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Abstract: Sulfur and nitrogen mustards, bis(2-chloroethyl)sulfide and tertiary bis(2-chloroethyl) amines,
respectively, are vesicant warfare agents with alkylating activity. Moreover, oxidative/nitrosative stress,
inflammatory response induction, metalloproteinases activation, DNA damage or calcium disruption
are some of the toxicological mechanisms of sulfur and nitrogen mustard-induced injury that affects
the cell integrity and function. In this review, we not only propose melatonin as a therapeutic option
in order to counteract and modulate several pathways involved in physiopathological mechanisms
activated after exposure to mustards, but also for the first time, we predict whether metabolites of
melatonin, cyclic-3-hydroxymelatonin, N1-acetyl-N2-formyl-5-methoxykynuramine, and N1-acetyl-5-
methoxykynuramine could be capable of exerting a scavenger action and neutralize the toxic damage
induced by these blister agents. NLRP3 inflammasome is activated in response to a wide variety
of infectious stimuli or cellular stressors, however, although the precise mechanisms leading to
activation are not known, mustards are postulated as activators. In this regard, melatonin, through
its anti-inflammatory action and NLRP3 inflammasome modulation could exert a protective effect in
the pathophysiology and management of sulfur and nitrogen mustard-induced injury. The ability
of melatonin to attenuate sulfur and nitrogen mustard-induced toxicity and its high safety profile
make melatonin a suitable molecule to be a part of medical countermeasures against blister agents
poisoning in the near future.

Keywords: sulfur and nitrogen mustard; melatonin; oxidative stress; melatonin metabolites; NLRP3
inflammasome; DNA damage

1. Introduction

Sulfur mustards, especially bis(2-chloroethyl) sulfide, known as yperite or mustard
gas, and nitrogen mustards, with similar properties to those of their sulfur analogues,
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being bis(2-chloroethyl)methylamine (HN2) the best known, are the most important blister
agents, but not because they are considered a chemical weapon, but because of their use
in cancer treatment. These substances are included in the lists of substances subject to
CWC verification inspections [1]. In reference to the molecular mechanisms of toxicity
induced by blister agents, the following have been reported: the formation of DNA double-
strand breaks [2], alkylation of cellular macromolecules [3], activation of Poly ADP ribose
polymerase-1 (PARP-1) [4], oxidative stress and generation of reactive oxygen and nitrogen
species (RONS) [5], dysregulation of intracellular Ca+2 [6], inflammation [7], proteolytic
activation [8], and epigenetic modifications [9] have been reported. Unfortunately, imme-
diate total decontamination after mustards exposure is difficult to achieve, and there are
not any completely effective and/or efficient antidotes and treatments do not exist. In this
complex scenario, the use of a broad-spectrum agent, with a high safety profile and the
ability to act on multiple intracellular signaling pathways favoring cell survival, would be a
good therapeutic strategy to counteract vesicant agents-induced damage. In this regard, we
proposed that melatonin, due to its wide range of biological actions, serving as an indirect
antioxidant and free radical scavenger, anti-inflammatory and immunomodulatory agent,
or as an epigenetic modulator, and taking into account its low toxicity and high efficacy in
reducing oxidative damage and improving human health, should be considered as a strong
candidate against exposure and toxicity caused by the most widely used blister agents.

Melatonin and its metabolites, such as [cyclic-3-hydroxymelatonin (c3OHM), N1-
acetyl-N2-formyl-5-methoxykynuramine (AFMK), and N1-acetyl-5-methoxykynuramine
(AMK)] exert cell protection against oxidative stress, scavenging and inhibiting the genera-
tion of free radicals. Therefore, in this review, we propose mechanisms by which some of
these metabolites could mitigate the toxic events elicited by blister agents. Consequently,
this protection would further enhance the therapeutic profile of melatonin.

Another important target activated in response to vesicants is the NLRP3 inflamma-
some [10], which is associated with a large number of diseases, including inflammatory
diseases, metabolic pathologies and carcinogenesis. In this context, melatonin inhibits the
NLRP3 inflammasome activity [11] suggesting a new strategy for protecting against blister
agents-induced cell death.

Current understanding of the toxicology associated with exposure to vesicant agents
is insufficient to explain, in mechanistic terms, their long-term pathology. In this sense,
the effects of variable severity that can occur in the long term after acute intoxication by
blister agents, makes us think, once again, on the use of melatonin to modulate epigenetic
mechanisms in the clinical treatment of exposed patients.

The purpose of this review article is to highlight the protective role of melatonin and
its metabolites in counteracting sulfur and nitrogen mustard-induced damage.

2. Molecular Toxicity Mechanisms of Sulfur and Nitrogen Mustards

The toxicological mechanism of action of vesicants (blistering agents), including the
cytotoxic vesicating sulfur and nitrogen mustards, is related to their high reactivity with
proteins, DNA, and other cellular components. However, oxidative stress induction (glu-
tathione depletion, lipid peroxidation and reactive oxygen and nitrogen species generation),
the activation of poly (ADP-ribose) polymerases (PARPs) (NAD+ depletion and decrease of
ATP production), mitochondrial disruption, changes in matrix metalloproteinase-9 (MMP-
9) expression, intracellular Ca+2 overload, epigenetic mechanisms (long-term toxicity), and
programmed cell death, are significant events involved in the molecular toxicity of these
vesicating agents [12].

