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Abstract: Obesity and overnutrition induce inflammation, leptin-, and insulin resistance in the
hypothalamus. The mediobasal hypothalamus responds to exercise enabling critical adaptions at
molecular and cellular level that positively impact local inflammation. This review discusses the
positive effect of exercise on obesity-induced hypothalamic dysfunction, highlighting the mechanistic
aspects related to the anti-inflammatory effects of exercise. In HFD-fed animals, both acute and
chronic moderate-intensity exercise mitigate microgliosis and lower inflammation in the arcuate
nucleus (ARC). Notably, this associates with restored leptin sensitivity and lower food intake. Exercise-
induced cytokines IL-6 and IL-10 mediate part of these positive effect on the ARC in obese animals.
The reduction of obesity-associated pro-inflammatory mediators (e.g., FFAs, TNFα, resistin, and
AGEs), and the improvement in the gut–brain axis represent alternative paths through which regular
exercise can mitigate hypothalamic inflammation. These findings suggest that the regular practice
of exercise can restore a proper functionality in the hypothalamus in obesity. Further analysis
investigating the crosstalk muscle–hypothalamus would help toward a deeper comprehension of
the subject.

Keywords: brain–muscle–gut axis; metabolic disturbances; energy balance; physical activity benefits;
adipose tissue

1. Introduction

Obesity increases the susceptibility to cardio-metabolic and neurodegenerative dis-
eases, representing a major public health concern and an economic burden [1]. An array of
molecules coordinates an intricate network regulating whole-body inflammatory/metabolic
balance [2–4]. Overnutrition and the excessive accumulation of white adipose tissue (WAT)
affect systemic inflammatory status and disrupt gluco-metabolic homeostasis by altering
the functionality of central and peripheral tissues, including the hypothalamus [3,5].

The hypothalamus is key to integrating hormonal, environmental, and neural signals
in the effort to provide adequate outputs to properly modulate feeding behavior and
energy expenditure [6]. Obesity-associated pro-inflammatory molecules such as saturated
fatty acids (sFFAs), tumor necrosis factor (TNFα), and advanced glycated end products
(AGEs) activate microglia in the hypothalamus [7,8]. Chronic inflammatory response
causes the disruption of internal hypothalamic circuitry, modifying hypothalamic outputs
to other brain regions and the periphery, with negative consequences on satiety signal and
energy homeostasis [8,9]. Conversely, the correction of such inflammatory/dysfunctional
background warrants systemic metabolic homeostasis in obese animals and humans [10,11].
Alterations of neuronal activities in the mediobasal hypothalamus (MBH) compromise the
capacity to correctly balance energy intake and expenditure, with long-term effect on body
weight and fat mass [8,12].

Exercise represents an important challenge for organs regulating whole-body home-
ostasis [13], inducing several metabolic adaptions with positive impact on systemic health.
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Training optimizes energy substrates oxidation and promotes the secretion of array of
muscle-derived biomolecules that counteract inflammation [5]. Thus, exercise emerges as
a strategy for the management of a wide range of chronic diseases having inflammation
as common soil [14–17]. Training-induced metabolic improvements are associated with
cellular and molecular changes in central and peripheral tissues, all of which contribute
to improve systemic insulin sensitivity and cardiometabolic health [18]. Recent evidence
suggests that the positive effects exerted by exercise on systemic metabolic health can
be in part mediated by the hypothalamus [13]. Thereby, this curbs obesity-associated
hypothalamic inflammation in people affected by obesity is important to restore energy
and metabolic homeostasis.

This review discusses animal and human evidence to highlight the positive effect
of regular exercise on obesity-induced hypothalamic inflammation/dysfunction. This
remodulation is hypothesized to activate a systemic anti-inflammatory network, favorable
for the hypothalamus.

2. Inflammatory and Metabolic Consequences of Obesity and Physical Inactivity

WAT stores the energy surplus in the form of triglycerides (TG) [4]. Physical inactivity
and nutrition excess typify the background conditions leading to TG over-storage, with con-
sequent WAT expansion and development of insulin resistance [19,20]. When exposed to
energy excess, white adipocytes undergo morphological and biochemical changes promot-
ing cell dysfunction and the development of local inflammation [4,21]. TG accumulation
and adipocyte volume expansion increase oxygen requirements and induce mechanical
compression of blood vessel, producing hypoxia [21,22], which represents a critical stimu-
lus for a switch toward a pro-inflammatory phenotype of WAT [2,4,21,23,24]. The activation
of local and newly recruited inflammatory cell fuels the inflammatory process and the
development of insulin resistance and mitochondrial dysfunction in WAT [4]. The release
of adipocyte- and macrophage-derived mediators, such as TNFα and free fatty acids (FFAs)
into circulation, increases the level of systemic low-grade inflammation, contributing to al-
ter the functionality of central and peripheral tissues, critical for metabolic regulation [4]. In
contrast to WAT, brown adipose tissue (BAT) converts TG into heat [21] via the sympathetic-
activated uncoupled protein response (UCP)-1, in both animals and humans [21]. White
and brown/beige adipocytes can mutually switch phenotype to meet systemic energy bal-
ance [25]. Higher energy demands stimulate adipocyte browning [21,25], while obesity and
energy excess promote the conversion of brown adipocytes toward the white phenotype. A
decreased mitochondria and impaired UCP-1 expression [21] characterize the white-shift
in brown adipocytes, typically observed in animals and humans with obesity [21].

Skeletal muscle plays a pivotal role in the regulation of systemic inflammation and
metabolic health [18], and variations in the oxidative efficiency of skeletal muscles con-
tribute to the pathogenesis of obesity [18]. In obesity/inactivity, myocytes become dys-
functional and demonstrate signs of inflammation [18,24]. WAT-released pro-inflammatory
mediators, such as FFAs and TNFα, play a critical role in inducing myocyte inflammation
and dysfunction, in obesity [26,27]. The overexpression of the nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB), TNFα, and the accumulation of macrophages
are typical features of obese subjects’ skeletal muscle [3,27–30]. Importantly, this setting cor-
relates with the degree of insulin resistance and low-grade systemic inflammation [27,31].
Untrained and dysfunctional muscles, in obesity, contribute to alter whole-body inflamma-
tory/metabolic balance by decreasing systemic glucose and lipid clearance and limiting
the production of anti-inflammatory/immunoregulatory mediators contrasting systemic
inflammation [3,24].

