CSF was treated for
3 h, since OSM immunofluorescence staining was greatest 3 h after GM-CSF stimulation.
While increased OSM immunofluorescence staining resulted from GM-CSF stimulation,
the increased OSM immunofluorescence staining was downregulated by pretreatment with
NaHS (Figure 6B).
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(A) Cells (1 × 106/mL) were pretreated with NaHS (1 mM) for 1 h, followed by GM-CSF stimulation
(5 ng/mL) for 30 min; fluorescence microscope images stained with anti-p-p65 antibodies. (B) Cells
(1 × 106/mL) were pretreated with NaHS (1 mM) for 1 h, followed by GM-CSF stimulation (5 ng/mL)
for 3 h; fluorescence microscope images stained with anti-OSM antibodies. Blank (B) corresponds
to PBS treated cells without GM-CSF stimulation, and control (C) corresponds to PBS treated cells
stimulated by GM-CSF. Representative images were obtained from images performed in triplicate
(scale bar = 20 µm).

4. Discussion

Plenty of research has indicated that OSM is highly expressed in a variety of inflamma-
tory disorders, including chronic rhinosinusitis and asthma [22,51,52]. One study reported
that GM-CSF activation led to increased levels of OSM mRNA expression [53]. Additionally,
lots of research has suggested that GM-CSF activation results in upregulation of OSM in
human neutrophils [22,29,54,55]. In our previous work [23], our findings also revealed
that GM-CSF activation led to elevated levels of OSM production and mRNA expression
(Figures 1A and 2). Increased levels of OSM production and mRNA expression were atten-
uated by pretreatment with NaHS (Figures 1A and 2). In our previous work, stimulation
with recombinant human OSM led to increased IL-1β secretion in human HaCaT ker-
atinocytes, suggesting that OSM contributed to inflammatory reactions [23]. Furthermore,
increased IL-1β expression of HaCaT cells resulted from culture of the HaCaT cells with
conditioned medium from GM-CSF-stimulated dHL-60 cells [23]. Thus, decreased OSM
expression by NaHS may, at least in part, alleviate inflammatory reactions in keratinocytes.
Intranasal application of OSM protein showed increased inflammatory infiltrate as well as
elevations in the levels of inflammatory cytokines and chemokines in mice [56], and OSM
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hypodermic injection led to exacerbated skin inflammation in mice [57]. Another study re-
vealed increased inflammatory reactions in the pulmonary tissues of OSM-overexpressing
mice [58]. In asthmatic subjects, OSM protein and mRNA have been shown to be highly
expressed, while non-asthmatic subjects exhibited no expression of OSM [52]. In addition,
OSM neutralization and OSM knockout mice showed downregulated inflammation in
colonic tissues of mice [11]. Hence, we can presume that NaHS might be useful to treat
inflammatory disorders by blockading of OSM. To have a convincing result that NaHS can
regulate the expression of OSM, we used mast cell line HMC-1 cells. Stimulation of HMC-1
cells with PMA plus A23187 is known to induce an increase in various inflammatory factors,
such as IL-1β, IL-6, IL-8, TNF-α, and TSLP [59–61]. However, there was no increase in OSM
levels by PMA plus A23187 (Figure S2B). From our result (Figure S2B), we could assume
that the main source of OSM in inflammatory conditions stems from neutrophil cells, not
mast cells.

In general, PI3K/Akt signal processes are important in the regulation of inflammatory
reactions [24–27]. It is widely known that NF-κB plays a crucial role in inflammatory
responses [28]. More specifically, PI3K/Akt/NF-κB signaling processes were found to be
responsible for OSM production in osteoblasts [28]. As shown in our previous work [23],
the PI3K/Akt/NF-κB signaling processes were also responsible for OSM production in
dHL-60 cells. He and colleagues [62] reported that application of a PI3K inhibitor reduced
mRNA expression and proteins of a variety of inflammatory factors, including IL-1β,
IL-6, and TNF-α, in an experimental model. Furthermore, the blocking of the PI3K/Akt
signal pathway led to an improvement in arthritis in a mouse model [63]. Treatment with
wortmannin, LY-294002, and IC87114, which are excellent PI3K inhibitors, resulted in
reduced airway hyperresponsiveness and inflammatory responses in mice [64,65]. Bao
and colleagues [66] reported that suppressed lung tissue inflammation resulted from
the application of an Akt inhibitor in a mouse model. In addition, NF-κB inhibition
downregulated pulmonary inflammation in a murine model of asthma [66,67]. The results
of the present work showed that pretreatment with NaHS deceased phosphorylation of
PI3K, Akt, and NF-κB (Figures 3–5). Co-treatment of NaHS with a PI3K inhibitor as well
as NaHS with a NF-κB inhibitor showed a synergy effect in the suppression of OSM
mRNA expression in dHL-60 cells (Figure S3). It is therefore possible to assume that the
PI3K/Akt/NF-κB signal cascade may, at least in part, affect OSM regulation via NaHS in
dHL-60 cells.

5. Conclusions

We demonstrated that NaHS inhibited OSM expression and phosphorylation of PI3K,
Akt, and NF-κB in dHL-60 cells (Figure 7). Our findings indicate that H2S might be useful
in the treatment of inflammatory disorders.
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