The disturbances between reactive oxygen and nitrogen species (RONS) generation
and antioxidant defense mechanisms balance, after acute toxicity of sulfur and nitrogen
mustards, lead to oxidative stress [13], which is a crucial event of the pathological pro-
cess causing oxidation of macromolecules, including proteins, nucleic acids and lipids.
Currently, all efforts in drug development are directed towards the attenuation of DNA
alkylating capacity. However, the generation of RONS and establishment of a scenario
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of oxidative stress after vesicants exposure, is a more immediate event (hours) than the
formation of guanine adducts in contaminated individuals (weeks) [14]. Therefore, in a
first approach to reduce sulfur and nitrogen mustards-induced toxicity, the main target
would be to counteract oxidative stress.

Production and accumulation of mitochondrial RONS induced by blister agents lead
to mitochondrial disruption, mtDNA damage and inhibition of mitochondrial oxidative
phosphorylation (OXPHOS) complex inhibition [15]. Recently, Meng et al. [16] have evi-
denced the presence of a sulfur mustard in the mitochondria of living cells, which indicates
that mustards can exert toxicity in cytoplasmic organelles, particularly, dysfunction of
mitochondrial dynamics [17]. This increases RONS producing-related enzymes, such as
aldehyde oxidase-1 (AOX1), dual oxidases (DUOXs), inducible nitric oxide synthase (iNOS)
and thyroid peroxidase (TPO) by reducing both activities of the cytosolic antioxidant en-
zymes superoxide dismutase (SOD), catalase (CAT) and intercellular glutathione (GSH) [18].
Furthermore, the thioredoxin system and NADPH, critical elements in the protection of all
living cells, are necessary for controlling the antioxidant defense system against oxidative
stress and protein folding through thiol redox control. In this regard, the nitrogen mustard-
derivative mechlorethamine (HN2) inhibits the thioredoxin system inducing overload of
RONS and, subsequently, oxidative stress and cellular damage [19]. In addition, RONS
can also induce lipid peroxidation (LPO), which leads to LPO–DNA adducts in targeted
tissues exposed to mustards [20]. Moreover, an increase in the production of superoxide
anions (O2

•−) from mitochondria associated with an uncoupler in the mitochondrial respi-
ratory chain has been observed after mustards exposure [21]. These events compromise the
activity of antioxidant defense systems and, therefore, cellular survival.

The most significant effect of mustards in a low dose of exposure is DNA alkylation
and cross-linking. PARP-1, in response to DNA damage, uses NAD+ as a substrate to
catalyze the covalent binding of poly-ADP-ribose (PAR) and some other nuclear proteins
involved in DNA repair. Subsequently, overactivation of PARP-1 and depletion of NAD+-
dependent nuclear enzymes by the complex mustards–DNA adducts, without recruitment
of the repair system, triggers cell death via necrosis/apoptosis and autophagy [22]. PARP-1
activation is involved in DNA repair; however, overactivation by mustards-induced DNA
damage coupled with fast consumption of the NAD+ leads to ATP depletion and cell
death [4]. In this respect, intracellular ATP levels act as a cellular sensor to switch the
apoptotic or necrotic pathways in response to mustard injury, which may affect the micro-
filament architecture. In this line, the cytoskeleton organization disruption by exposure
to bifunctional alkylating agents sulfur [23] and nitrogen mustards [24], interfere with the
mechanisms required for homeostasis maintenance and actin filament cell morphology. It
has been proposed that after mustard exposure, PARP-1 is activated and mediates ONOO−

induced necrosis; under conditions of low level cell damage, PARP-1 allows DNA repair
and cell recovery [25]. This may lead to the delayed toxicity of mustards since cells are able
to divide but not be free of damage.

Matrix metalloproteinases (MMPs) are a family of calcium-dependent zinc-binding
proteolytic enzymes essential for the remodeling of extracellular matrix (ECM). Gelatinase
MMP-9, which promotes proinflammatory pathways and degrades ECM constituents,
is up-regulated in lung tissue following sulfur mustard exposure and aggravates the
pathogenesis during the progression of a disease [8]. More recently, sulfur mustard was
reported to induce corneal structural damage through changes in gene expression of
MMPs [26]. Therefore, extracellular matrix proteins and matrix metalloproteinases could
be a goal of strategy as a direct therapeutic target against vesicant injury in the ocular tissue.
In this context, topical exposure to nitrogen mustard significantly up-regulates MMP9 via
MAPK/Akt-AP1 pathway, increasing vesicant-induced skin damage [27].
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Intracellular calcium [Ca2+]i overload is another molecular toxicity mechanism by
which vesicants produce cell damage at the acute phase [5]. Ca+2 is an essential second
messenger for cell homeostasis maintenance and its disturbance provokes triggering cellular
pathways that contribute to cytotoxicity. Thus, intracellular [Ca2+]i overload after nitrogen
mustard exposure triggers autophagy through the TRPV1-Ca2+-CaMKKβ-AMPK-ULK1
signaling pathway [28]. Likewise, sulfur mustard is able to increase [Ca2+]i mediated by
transient receptor potential ankyrin 1 (TRPA1) ion channel/ heat shock 70 kDa protein 6
(HSPA6)-induction [29], which leads to oxidative stress and stimulates cell death.