3. Obesity-Induced Hypothalamic Inflammation and Its Metabolic Consequences:
Evidence from Animal Studies

The MBH regulates BAT and WAT metabolism and governs energy balance [32–34].
Within the MBH, specific neuronal subpopulations in the arcuate nucleus (ARC)—pro-
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opiomelanocortin and agouti-related protein neurons (POMC and AgRP, respectively)—
control, with opposite actions, food intake and energy expenditure [35]. Leptin exerts part
of its anorexigenic effect by activating the Janus-activated kinase (JAK) signal transducer
and the activator of transcription 3 signaling (STAT3) in POMC neurons. This produces
the synthesis of α-Melanocyte-stimulating hormone (MSH), which mediates anorexigenic
and thermogenetic effects. On the other hand, the activation of AgRP neurons increases the
orexigenic stimuli and lowers energy rates, partly by activating other hypothalamic areas.
Alterations of neuronal activities in the ARC compromise the capacity to properly balance
energy intake and expenditure, resulting in negative long-term effects on body weight and
fat mass [12].

Obesity and overnutrition induce chronic low-grade inflammation in the MBH, pri-
marily in the ARC nucleus [7]. High fat diet (HFD)-fed mice display an upregulation of
the main pro-inflammatory pathways—c-Jun N-terminal kinase (JNK) and NF-κB—along
with an overproduction of pro-inflammatory mediators (e.g., TNFα) [7] and microglial
activation [36,37]. Microglia are macrophage-like cells of the central nervous system, which
are activated by pro-inflammatory signals, causing local production of pro-inflammatory
cytokines. Importantly, gliosis has been identified also in obese humans [36,38], and it
strongly correlates with BMI and peripheral insulin resistance, suggesting the presence of
similar adaptive mechanisms demonstrated in mice.

WAT-released pro-inflammatory molecules can mediate the inflammatory effect on
the hypothalamus [8,36,39]. In obesity, the suppression of insulin signal and inflammation
in WAT enhance the chronic release of FFAs and other pro-inflammatory mediators [40].
WAT-released FFAs, for example, can play a key role in the induction of inflammation
and insulin resistance via the activation of the toll-like receptor (TRL)-4/NF-κB/JNK
signalling in the hypothalamus [8]. In addition, WAT-derived macrophages have been
demonstrated to infiltrate the MBH—in obese animals [41]. Notably, hypothalamic in-
flammation in animal models precedes the development of obesity and WAT dysfunction,
suggesting that overnutrition itself has a critical role in this process [8]. Saturated FFAs
(sFFAs) promote microgliosis by activating the TLR4-Myd88 and ceramide-dependent
pathways [7,36]. Likewise, increased levels of advanced glycated end-products (AGEs),
following a high carbohydrate diet, were shown to activate microglial response in the
hypothalamus in mice [42].

The development of chronic inflammation in the hypothalamus has detrimental ef-
fects on energy expenditure and body weight (Figure 1) [6]. Hypothalamic inflammation
induces leptin and insulin resistance [8,43,44], disrupting hunger response, lowering en-
ergy expenditure [8,45], and inducing weight gain in animals [8,45,46]. Conversely, the
inhibition of the pro-inflammatory pathway inhibitor of nuclear factor kappa-B kinase
(IKKβ)/TLR-4 downstream factor MyD88 prevents HFD-induced hypothalamic insulin
and leptin resistance, effectively contrasting excessive food intake and weight gain in
mice [47–49]. Dysfunction in the ARC induces the decline in voluntary locomotor activ-
ity [6] and associates with lower energy expenditure rates in mice [46]. The stimulation
of leptin-STAT3 pathway in HFD animals in the ARC and ventro-medial hypothalamic
(VMH) nuclei was significantly reduced compared to lean littermates [50]. Notably, the
suppression of microglia-induced inflammation in the ARC was sufficient to: (a) recover
leptin sensitivity; and (b) limit food intake and WAT accretion in HFD-fed rodents [51].
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fatty acids; sFFAs, saturated fatty free acids; TNFα, tumor necrosis factor-α. 
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lation and markers of ER stress in the hypothalamus [55], along with a restoration of the 
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Figure 1. Obesity-associated disruption of hypothalamic functionality. AGEs, advanced glycation
end-products; CCL-2 chemokine (C-C motif) ligand 2; LPS, lipopolysaccharide; SFCAs, short chain
fatty acids; sFFAs, saturated fatty free acids; TNFα, tumor necrosis factor-α.

4. Exercise and Obesity-Induced Hypothalamic Inflammation

Exercise-induced adaptive response in the hypothalamus leads to the improvement of
insulin and leptin signaling in the ARC and positively modulates the activity of POMC
and AgRP neurons, resulting in decreased food intake and body weight control [13].