Long-term toxicity of mustards affects the quality of life of patients leading to neu-
robehavioral impairment, cognitive disorders, and severe depression, among others [30].
Furthermore, mustards induce epigenetic modifications without altering the primary DNA
nucleotide sequence in cells and tissues exerted by modulators such as histone acetyltrans-
ferases (HATs), histone deacetylases (HDACs) and DNA methyltransferases (DNMTs),
which play crucial roles in histone acetylation and deacetylation, modulation of chromatin
and DNA expression, and cytosine methylation, respectively. Regarding this issue, sulfur
mustard induces epigenetic disturbances through DNA methylation and acetylation both
in endothelial cells and in vivo skin samples [31]. Dysregulation of HATs and HDACs was
also observed after 24 h at low and high dose of sulfur mustard exposure [32]. Regarding
the post-transcriptional epigenetic modifications, increasing in serum levels, non-coding
microRNAs (miRNAs) were found in humans [33,34] and in rats [35] after sulfur and
nitrogen mustard exposure. In this sense, we believe that further clarification of epigenetic
mechanisms of mustards may be useful in the development of new therapeutic options.

3. Protective Cellular and Molecular Mechanisms of Melatonin against Sulfur and
Nitrogen Mustard-Induced Oxidative Stress

As mentioned above, oxidative stress (OS) events have been proposed to play a major
role after sulfur and nitrogen mustard exposure. Indeed, after mustard exposure, the in-
duced oxidative environment (ROS, NO and ONOO−), including GSH depletion, triggers
its detrimental effects cascade [25]. Consequently, a molecule with an effective antioxidant
activity would be of therapeutic interest to counteract mustard effects against this key toxic
event [36]. Noteworthy, conventional antioxidants cannot remove ONOO−. In this regard,
melatonin emerges as a promising candidate for a medical countermeasure, with unique fea-
tures and pleiotropic activities including its well-known antioxidant properties and RONS
scavenging potential. Melatonin exerts these effects through several mechanisms [37,38].
Antioxidant therapy is intimately related to inflammation modulation, as NOS inhibitors
effectively counteract OS and OS seems to trigger an inflammatory cascade [39].

As a consequence of the described protective effects of melatonin, several authors
have studied its antioxidant potency versus mustards, its capacity to detoxify free radicals,
as well as other antioxidant properties in rats (Table 1).

The exposure to mustards reduces glutathione peroxidase (GPx) activity which leads
to an OS environment. A pre-administration of melatonin in nitrogen mustard-exposed
animals protected from GPx loss in a dose-dependent manner [40]. This is quite relevant
because while mustards did not diminish significantly SOD levels, other OS markers were
altered, i.e., MDA or GPx, which denotes that an OS environment is present in exposed
animals. Remarkably, melatonin enhanced SOD activity despite it not previously dimin-
ished by mustards [40]. Melatonin showed significant protection for increased oxidized
glutathione (GSSG) levels in addition to counteracting the decrease of GSH after nitrogen
mustard administration [41]. These results reveal that melatonin’s capacity to neutralize
RONS is extensive and complex and, in particular, can directly and immediately combat the
short-term damage caused by acute exposure to mustards, as previously reported [14,18].
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After nitrogen mustard exposure, RONS overload induces LPO, which is estimated
by measuring Malondialdehyde (MDA) or Thiobarbituric acid reactive substance (TBARS)
levels, as LPO markers. A study determined that mustard-exposed animals developed
strong oxidative stress increasing MDA levels, and melatonin administration significantly
diminished MDA levels [40,41], which contributed to membrane protection from LPO.
Whereas Pohanka et al. [42] observed that, despite sulfur mustard not seeming to signifi-
cantly induce changes in plasma levels of LPO compared to the control, when melatonin
was previously administered to animals, the LPO marker TBARS was approximately three
folds lower, indicating the significative antioxidant activity exerted by melatonin, reducing
LPO (Table 1).

Nitrosative stress markers are just as relevant as oxidative markers. In this regard,
there is a large body of evidence that melatonin has an important role in counteracting
an increased activity of reactive nitrogen species (RNS) producing related enzymes, as
well as selectively inhibiting iNOS [43–45]. There is a strong nitrosative stress induction
after nitrogen mustard exposure, the expression of iNOS increases generating nitric oxide
(NO), which is an unstable nitrogen radical related to ONOO− formation by reacting with
superoxide anion (O2

•−). Both NO and ONOO− induce cytotoxicity, modifying membrane
lipids, proteins, and DNA covalently [40,44,46,47]; the protection of melatonin at this stage
will be extensively discussed in Section 5. Nevertheless, the administration of melatonin
seems to reduce nitrosative stress markers (Table 1), measured as the urinary excretion of
NO metabolites, nitrite–nitrate (NOx), which is in accordance with the observed inhibition
of iNOS activity suppression in treated animals [40,47,48]. Similarly, mice administered
intraperitoneally with a single toxic dose of alkylating cyclophosphamide (CP; 200 mg/kg)
developed intense oxidative stress in lung homogenates (reducing GSH levels and SOD and
CAT antioxidant enzymes), while pre-treatment for seven consecutive days with melatonin
(2.5–20 mg/kg) quenched lipid peroxidation and restored normal oxidative parameters [49].

Table 1. In vitro and in vivo studies about the protective actions of melatonin against sulfur and
nitrogen mustard-induced damage.

Model Blister Agent (Dose) Melatonin Dose Results Reference

Wistar Rats Mechlorethamine
(0.5 mg/kg)

20 and 40 mg/kg
(pretreatment) ↓ LPO (MDA) [40]

Wistar Rats Mechlorethamine
(0.5 mg/kg)

40 mg/kg
(pretreatment) ↑ SOD activity [40]

Wistar Rats Mechlorethamine
(0.5 mg/kg)

20 and 40 mg/kg
(pretreatment) ↑ GPx [40]

Wistar Rats Mechlorethamine
(0.5 mg/kg)

40 mg/kg
(pretreatment) ↓ NOx [40]

Wistar Rats Sulfur mustard
(20 and 80 mg/kg)

25 and 50 mg/kg
(pretreatment) ↓ LPO (TBARS) [42]

Wistar Rats Sulfur mustard
(20 and 80 mg/kg)

25 and 50 mg/kg
(pretreatment) ↑antioxidant power (FRAP) [42]

Sprague-Dawley rats Mechlorethamine
(3.5 mg/kg)

100 mg/kg/12 h
(6 doses post-exposure) ↓ NOx [47,48]

Swiss mice Mechlorethamine
(10 mg/kg) 250 mg/kg ↓ GSSG [41]

Swiss mice Mechlorethamine
(5 and 10 mg/kg) 250 mg/kg ↓ LPO (MDA) [41]

Swiss mice Mechlorethamine
(5 mg/kg) 250 mg/kg ↑ GSH [41]

Malondialdehyde (MDA), Superoxide dismutase (SOD), Glutathione peroxidase (GPX), Lipid peroxidation (LPO),
Nitrosative stress markers nitrite-nitrate (NOx), Thiobarbituric acid reactive substance (TBARS), Ferric-reducing
antioxidant power (FRAP), reduced and oxidized glutathione (GSSG), glutathione (GSH),↑ increase, ↓ decrease.
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The studies mentioned in this section treated animals with doses of melatonin from
20 mg/kg to 250 mg/kg (Table 1). Undoubtedly, further investigations are needed to
establish the effective dose for each of the wide variety of possible treatments as a preventive
measure, and for acute or delayed mustard toxicity.

When melatonin antioxidant power has been studied (Table 1), with the ferric-reducing
antioxidant power (FRAP) assay in plasma, a significant situation has been found. While
untreated melatonin rats did not present changes, the FRAP for Sulfur mustard + melatonin
animals were significantly improved, and this increment was significantly higher compared
to only melatonin-treated rats. This leads the authors to think that melatonin’s antioxidant
power involves other factors and does not only respond to concentration [42].

Therefore, the described free radical scavenging capacity of melatonin would facilitate
the neutralization of sulfur and nitrogen mustards-induced oxidative damage. In this
regard, we have previously proposed three mechanisms to achieve melatonin’s protective
action: hydrogen-atom transfer (HAT), single electron transfer (SET) and radical adduct
formation (RAF) [50,51]. Moreover, melatonin metabolites, c3OHM, AFMK and AMK are
also capable of exerting a scavenger action [52]. Therefore, and considering the ability of
melatonin metabolites to quench free radicals and thus protect against oxidative damage,
we herein propose the possible mechanisms by which some of them could mitigate the
toxic events elicited by blister agents such as the nitrogen mustard-2 (HN2) (Figure 1).
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Figure 1. Two proposed mechanisms that may explain the quenching ability of c3OHM on HN2.