4.1. Animal Studies

Findings from animal models suggest that exercise ameliorates obesity-associated
hypothalamic inflammation and dysfunction (Table 1). In obese HFD-fed mice, an acute
session of swimming (two exercise bouts of 3-h each, interleaved by 45-min resting periods)
improved endoplasmic reticulum (ER) stress markers (e.g., TRB3), as well as adiponectin
and insulin signalling [52] in the hypothalamus. Similarly, an acute session of running
(three bouts of 45 min with 15 min of recovery at 60% of the exhaustion velocity) was
capable to restore the central anorectic effect insulin in the hypothalamus of obese mice [53].
In the study of Yi et al., a six-month moderate-intensity treadmill running (30 min, 5 m/min
for five times/week, 10% inclination) was sufficient to prevent HFD-induced hypotha-
lamic inflammation by decreasing obesity-induced microglia activation in the ARC [54];
importantly, the observed decline in microglial activation was associated with a significant
improvement in glucose tolerance and insulinemia. In a group of HFD-fed obese animals,
both acute treadmill running (60 min, 10–15 m/min at a 5% inclination) or repetitive ses-
sions of swimming (60 min/day, five times/week, for four weeks with an overload of 2.0%
of the body weight) were capable to reduce IKKβ and IKBα phosphorylation and markers
of ER stress in the hypothalamus [55], along with a restoration of the NPY and POMC
mRNA levels. This effect was associated with improved insulin and leptin sensitivity in
the hypothalamus, resulting in decreased food intake [55]. Similarly, Wang et al. demon-
strated that microgliosis and markers of inflammation (e.g., IL-1β, TNFα, and NF-κβ)
were significantly ameliorated in HFD-mice undergoing eight weeks of swimming (50 min,
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daily) [56]. In two different groups of trained and control animals, twelve weeks of HFD
significantly increased cell apoptosis in the ARC; notably, the group undergoing voluntary
running resulted partly protected from the HFD-induced apoptotic effects [50]. In obese
mice, 20 days of swimming (five days/week) effectively decreased the concentration of
transforming growth factor-beta 1 (TGF-β1) and nuclear factor of kappa light polypeptide
gene enhancer in B-cells inhibitor-α (Ikβ-α) in the hypothalamus [57]. This effect paralleled
with an increase in energy expenditure and a reduction in food intake and body weight.
Likewise, a three-month voluntary training was capable to partially restore leptin-induced
STAT3 phosphorylation in HFD-fed mice, suggesting that exercise improves central leptin
signaling in obesity [50]. Additionally, mid-term voluntary running was capable to restore
the number of POMC neurons, reducing the HFD-induced apoptosis in POMC-expressing
neurons in the hypothalamus [50]. Exercise was shown to activate leptin receptor-positive
neurons in the VMH. In the study of Krawczewski Carhuatanta et al., protein fosB (FosB)
immunoreactivity in the VMH was decreased in HFD-fed inactive mice, while a repairing
effect was reported in voluntary-running mice, suggesting the actual recovery of neuronal
function [58]. Interestingly, this effect was independent from the body fat percentage,
which evidences the existence of an alternative mechanism through which regular exercise
can reestablish hypothalamic functionality [58]. To further suggest the critical activity of
exercise on hypothalamic inflammation, the intraventricular administration of leptin was
shown to be ineffective in decreasing food intake and body weight in inactive mice exposed
to HFD [58]. Conversely, central leptin injection was followed by a significant decrease
in body weight only in HFD-fed mice on voluntary training [58], strongly suggesting a
leptin-sensitizing effect of chronic exercise. Eight weeks of wheel running (60 min, five
day/week, at 60% of maximal workload) increased leptin signaling (JAK2/pSTAT3) and
reduced the content of markers of inflammation (e.g., TLR-4, IkKβ and others) kinase in
the hypothalamus of obese mice [59]. Such results were paired by a reduction in ER stress
and a macrophage activation. Furthermore, wheel running decreased the expression of the
proapoptotic protein (PARP1) and increased the expression of IL-10 and the anti-apoptotic
proteins Bcl2, preserving pro-opiomelanocortin mRNA expression [59]. Similarly, an in-
tense running (initial speed of 15 m/min gradually increased to 35 m/min, 20–25 min,
for seven weeks) increased POMC mRNA levels in the hypothalamus [60] and regular
exercise activated the POMC, reducing food intake and body weight. The activation of
POMC is likely secondary to an exercise-induced remodeling effect in synaptic connections
in leptin-receptor expressing neurons in this area [61].

Table 1. Effect of exercise on hypothalamic inflammation and dysfunction in rodent models of obesity.

Study Model
Type of

Exercise/Frequency/
Intensity

Effect on Hypothalamus Metabolic Changes

De Almeira Rodriguez
et al. [53] HFD mice Swimming; one session

two bouts of 3-h each
↓ ER stress (TRB3)

↑ Foxo-1
↑ Central anorectic effect

of insulin

Calais Gaspar et al. [52] Leptin-stimulated HFD mice

Running; one session;
three bouts of 45 min

each at 60% of the
exhaustion velocity

↓ ER stress (TRB3)
↑ Insulin signalling (AKT,

Foxo1)
↓ Food intake

Ropelle et al. [55] HFD rodents

Swimming; four weeks,
60 min/day, five

times/week, overload
of 2.0% of the
body weight

Running; one session;
60 min, 10–15 m/min

at a 5% inclination

↓ IKKβ, IKβα, TLR-4
↑ Leptin signalling

(JAK2/STA3)
↑ Insulin signalling (IRS1)
↑ Insulin signalling (IRS1)

↓ Food intake
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Table 1. Cont.

Study Model
Type of

Exercise/Frequency/
Intensity

Effect on
Hypothalamus Metabolic Changes

Marinho et al. [59] HFD mice

Runnning; eight
weeks, 60 min,

five times/week, at
60% max workload

↓ TRL-4, IKBα, TNFα,
SOCS3

↓ ER stress (PERK)
↑ Leptin signalling

(JAK2/STAT3)
↑ Apoptosis (PARP1)
↑ IL-10 and Bcl2
↑ POMC mRNA

N/A

Yi et al. [54] LDL-receptor−/− HFD
mice

Runnning; six
months; 30 min, 5

m/min, five
times/week, 10%

inclination

↓Microgliosis ↑ Glucose tolerance
↓ Insulinemia

Laing et al. [50] HFD mice Voluntary running;
three months;

↓ POMC apoptosis
↑ POMC proliferation
↑ Leptin sensitivity

↓Weight gain
↑ Glucose tolerance
↑ Insulin sensitivity

Krawczewski
Carhuatanta et al. [58] HFD mice Voluntary runnning;

six weeks;

↑ Fos B
immunoreactivity
↑ Leptin sensitivity

(upon leptin infusion)

↓ Food intake

Silva et al. [57] HFD mice Swimming; 20 days,
five days/week ↓ IKβα, TGF1 ↓ Food intake

Wang et al. [56] HFD Apo E−/− mice
Swimming; 8 weeks,

five times/day
↓Microgliosis

↓ IL-1β, TNFα, NF-kβ ↓ Dyslipidemia

↑ Increase. ↓ Reduction. AKT, protein kinase B; ER, endoplasmic reticulum; FFAs, free fatty acids; Foxo-1,
forkhead box protein O1; IκBα, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor; IKKβ,
inhibitor of nuclear factor kappa-B kinase; IL, interleukin; IRS1, insulin receptor substrate 1; JAK2, Janus kinase
2; NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells; PARP1, Poly [ADP-ribose] polymerase
1 (PARP-1); SOCS3, suppressor of cytokine signaling 3; STAT3, signal transducer and activator of transcription
3; TGF1, transforming growth factor-1; TLR-4; TLR-4, toll-like receptor-4; TNFα, tumor necrosis factor-α; TRB3,
Tribbles (TRB) 3.

4.2. Human Studies

In accordance with animal evidence, early findings in humans show changes of
circulating levels of NPY/α-MSH in trained overweight and obese individuals [62,63],
suggesting an exercise-induced hypothalamic improvement. In a randomized-controlled
trial carried out in a group of older adults, both low resistance and high resistance train-
ing (40 and 80% of one repetition maximum, respectively), performed over 12 weeks,
resulted in a significant drop in circulating NPY levels [63]. Other studies including multi-
intervention protocols (exercise, diet, and others) have evidenced some beneficial effects on
hypothalamic health in obesity. In obese adolescents, for example, a mixed training type
(aerobic + resistance exercise; aerobic training: 30 min, three times/wk at first ventilatory
threshold; resistance training: 30 min, three times/wk, three sets of 15–20 repetitions; vol-
ume and intensity were adjusted inversely to decrease the number of repetitions from 15–20
to 10–12 and six to eight), along with lifestyle changes, led to a decrease in body adiposity
and AgRP levels after six months compared to baseline. The study also demonstrated that
α-MSH levels increased in the aerobic exercise-trained group after 12 months [62]. Similarly,
in obese and metabolic syndrome-affected adolescents, one year of combined diet + exercise
(aerobic + resistance exercise) procured a significant decrease in fat mass, NPY levels (0.94
CI [0.43–2.25] vs. 1.19 CI [0.55–2.3]) and AgRP/NPY ratio (0.71 CI [0.36–1.77] 0.57 CI
[0.27–1.86]) [64]. A multi-intervention protocol (exercise + diet + psychotherapy) showed a
drop in NPY/AgRP ratio and its negative correlation with fat mass in a group of adoles-
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cents following a long-term mixed exercise, diet, and behavioral therapy [65]. Altogether,
this evidence underpins a positive regulatory effect of long-term training on hypotalamic
functionality in humans. However, although being indicative, the peripheral assessment of
NPY/AgRP/MSH represents a surrogate via to assess hypothalamic functional improve-
ment. More reliable and in-depth measures on hypotalamic inflammation/functionality
are required to support current evidence.

5. Exercise and Obesity-Induced Hypothalamic Inflammation: Pathophysiological
Mechanisms

Different mechanisms can be addressed to explain the positive effects of exercise on
the hypothalamus in obesity, although the exact pathophysiology in still poorly explored.
Exercise-produced cytokines and mediator are able to cross the brain–blood barrier (BBB),
regulating vascularization, neuronal plasticity, and inflammation in diverse areas of the
brain [13]. Changes in regulatory cytokines across the (BBB) can be critical in regulating
neuroinflammation and brain health in dysmetabolic condition [8]. The release of anti-
inflammatory and immune-modulatory cytokines from skeletal-muscle reduces ER stress
and improves insulin and leptin sensitivity [13].

5.1. Exercise-Induced Mediators Reduce Hypothalamic Inflammation in Animal Models

Skeletal muscle is a secretory organ that responds to either exercise or inactivity by
releasing myokines mediating the communication of the skeletal muscle with central and
peripheral organs [18].

Interleukin (IL)-6 is a cytokine presenting a bimodal activity, being implicated in both
pro-inflammatory and anti-inflammatory functions, depending on the differential signaling
pathways activated in targeted tissues [18,66]. IL-6 has been shown to be involved in
mediating hunger suppression, WAT lipolysis, and body weight reduction, regulating
systemic metabolic health [18]. Muscle-derived IL-6 stimulates lipolysis [67–69] and FFA
oxidation in WAT [69,70]

Recent studies suggest a role of muscle derived IL-6 in the mitigation of inflammation
and metabolic dysfunction in the hypothalamus (Figure 2) [55], which would partly account
for the positive effects of acute IL-6 secretion on whole-body metabolism [18]. IL-6 can cross
the BBB, regulating hypothalamic nuclei and circuitry controlling hunger/satiety and en-
ergy expenditure. IL-6 receptor is expressed in microglia, ependymocytes, endothelial cells,
and astrocytes [71]. The administration of exogenous IL-6 induces neurogenesis-related
gene expression in neuroprogenotor cells (NPCs) and in the hypothalamus of mice [71].
IL-6 improves glucose tolerance and suppresses food intake when centrally administered,
and mice lacking muscle IL-6 were found to scarcely respond to leptin administration [71].