The melatonin metabolite c3OHM may trap HN2 by nucleophilic substitution, re-
leasing a chloride ion. Otherwise, this chloride ion could leave previously due to an
intramolecular nucleophilic attack of the tertiary amine, being then the target for the nu-
cleophilic substitution of the N-methylaziridinium cation. In both cases, the pending
alkylating agent may decompose to form ethylene and the less toxic N-methylaziridine,
while the chlorine radical is captured by the c3OHM (purple mechanism, Figure 1). Alter-
natively, this metabolite of melatonin would furnish radical substitution over HN2, taking
chlorine radical and provoking the rapid decomposition of this blistering agent to form
similar products (Figure 1, blue mechanism). On the other hand, the AFMK metabolite of
melatonin does not seem to have a chemical nature to quench this blistering agent. Con-
versely, the metabolite AMK, despite its soft nucleophilic nature, would develop radical
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substitution over HN2 to bind chlorine in that step, and thus, inducing the decomposition
of this blistering agent in a similar fashion to the c3OHM (Figure 2).
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Similar behavior may be displayed by melatonin metabolites quenching other blister-
ing agents, such as sulfur mustards, which have similar toxic actions. For these mustards, a
relevant toxicity mechanism is the formation of alkylthiiranium (namely cyclic alkylsulfo-
nium), which rapidly reacts with water producing thiodiglycol. Consequently, it is essential
that these active metabolites of melatonin, c3OHM or AMK, dissipate the sulfur mustard
before the alkylthiiranium generation avoiding, thus, this toxic mechanism (Figure 3).

Subsequently, and taking into account the review by Tan et al. [53], the capacity of
melatonin to counteract the oxidative environment induced by mustards does not only lie
in melatonin as the parent compound, but also in the endless fashion due to the action of
many melatonin metabolites, i.e., the antioxidant cascade. Together with its unique features,
its metabolite activities may reinforce the potency of melatonin reverting a mustard’s toxic
actions compared to other classical antioxidants.
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4. Sulfur and Nitrogen Mustard-Induced Inflammation: Therapeutic Regulation of the
NLRP3 Inflammasome by Melatonin

As previously mentioned, sulfur and nitrogen mustards are bifunctional lipophilic
alkylating agents that rapidly penetrate tissues and cells and react with sulfhydryl, car-
boxyl, and aliphatic amino groups to form stable adducts [54]. This causes oxidative
and nitrosative stress, impairs cell function, causes DNA damage, and triggers cell death,
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apoptosis and autophagy [55,56]. In experimental models and humans, mustard-induced
acute and long-term injury is associated with RONS, which are closely associated with
mustard-induced inflammation. DNA-damaged cells undergo activation of various sig-
naling pathways, such as PARP, p53 and NF-κB, which play an important role in DNA
damage repair, cell cycle arrest and/or inflammation [57]. It has been shown that exposure
to mustards increases p53 levels and p53 phosphorylation, mediating early apoptosis and
inflammation [58,59]. Apoptotic cell death itself can activate innate immune responses
and increase inflammation [60]. Indeed, cell death induced by mustard exposure pro-
duces the release of various pro-inflammatory mediators, such as TNF-α, IL-1α or IL-1β,
and stimulates the activation of resident macrophages and mast cells, hence activating
an immune response. These inflammatory cells also release inflammatory mediators that
activate neutrophil extravasation and accumulation at the injured area [61]. After tissue
infiltration, neutrophils generate chemotactic signals to attract monocytes and macrophages
to the injured area. Depending on the stage of injury, these cells may exhibit a proinflam-
matory phenotype or aid in wound healing. Tissue repair involves the phagocytosis of
apoptotic neutrophils, dead cells and debris at the site of injury and the release of various
growth factors that may help promote cell proliferation and extracellular matrix synthe-
sis [62]. However, during prolonged tissue stress, these cells may serve as a source of
inflammatory mediators and cytokines that may support further neutrophil infiltration
into the injury site [62]. Exposure of rats to vesicants results in marked increases in iNOS,
COX-2 and TNFα positive-macrophages in the lung [63]. Moreover, mustards induce the
increase of pro-inflammatory cytokines such as IL-6, IL-8, IL-12, and the fibrogenic cytokine
transforming growth factor (TGF) β [64].

NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is
the most widely characterized inflammasome that activates caspase-1 and induces IL-
1β release. NLRP3 inflammasome is an important step in innate immune responses.
Recently, the NLRP3 inflammasome was shown to play an important role in vesicant-
induced cutaneous inflammation [10]. The authors describe that nitrogen mustard activates
NLRP3 inflammasome through the SIRT3–SOD2–mtROS signaling pathway. The NLPR3
inflammasome has recently been implicated in the immune pathogenesis of several diseases
including cardiac, gastrointestinal, pulmonary, metabolic and neurodegenerative diseases.
In this regard, inhibition of NLRP3 inflammasome activation has been proposed as a
promising novel therapeutic target for inflammation-related disorders. Therefore, mtROS-
dependent activation of the NLRP3 inflammasome may be an excellent target to counteract
vesicant exposure-induced damage.