IL-6 concentrations augment after a single session of exercise [18]. In exercised muscles,
IL-6 secretion is stimulated by augments in cytosolic Ca2+ and calcineurin via a p38 mitogen-
activated protein kinase (p38MAPK)-mediated mechanism [72]. Interestingly, an acute
increase in IL-6 post-exercise has been demonstrated also in the hypothalamic milieu and
in microglia, astrocytes, and neurons of different areas of the brain of exercised mice, sug-
gesting either BBB cross or local increased expression, following exercise [55,73]. Increased
hypothalamic IL-6 expression would contrast with the HFD-induced activation of the
IKKβ/NF-κB pathway, thus preventing HFD-induced neuronal inflammation/apoptosis
and neuronal loss [55]. In favor to this assumption, it was shown that the inhibition of the
hypothalamic-specific IL-6 suppressed the beneficial effects of exercise on the re-balance
of food intake and insulin and leptin resistance in mice [55]. A recent study demonstrates
that exercise-induced IL-6 activates the phosphorylation of JAK2/Tubby protein (TUB)
in the hypothalamus, significantly reducing food intake [74]. Other evidence suggests
that IL-6, after acute exercise, can control the sphingosine-1-phosphate receptor 1 (S1PR1)–
mediated activation of STAT3 in the hypothalamus [75]. Indeed, both acute exercise and
the intra-ventricular IL-6 injection increased S1PR1 levels and STAT3 phosphorylation
in the hypothalamus of both lean and obese mice. Importantly, this event was accompa-
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nied by a significant decrease in food intake, supporting that the metabolic-regulatory
effects of exercise are partly mediated by the restoration of insulin and leptin signalling,
as well as involving IL-6 signalling [75]. In line with this hypothesis, exercise failed to
stimulate the S1PR1-STAT3 signaling in IL-6-ablated mice. Similarly, the disruption of
hypothalamic-specific IL-6 action stemmed the inhibitory effects of exercise on food intake
and lowered S1PR1 protein content in the hypothalamus, indicating that the activity of
IL-6 in the hypothalamus is critical for eliciting the positive systemic metabolic effects
of exercise [75].
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Figure 2. Potential pathways underlying the effect of exercise in restoring insulin and leptin and
insulin sensitivity in the hypothalamus of obese animals and humans. Exercise-induced suppression
of inflammatory mediators (e.g., FFAs, AGEs, TNFα), along with IL-6 and IL-10 increase, downreg-
ulate the inflammatory signalling, with positive effects on the insulin pathway. Exercise-induced
IL-6 restores the leptin signalling (JAK2, pSTAT3), via activating S1PR1 and TUB, with the final effect
of stimulating the transcription of POMC. AGEs, advanced glycation endproducts; AKT, protein
kinase B; Foxo1, Forkhead box protein O1; IL, interleukin; JAK2, Janus kinase 2; IKKB, inhibitor of
nuclear factor kappa-B kinase subunit beta; NF-κB, nuclear factor kappa-light-chain-enhancer of
activated B cells; POMC, pro-opiomelanocortin; S1PR1, sphingosine-1-phosphate receptor 1; SOCS3,
suppressor of cytokine signaling 3; STAT3, Signal transducer and activator of transcription 3; TNFα,
tumor necrosis factor-α.

IL-10 possesses systemic anti-inflammatory effects. IL-10 inhibits the production of
TNFα by immune cells [76], elicits a suppressive activity on MHC-II [77], and mitigates its
activation through inhibiting cathepsin S via activating the STAT3 signalling [78]. IL-10
expression is increased in trained muscles of exercised rodents [79], and its plasma levels
typically increase in healthy and diabetic humans after prolonged exercise [5,80,81].

IL-10 can cross the BBB; its levels have been found significantly augmented in the
hypothalamus of HFD-fed mice undergoing chronic exercise [59]. IL-10 has been shown
to be critical in the control of obesity-induced neuroinflammation, warranting the proper
functionality of POMC/AgRP neurons in rodents. The overexpression of IL-10, obtained
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via a viral vector, was sufficient to suppress the HFD-induced activation of IKKs and SOCS3
and restored POMC expression in ARC of obese mice [82]. Interestingly, this effect was
paralleled by a diminished WAT accumulation, suggesting a crucial role of hypothalamic
IL-10 in the regulation of energy balance and body weight. Interestingly, the hypotalamic
regulatory effects of IL-6 seem to be partly mediated by the anti-inflammatory cytokine
IL-10 [55]. To corroborate this hypothesis, Ropelle et al. demonstrated that exercise failed to
reverse the pharmacological activation of IKKβ and ER stress in the hypothalamus in mice
with suppressed IL-6 and IL-10 signaling [55]. Therefore, the cooperation between IL-6
and IL-10, in the hypothalamus can generate an effective anti-inflammatory mechanism
contributing to: (i) the recovery of neuronal function and insulin and leptin signalling;
(ii) re-establishing the anorexigenic and energy-regulatory effects disrupted by obesity
and overnutrition. This cooperative activity is further supported by the evidence that
exercise-induced muscle IL-6 exerts a systemic anti-inflammatory response through bosting
systemic IL-10 increase [18,83,84].

Other exercise-induced mediators seem to have favorable effects in regulating inflam-
mation in the hypothalamus, with effects on energy balance. Early observations suggest
that β-aminoisobutyric acid (β-AIBA), for example, can play a role in this respect. β-AIBA is
an exercise induced muscle-released mediator [85], which is believed to mediate part of the
regulatory effects of exercise on cardiometabolic status by attenuating obesity-associated
inflammatory response in central and peripheral organs and increasing the browning of
adipose tissue [86,87]. Interestingly, Park et al. demonstrated that β-AIBA administration
was capable of reverting palmitic acid-induced hypothalamic inflammation and microglial
activation in mice, contrasting WAT accumulation and weight gain in HFD mice [88].

5.2. Pro-Inflammatory Mediators Disrupt Hypothalamic Health

Obesity-associated pro-inflammatory molecules (e.g., TNFα, FFAs, Resistin, AGEs,
and CCL-2) can cross the BBB, propelling hypothalamic inflammation (Figure 2) [7,8,89,90].

TNF-α elicits negative effects on neurogenesis and mitochondrial function in the
brain [91]. TNFα binding to its receptors (TNFR1 and 2) activates both NFκB and STAT3
signaling pathways in the hypothalamus [92]. This leads to mitochondrial and ER dys-
function and increased oxidative stress [91,92], promoting hypothalamic insulin and leptin
resistance [7,93]. In NPY/AgRP neurons, TNF-α significantly upregulated IκBα, nuclear
factor (NF)-κB [7]. TNFα treatment impaired mitochondrial function, increased ROS
production, and decreased the expression of pro-neurogenic protein (Mash1/Ngn3) in hy-
pothalamic NPCs [91]; these results paralleled with and increased AgRP protein expression
and a decline in POMC.

AGEs promote systemic inflammation [94], and their levels are typically higher in
obesity and dysmetabolic conditions [95]. AGEs bind to their specific receptors (RAGEs)
or to non-specific receptors, such as CD36 and AGE receptor-1 [96], located on a vari-
ety of cell types including immune cells and microglia. The binding of AGEs activates
the nuclear Ras–mitogen-activated protein kinase (MAPK) and NF-κβ pathways [96]. In
the hypothalamus, AGEs have been shown to induce microglial response and have a
pivotal role in the build-up of inflammation in HFD-fed animals [42]. The increase in
AGEs following a high carbohydrate diet-induced was found to induce hypothalamic
inflammation in rodents [42], whereas a very low-carbohydrate diet mitigated microglia
proliferation in HFD-fed mice [51]. The high-fat and high-carbohydrate diet also caused
an increase in N-carboxymethyl lysine immunoreactivity in both POMC and NPY neu-
rons [42]. Animals lacking RAGEs exhibit an improved metabolic phenotype and decreased
microglial reactivity on a HFD [42], which confirms the prominent role of AGEs in inducing
hypotalamic dysfunction.

Resistin can play a role in regulating hypothalamic inflammation. While in mice it is
mainly secreted by WAT, in humans a significant portion of resistin is produced by immune
cells [43]. Resistin is typically elevated in animals and humans with obesity [97] and is
thought to activate the inflammatory pathway TLR-4-JNK, inducing insulin resistance in
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the hypothalamus [98]. In addition, resistin controls the expression of leptin receptor and
suppressor of cytokine signaling 3 (SOCS-3) in the ARC [99], suggesting an inflammatory
activity in this brain region.

Dietary and WAT-derived FFAs can activate the microglia and astrocytes through stim-
ulating the TRL-4 pathway and stimulating the production of ceramides [100], ultimately
producing inflammation in the hypothalamus [101]. Recent studies have identified lipid-
sensing G-protein-coupled receptors in the hypothalamus, revealing their involvement in
the regulation of energy balance, as well as in the hypothalamic inflammatory response
that occurs in obesity [101]. Long chain FFAs were found to inhibit POMC neurons and
activate NPY/AgRP neurons [102]. Due to the critical role of FFAs in inducing inflam-
mation in different MBH nuclei [8], a diminished flow of FFAs toward the hypothalamus
can contribute to mitigate microglial response, inflammation, and insulin resistance in this
brain area [8,101].

CCL-2 is a chemotactic factor, which plays a critical role in monocyte infiltration
in central and peripheral tissues in obesity [103]. In obesity, CCL-2 is mainly produced
by WAT, and its levels correlate with the degree of WAT accumulation in animals and
humans [4,103,104]. In murine models, CCL-2 has been shown to facilitate the LPS-induced
inflammatory response in the hypothalamus [89] and is involved in the infiltration of
WAT-derived macrophages in the brain [41].

5.2.1. Effect of Exercise on Pro-Inflammatory Mediators
Animal Studies

Both acute and chronic exercise interventions have been shown to control TNFα lev-
els. TNFα expression significantly decreased in myocytes of rats trained on a treadmill
(13–20 m/min for 60 min/day, five days/week, for 10 weeks) [79]. Swimming (five times
per week for six weeks) significantly reduced TNFα levels in HFD-fed rodents [105]. Regu-
lar exercise lowered TNFα release from immune cells [106] and suppressed TNFα in the
hypothalamus of rats affected by cancer-induced cachexia [107]. As above evidenced, the
improvement of WAT function, following exercise, accounts for TNFα levels drop [108–111].
In addition, muscle-derived myokines seem to play a role in modulating TNFα levels [18].
Exercise promotes the release of IL-1 receptor antagonist (IL-1ra) [112,113], which was
demonstrated to contrast the secretion of IL-1α and TNFα, in vitro [114].

Regular exercise ameliorates glycemic control and lowers low-grade inflammation [115],
helping toward the control of circulating AGEs and preventing their formation [116]. The
increased oxidative activity during and after exercise reduces the availability of glycating
intermediates deriving from glycolytic (e.g., glucose-6-phosphate, fructose-6-phosphate)
and polyol (e.g., fructose-3-phosphate, 3-deoxyglucosone) oxidative pathways [15,117,118].
In HFD-fed rodents, for example, moderate-intensity chronic wheel running (five-week
accommodation phase with increasing exercise intensity 15 m/min for 30, 45, and 60 min,
respectively; fourth and fifth week: 20 m/min for 30 and 45 min, followed by a five-
week constant training period at 20 m/min for 60 min), was shown to efficiently decrease
circulating AGEs [117,119].

Early evidence demonstrates that exercise can lower resistin levels in animal models of
obesity. In obese/dysmetabolic mice, for example, exercise was observed to downregulate
resistin via suppressing MALAT1 and activating miRNA-382-3p expression [120].

Both regular training and acute exercise were shown to have positive effects on CCL-2
levels [105,121–123]. In HFD-fed rats, for instance, swimming (60 min a day, five times
per week for six weeks) produced a significant decrease in CCL-2 [105].