Melatonin pleiotropy effects (free-radical scavenger, antioxidant, cytoprotective, anti-
inflammatory, oncostatic, anti-aging, immunomodulatory), includes inhibition of NLRP3
inflammasome. ROS is a main trigger of NLRP3 inflammasome activation [65]. Melatonin
reduces ROS production in various in vitro models through its antioxidant effect modifying
several antioxidant proteins or its ability to scavenge free radicals. In this sense, melatonin
reduces NLRP3 inflammasome activation through Nrf2-mediated ROS scavenging [66,67].
Moreover, melatonin diminishes the levels of TXNIP, suppressing ROS production and
NLRP3 activity [68]. NF-κB is a key regulator of the first phase (priming phase) of NLRP3
inflammasome activation. Melatonin prevents NLRP3 inflammasome activation by inhibit-
ing NF-κB signaling induced by LPS administration [69]. It is well-known that autophagy
is a negative regulator for NLRP3 activation. Recently, our research group showed that
LPS inhibits autophagy and increases NLRP3 protein levels and NLRP3 inflammasome
activation. Melatonin reversed LPS-induced cognitive decline, decreased NLRP3 levels
and promoted autophagic flux in mice [67]. Additionally, melatonin increased of LC3-
II/LC3-I, Atg 5 expression and suppressed NLRP3 inflammasome activation in a model
of subarachnoid hemorrhage [70]. Furthermore, the regulatory function of melatonin in
NLRP3 inflammasome activation in part occurs through post-transcriptional mechanisms,
by altering the expression of miRNAs and long noncoding RNAs [71]. In recent years,
different groups have proven the modulatory effect of melatonin on the inflammatory
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response. Hence, on the one hand the NLRP3 inflammasome plays an important role in
vesicant-induced inflammation and, on the other hand, melatonin exerts a strong regulatory
effect on NLRP3 inflammasome activation. In view of these evidences, this indoleamine
may serve as a good therapeutic candidate against vesicant-induced inflammation.

5. Role of Melatonin in Counteracting Sulfur and Nitrogen Mustard-Induced
DNA Damage

The poisoning by mustards and the subsequent casualties and incapacitating toxicity
produced are dire since none of their principal acute effects, including skin blistering, eye
disease and acute respiratory distress [72], has a palliative agent [73]. Furthermore, the
prolongation of sequelae over time in a pathological network of systemic involvement [74]
puts us in the position of finding antidote-based pleiotropic remedies that address the
multiplicity of actions gathered by vesicants. In this regard, the spectrum of signaling
deployed by melatonin and its metabolites [75,76], as well as their wide distribution
in nuclei and organelles [77,78], are consistent with the countermeasures demanded by
mustard-induced dysfunctionalities [79]. Specifically, this indoleamine appears to directly
remove DNA damage from physical and chemical aggressors [76]. The melatonin cascade
also enables extremely efficient electron transfer [80] to scavenge most RONS [25,53,81,82]
and the ONOO– [83,84]. In addition, genomic regulation exerted by melatonin modulates
pro-oxidant and antioxidant mechanisms and mitochondrial metabolism [85,86], therefore
enhancing cellular responses against DNA alteration and chemical damage [51,87–89].
This multidimensional response of melatonin towards the repair of modified sites, the
elimination of macromolecule damaging agents and the activation of antioxidative defense
gives it proficiency to neutralize mustard pathology.

Along with lung, eye and skin damage [90], sleep disorders are very common in
mustard victims [91] and, in this regard, a cross-sectional study conducted with 100 sul-
fur mustard-injured Iranians from one-third of victims still suffering from poor sleep,
respiratory malfunction and other delayed illness from the Iran–Iraq war (1980–1988),
showed reduced nocturnal serum melatonin [92]. Moreover, a randomized, double-blind
and placebo-controlled trial study in another cohort of 30 Iranian veterans showed the
efficiency of melatonin in improving sleep quality [93]. Consequently, the current state of
knowledge nurtured from clinical evidence and the functional biology of this indoleamine
suggests that replacement therapy with melatonin is a plausible alternative to manage
mustard toxicity.

Early pharmacological cytotoxicity of mustard exposure involves chromosomal DNA-
damage by readily direct alkylation of purines (in addition to RNA and other macro-
molecules) and subsequent cross-linking and single or double DNA-strand breaks [22].
In the case that alkylating positions are found on the same strand, the so-called “limpet
junction” hinders the access of vital DNA processing enzymes [94]. Otherwise, interstrand
DNA cross-linking prevents the uncoiling and strand separation during replication and
transcription and therefore, poses serious side effects when cells activate the genome or
undergo division [94]. Either way, extensive DNA and/or protein damage exceeds the
cell’s clearance capacity, and the resulting processes activate repair mechanisms, oxidative
stress and inflammation pathways [22,95,96]. Eventually, this response to genotoxicity can
alert the checkpoint machinery to arrest cell cycle progression and activate apoptosis or
necrosis [97–99]. In this last respect, cellular destruction accounted after extensive chem-
ical damage and DNA fragmentation drives the clinical expression of mustard toxicity.
So, skin samples of old male SKH-1 hairless mice treated with 3.2 mg/mouse nitrogen
mustard for 30 min resulted in direct DNA damage, as suggested by both increased
phosphorylation at Ser 139 of the histone variant H2A.X (called γH2A.X), which signals
double-stranded breaks in DNA, and elevation of the oxidative damage marker 8-oxo-7,8-
dihydro-2′-deoxyguanosine [100]. Oxidative stress, inflammation, dead epidermis and
keratinization disorders were also observed [27,100]. Noteworthy, genome and expressed
RNA comprehensive analyses have revealed that melatonin and its two indolic metabolites
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modulate multiple signaling pathways in cultured human epidermal keratinocytes, includ-
ing cell differentiation and other relevant activities (antioxidative, antiaging, antiprolifera-
tive, etc) for cell homeostasis [101]. Similar to skin-induced injury, human corneal epithelial
cells derived from the outermost and highly vesicant-susceptible ocular layer, once exposed
to 100 µM nitrogen mustard for 12 to 48 h showed, among other expressions of cell failure,
a dose-dependent increase of γH2A.X, proving the damage inflicted to DNA [102]. In
view of the pathological expression described, it should be mentioned that at micromolar
concentration, melatonin-receptor signaling activated the p38-dependent phosphorylation
of p53 and histone H2AX at Ser139, thus gathering DNA-repairing cascades to prevent
accumulation of DNA lesions in normal and cancer cells [103,104]. With regard to lung
disease, the human bronchial epithelium line 16HBE exposed up to 24 h to yperite (0.25 and
0.5 mM) or its structural and functional analog mechlorethamine (0.1 and 0.25 mM) suffered
from both cell detachment and DNA fragmentation in a time/concentration-dependent
manner [105]. Regarding the remediation of this harmful, 100 µM melatonin reduced cell
detachment by about half, as well as mustard’s interference with cell proliferation, viability
and apoptosis by one third [105].