To note, since dysfunctional WAT represents the principal producer of circulating
pro-inflammatory mediators [8,41,101], the regulation of energy balance and TG storage
in white adipocytes underlies part of the anti-inflammatory effect of exercise [123]. In
rodents’ WAT, exercise reduces macrophage accumulation [19] and promotes macrophages
shifting toward the anti-inflammatory (M2) phenotype [124]. Muscle-derived media-
tors such as IL6, Brain-derived neurotrophic factor (BDNF), and meteorin-like protein
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(METRNL) can restore a proper functionality in WAT by augmenting lipid oxidation,
mitigating inflammation [4,125,126]. The reduction of WAT mass, following training, is
associated with lower levels of circulating pro-inflammatory mediators in obese animal
and humans [108–111].

Human Studies

In humans, a 3-h cycling exercise at 75% of maximal aerobic capacity (VO2max) signifi-
cantly lowered TNFα levels upon lipopolysaccharide (LPS) stimulation [127], and 12 weeks
of either light or vigorous resistance exercise (respectively 40% and 80% of one repetition
maximum) exercise led to a significant reduction in TNFα levels in older subjects affected
by obesity [63]. In humans, exercise-driven IL-6 and IL-10 suppress the secretion of TNFα,
inducing a drop in its plasma levels [76,127,128].

Regular exercise is capable to lower plasmatic FFAs, in obesity [109,129], augmenting
their clearance from bloodstream [109]. In overweight and obese individuals, for example, a
significant drop in FFAs levels after six weeks was demonstrated (20 min; three times/week;
exercise at 60 to 85% of VO2max), [130] and three months of aerobic training (60 min/day at
65% of maximal oxygen uptake) plus diet [109] (Table 2), as result of increased muscle FFA
oxidation [109]. As for TNFα, the exercise-induced reduction of WAT mass is associated
with lower concentrations of FFAs in obese-dysmetabolic subjects [108–111], strongly
suggesting that the amelioration of WAT status partly mediates the effects in FFAs levels.

The practice of physical activity is correlated to increased soluble AGEs receptor
(sRAGE) and a lower AGE/sRAGE ratio in type-2 diabetic individuals [131]. Consistently,
in a randomized clinical trial on obese-dysglycemic individuals, 12 weeks of supervised
aerobic exercise (five days/week, 60 min/day at 65–85% Heart Ratemax) along with dietary
counselling, efficaciously lowered sRAGE plasma concentration, suggesting a protective
activity of physical activity, in obesity [118].

Resistin was demonstrated to decrease in humans undergoing both resistance and en-
durance training [132]. In overweight/obese individuals, both 16 weeks of aerobic exercise
(45–60 min sessions per week at 50–85% maximum oxygen consumption [VO2max]) [81]
and 12 months of moderate exercise (two times/week) [133] significantly reduced resistin,
independently from WAT mass variations [133].

In randomized-controlled trials in obese-dysmetabolic subjects, the regular practice
of endurance exercise was shown to significantly lower CCL-2 plasma levels [111,123]. In
morbidly obese adolescent women (BMI > 40), eight weeks of moderate-intensity exercise
intervention (180 min/week at 40–55% VO2max) produced a significant decline in CCL-2
and resistin levels [111]. A 10% decline in CCL-2 from baseline levels was registered by
Christiansen et al. in a group of obese individuals undergoing 12 weeks of moderate exer-
cise [123]. Interestingly, these findings are consistent with evidence demonstrating that the
exercise-induced reshaping of WAT functionality warrants a decrease in CCL-2 [19,121,122],
suggesting that the modulation of WAT may be critical for regulating plasma CCL-2 levels
in obesity.

Table 2. Effect of exercise-modulated mediators on the hypothalamus of animals and humans.

Study Model Type of Exercise/
Frequency/Intensity Effect of Exercise Effect on the

Hypothalamus

Ropelle et al. [55] HFD-mice
Running; one session;

60 min, 10–15 m/min at a
5% inclination

↑ IL-6 ↓ IKKβ, IKβα [55]

Ropelle et al. [55] HFD-mice
Running; one session;

60 min, 10–15 m/min at a
5% inclination

↑ IL-10 Suppression of IKKβ [55]
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Table 2. Cont.

Study Model Type of Exercise/
Frequency/Intensity Effect of Exercise Effect on the

Hypothalamus

Wasinski et al. [105] HFD-mice Swimming; 60 min a day, five
times per week for six weeks ↓ TNFα ↓ IKKβ, IKβα * [7]

Boor et al. [117] Zucker rats

five weeks: 15 m/min for 30,
45, and 60 min;

five-week constant training
period at 20 m/min for

60 min

↓ AGEs ↓Microglial activation *
[42]

Wasinski et al. [105]
Many et al. [111]

HFD-mice [105]
Obese subjects

Swimming; 60 min a day, five
times per week for six weeks

Aerobic training; eight
weeks, 180 min/wk at

40–55% VO2max

↓ CCL-2 ↓ Inflammation *
[89]

Solomon et al. [109]
Shojaee-Moradie [130]

Overweight and obese
subjects

Aerobic training;
three months (60 min/day at

65% of VO2max
Aerobic training; six weeks;
20 min; three times/week;

exercise at 60 to 85%
of VO2max),

↓ FFAs
↓Microgliosis
inflammation *

[134]

Kadoglu et al. [81]
Gondim et al. [133]

Overweight and obese
subjects

Aerobic training; 16 weeks of,
45–60 min sessions per week

at 50–85% VO2max
Swimming or water aerobics;

12 months; 60 min,
2 times/week at 65% HRmax

↓ Resistin ↓ Inflammation *
[98]

↑ increase. ↓ reduction. AGEs, advanced glycation end- products; CCL-2 chemokine (C-C motif) ligand 2; FFAs,
free fatty acids; IL, interleukin; TNFα, tumor necrosis factor-α. * The exercise-induced effect of these mediators is
not directly demonstrated on the hypothalamus.

5.3. Effect of Exercise on the Gut-Hypothalamus Crosstalk

Overnutrition and obesity have detrimental effects on the gut. Obesity is associated
with a pro-inflammatory switch of microbiota [135], lower short-chain fatty acids (SCFAs)
production and increase mucosal inflammation and permeability in the gut [18]. Inter-
estingly, in obesity, gut permeability increases independently of dietary changes [136],
suggesting that systemic inflammation worsens gut health reshaping intestinal epithe-
lial cells toward a dysfunctional phenotype [137]. The increased gut permeability allows
the translocation into circulation of pro-inflammatory molecules such as LPS [137–139],
which can pass the BBB and eventually activate microglia through the TLR-4-dependent
pathway [140]. The prolonged exposure to LPS increases the phosphorylation of JNK in
the hypothalamus of rodents and impairs insulin-induced AKT phosphorylation and the
translocation of Foxo1 from the nucleus in hypothalamic cells, producing insulin resistance
and inhibiting the satiety feedback [140].

While there is no current experimental evidence showing that the positive effect of
exercise is mediated by the gut functional improvement, available findings suggest that
exercise-induced gut-microbiota/gut permeability improvement can positively influence
hypothalamic inflammation/functionality (Figure 3). The regular practice of moderate
exercise was demonstrated to restore gut inflammation, improving its functionality in
obese animals [18,141–143]. A large body of evidence suggests that moderate exercise
can remodulate the gut microbiota towards an anti-inflammatory phenotype [141,144,145]
promoting the abundance of species such as Faecalibacterium prausnitzii and Akkerman-
sia muciniphila [145], whose presence is critical for the maintenance of a health intestinal
ecosystem and lower systemic inflammation [141]. Interestingly, changes in microbiota
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after exercise seem to occur regardless of type of diet consumed [135], suggesting that
exercise benefits are independent to nutritional changes. In HFD-fed mice, the constant
practice of moderate exercise increases microbiota diversity and stimulates the growth
of SCFAs-producing bacteria [143–145]. Gut-released SCFAs directly act on the hypotha-
lamus: they cross the BBB, using a specific monocarboxylate transporter, whose activity
is increased following acute exercise [146]. SCFAs provide energy for brain microglia
and exert neuroprotective effects [147]. One of the most commonly secreted SFCAs—
butyrate—was shown to stimulate neural proliferation in different brain regions, inducing
neurogenesis in mice [148,149]. Importantly, according to recent evidence, butyrate is
capable of reverting obesity-induced hypothalamic inflammation and microglial activation
in mice models [150].
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Figure 3. Exercise can modulate mediators involved in the regulation of hypothalamic health. Reg-
ular training suppresses microglial response and downregulates the main markers and pathways
of inflammation (e.g., TNFα, NF-kβ and IKKβ) in the ARC and other energy-regulatory nuclei in
the MBH. Exercise-induced anti-inflammatory response in the hypothalamus pairs with increased
leptin and insulin sensitivity, improved neuronal survival in the ARC, and associates with lowered
food intake and body weight control, which remarks the central role of remodulating inflammation
to restore a proper hypothalamic functionality. The anti-inflammatory/regulatory effect of exercise
on the hypothalamus is partly achieved through the increase in myokines such as IL-6 and IL-10.
These cytokines mediate the inhibitory effect on hypothalamic inflammation enhancing leptin sen-
sitivity and adjusting energy expenditure rates during/following exercise. The positive activity of
regular exercise on WAT dysfunction along with the immunomodulatory effect of training are critical
for the suppression of key mediators (e.g., FFAs, Resistin, AGEs) that produce inflammation and
insulin/leptin resistance in the ARC. The exercise-induced switch in microbiota is responsible for
augmented production of SCFAs, with potential neuroprotective and anti-inflammatory effects on the
hypothalamus; the improvement of the gut barrier following regular exercise lowers the translocation
of LPS, preserving the hypothalamus and other brain areas from the development of inflammation.
CCL-2 chemokine (C-C motif) ligand 2; IL, interleukin; LPS, lipopolysaccharide; SFCAs, short chain
fatty acids; TNFα, tumor necrosis factor-α; WAT, white adipose tissue.
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The restoration of a proper gut permeability contributes to lower the translocation
of bacterial antigens and LPS into circulation [151], with positive effects on systemic and
hypothalamic inflammatory state [143,152,153]. The regular practice of moderate exercise
has proven to ameliorate gut-barrier integrity in both obese animals and humans, limiting
LPS translocation into bloodstream [135,143]. The microbiota switch and the production
of SCFAs are critical in this respect [147]. In HFD-fed mice, for example, the practice of
voluntary wheel-running for four weeks successfully decreased plasma LPS levels [143].
Similarly, observational studies in humans demonstrated that trained subjects show lower
concentration of plasma LPS compared to sedentary individuals [154]. In intervention
studies on dysmetabolic individuals, exercise efficiently mitigated the translocation of LPS
to bloodstream [152,153]. In the study of Motiani et al. [152], for example, both interval
training (four-to-six bouts of 30-s each, of all out cycling efforts with 4 min of recovery)
and moderate-intensity bicycling (40 to 60 min at 60% of VO2max) lowered endotoxemia in
overweight-to-obese diabetic subjects.

Future studies examining in-depth the three-way relationship “exercise-gut-hypothalamus”
are warranted to support this pathophysiological model.

6. Conclusions

Obesity and overnutrition induce inflammation and dysfunction in key hypothalamic
nuclei governing energy homeostasis and metabolic health. The findings discussed in
the present review suggest that moderate exercise is capable of improving hypothalamic
inflammation in obesity, restoring leptin and insulin sensitivity, and exerting positive
effects on food intake and body weight (Figure 3). Importantly, the reshaping activity on
the hypothalamus is likely to mediate part of the beneficial effects of exercise on systemic
energy balance in obesity. Further studies are needed to explore, in-detail, the muscle-brain
crosstalk. Evidence linking inflammation and functional impairment in the hypothalamus
would ensure a deeper pathophysiological interpretation of the effects elicited by exercise.
Likewise, further notions elucidating how exercise-modulated mediators operate on the
hypothalamus would be critical for a full understanding of the subject.
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