Other evidence supporting the role of melatonin in maintaining molecular machin-
ery and restoring cellular biosystems, is the reported ability to reduce the incidence of
spontaneous and chemically induced carcinogenesis, which also invokes upregulation and
activation of DNA repair mechanisms [106,107]. It is important to note in this context that
DNA maintenance and tumor suppressors appear to be under circadian control [108–110],
and also, alterations of melatonin regulators affect circadian genes, cancer etiology and
patient survival [111]. Indeed, the reduction in breast cancer incidence among blind women
has been linked to improved endogenous melatonin and rhythmicity synchronization
compared to light-perceptive counterparts [112]. In keeping with melatonin’s capacity to
counteract potentially cancerous lesions, the comet assay and wide-genome gene expres-
sion screening have shown that pre-treatment with the indoleamine (1 nM) stimulated a
functional response in breast and colon cancer cells to repair DNA strand breaks caused
by the carcinogen methyl methanesulfonate [113]. Likewise, melatonin (100 and 400 µM)
inhibited the induction of sister chromatid exchange by the antineoplastic and potent
alkylating nitrogen mustard-derived melphalan [114]. In the same way, low (0.2 mg/kg)
and high (0.4 mg/kg) doses of melatonin reduced the accumulation of DNA adducts
instilled by the carcinogen safrole [115,116]. Likewise, the radioprotective potential of mela-
tonin has shown to preclude double-stranded breaks in peripheral lymphocytes caused
by 131I [117] and overall DNA damage in spleen/cerebral [118], hematopoietic [119] and
intestinal cells [120] of irradiated mice. Within the scope of genome protection, melatonin
also assists reproductive technology to enhance cell homeostasis and functionality. At
micromolar or millimolar concentrations, melatonin durably protected the DNA integrity
and biochemical functionality of ram [121,122] and rabbit [123] sperm during cryopreserva-
tion, as well as reduced the DNA fragmentation and chromatin dispersion of sperm from
asthenoteratozoospermic men [124]. Likewise, by inhibiting phospho-histone H2A.X, mela-
tonin prevented double chain breaks in mouse oocytes during prophase arrest [125,126]
and in porcine embryos coming from somatic cell nuclear transfer [127]. In short, these
and other published data [128] clearly show the anti-mutational and genome-protective
capacities that equip melatonin with aptitudes to mitigate the genotoxicity triggered by
mustard intoxication.

In addition, to directly damaging the physical structure of macromolecules, strong
sulfur and nitrogen mustard poisoning triggers other acute cytotoxicity mediated by the
complex signaling pathways of DNA damage repair, cell death, oxidative stress, apoptosis
and inflammation [27,59,129,130]. Indeed, high redox imbalance and nitrooxidative stress,
in parallel to the decline of antioxidant mechanisms, are crucial in hurting nitric bases
and the deoxyribose backbone of DNA [76], as well as releasing pro-inflammatory factors
that affect signaling and collapse membranes [40,131]. However, the specific species
responsible for the oxidative pathology induced by mustards have not been identified [132],
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although there is compelling evidence that reactive nitrogen species play a pivotal role in the
respiratory damage induced by sulfur mustard [82]. In this regard, it is known that sulfur
and nitrogen mustard cause depletion of glutathione (decreases GSH/GSSG ratio) and
antioxidant enzymes, resulting in RONS overproduction [41,133,134]. Subsequently, nitric
oxide and superoxide combine into the highly reactive nitrosating ONOO– [135], which
cannot be cleared by conventional antioxidants and originates a great part of mustard
toxicity [39,72,136–138]. Peroxynitrite reacts covalently with all major macromolecules
and thiols and stresses cellular biosystems to compromise viability and cause apoptosis or
primarily necrosis [139–141]. Thus, for example, peroxynitrite disrupts membranes through
the oxidation of their structural lipids and inactivates the intermediate metabolism due
to the inactivating oxidation of enzymes and ion channels essential for DNA repair and
energy production [39,142,143]. Moreover, at very low doses, it attacks DNA (with a small
preference for guanine and 2′-deoxyguanosine to form 8-nitroguanine and 4,5-dihydro-
5-hydroxy-4-(nitrosooxy)-2′-deoxyguanosine adducts, respectively) and produces single
strand breaks [144,145].

Despite the relevance of peroxynitrite toxicity, to fully understand mustard pathol-
ogy [146], it is mandatory to take into account the oxidative damage coming from the
hydroxyl radical, which is the most common affecting DNA and also displaying preference
towards guanosines [147]. Likewise, female mice given percutaneously with sublethal
nitrogen mustard exhibited exacerbation of oxidative stress markers in the liver, and DNA
damage, which were antagonized at variable levels by oral melatonin (250 mg/kg), better
at low (5 mg/kg) than at high (10 mg/kg) concentration of nitrogen mustard [41]. On
the other hand, pinealectomized rats receiving melatonin at darkness (1 mg/kg in the
drinking water) for 15 days and a terminal intraperitoneal dose of cyclophosphamide
(CP) (20 or 50 mg/kg) showed strongly reduced spontaneous chromosomal abnormalities
and oxidative lesions of DNA in their bone marrow cells, as well as upregulated DNA
excision repair [148]. Furthermore, Sprague-Dawley rats were treated via transdermal with
3.5 mg/kg of the nitrogen mustard-related compound mechlorethamine (MEC) and 30 min
later intraperitoneally with melatonin (100 mg/kg), subsequently repeated five times every
12 h, normalized the increase of TNF-α, IL-1β and iNOS produced by the MEC dosage
(Table 1) [47]. Histologically, melatonin significantly reduced the alveolar epithelial damage,
inflammation and interalveolar septal thickening observed in MEC-treated animals. An
identical experimental schedule allowed melatonin to protect against mustard-induced
kidney toxicity [48]. By activating the same defense responses, melatonin has also shown
significant evidence of being able to protect DNA in other damaging contexts. Thus, the
indoleamine provided genetic protection to primary cortical neurons from a rat model
of intracerebral hemorrhage [149], human melanocytes [150] and skin fibroblasts [151]
damaged by UVB, as well as murine ovaries exposed to genotoxicity and loss of fertil-
ity by cisplatin [152]. Notably, melatonin also alleviated oxidative damage of lipids and
DNA in primate liver [153] and peripheral blood lymphocytes of healthy, non-smoking
males [154]. Additionally, in vitro and in vivo settings have illuminated the broad potential
of melatonin to address the genotoxicity of stressors such as arecoline [155], lead ([156]),
formaldehyde [157], the endocrine-disrupting bisphenol A [158] or engineered titanium
dioxide nanoparticles [159].

Remarkably, the detoxifying function of melatonin from oxidizing reactive species has
recently been expanded with the suggestion that indoleamine and six of its metabolites
are capable of directly reversing oxidative alterations in DNA by transferring electrons to
oxidized guanine sites and hydrogen atoms to the sugar moieties of 2-deoxyguanosines [76].
As the authors themselves express, this hypothesis requires experimental research to be
verified and thus enlarges the potential of melatonin from prophylaxis and/or attenuation
to the direct reversal of oxidative diseases, including mustard poisoning. In view of this and
all the other observations compiled earlier, it can be concluded that the anti-genotoxic and
macromolecular integrity capacities of melatonin, together with the reinforcement of antiox-
idant and anti-inflammatory responses, outline a promising horizon for the indoleamine in
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therapies against morbidity and mortality associated with mustard intoxication. However,
in the effort to unravel new clinical management strategies, more research should focus on
the myriad actions of melatonin and its proficiency to mitigate the side-effects of mustards.

6. Conclusions

In view of the knowledge summarized herein, we have tried to provide an overview
of the main molecular and cellular mechanisms involved in sulfur and nitrogen mustard
toxicity, which, however, are still being investigated. In this complex scenario, various
cytoprotective agents have been suggested to counteract the toxic effects of vesicants,
although none of them protect against all pathophysiological manifestations and have so
far provided only partial protection. Because it is endowed with multiple functions and
a good safety profile, melatonin has a high relevance in the protection against numerous
chemical compounds, among them, the blistering agents. Moreover, melatonin also has
a differentiating element with respect to other cytoprotective agents; its own metabolites,
c3OHM and AMK, exert cytoprotective actions that potentiate the therapeutic capacity
reducing the oxidative damage of vesicants. For this reason, it is necessary to further
research the role of this indolamine as a preventive/prophylactic agent in preclinical models,
as well as in controlled translational trials. In this context, clinicians are paying increasing
attention to melatonin, which could potentially have important applications to ameliorate
the alkylating agents-induced side effects. But, for this to happen, randomized clinical
studies to translate the therapeutic potential of melatonin to clinical practice are needed.
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