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Abstract: After parturition, bovine endometrial epithelial cells (BEECs) undergo serious inflam-
mation and imbalance between oxidation and antioxidation, which is widely acknowledged as a
primary contributor to the development of endometritis in dairy cows. Nevertheless, the mechanism
of oxidative stress-mediated inflammation and damage in bovine endometrial epithelial cells remains
inadequately defined, particularly the molecular pathways associated with mitochondria-dependent
apoptosis. Hence, the present study was designed to explore the mechanism responsible for mitochon-
drial dysfunction-induced BEEC damage. In vivo, the expressions of proapoptotic protein caspase 3
and cytochrome C were increased significantly in dairy uteri with endometritis. Similarly, the levels
of proapoptotic protein caspase 3, BAX, and cytochrome C were markedly increased in H2O2-treated
BEECs. Our findings revealed pronounced BEEC damage in dairy cows with endometritis, accompa-
nied by heightened expression of cyto-C and caspase-3 both in vivo and in vitro. The reduction in
apoptosis-related protein of BEECs due to oxidant injury was notably mitigated following N-acetyl-
L-cysteine (NAC) treatment. Furthermore, mitochondrial vacuolation was significantly alleviated,
and mitochondrial membrane potential returned to normal levels after the removal of ROS. Excessive
ROS may be the main cause of mitochondrial dysfunction. Mitochondrial permeability transition
pore (mPTP) blockade by cyclophilin D (CypD) knockdown with CSA significantly blocked the flow
of cytochrome C (cyto-C) and Ca2+ to the cytoplasm from the mitochondria. Our results indicate that
elevated ROS and persistent opening of the mPTP are the main causes of oxidative damage in BEECs.
Collectively our results reveal a new mechanism involving ROS-mPTP signaling in oxidative damage
to BEECs, which may be a potential avenue for the clinical treatment of bovine endometritis.

Keywords: endometritis; mitochondria damage; ROS; cyclophilin D (CypD); mitochondrial permeability
transition pore (mPTP); apoptosis

1. Introduction

Endometritis is an inflammation of the endometrial lining, which occurs in dairy
cows after calving [1]. Up to 40% dairy cows suffer from postpartum uterine disease [2].
Uterine diseases lead to infertility by impairing the function of the endometrium [3]. The
pathogenesis of endometritis in cows is multifactorial, involving various factors such as
bacterial infections, poor uterine involution, and oxidative stress [4,5]. Oxidative stress,
an imbalance between the production and detoxification of ROS, has been implicated in
the pathogenesis of endometritis [6]. In our previous study we found that an imbalance
between oxidation and antioxidant in uterine endometritis [7]. Oxidative stress is one of
the main causes of inflammation in BEECs [5]. Bovine uteri are composed of three layers,
which are divided into the endometrial layer, muscular layer, and serosal layer [8]. The
endometrium specifically serves as the site for embryo implantation. In cases of endometri-
tis, the endometrium becomes congested and edematous, leading to the accumulation
of inflammatory exudate [9]. That is not favorable for the upward movement of sperm,
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making it challenging for the embryo to implant successfully in the inflamed endometrium
and increasing the risk of miscarriage [10]. Apoptosis is programmed cell death, crucial
for the maintenance of tissue and organ homeostasis [11]. Following receipt of apop-
totic signals, progressive alterations ensue within the cellular framework, encompassing
impaired mitochondrial function, cytochrome c release, and activation of caspase-9 and
caspase-3 [12]. Cytochrome c leakage is perceived as one of the earliest events exhibited
during the execution of cell apoptosis. Subsequently, cytosolic cytochrome c engages apop-
totic protease activating factor 1 (Apaf-1) to form a complex, thereby facilitating caspase-9
activation [13]. Once activated, caspase-9 orchestrates the activation of caspase-3, culmi-
nating in the ultimate induction of cell apoptosis [13]. ROS play a role in regulating the
NLRP1 inflammasome [14,15], and are associated with a variety of disorders, including
cardiovascular, neurodegenerative, and inflammatory diseases [16–18]. Effective manage-
ment of oxidative stress involves maintaining a delicate balance between ROS production
and antioxidant defenses, which comprise enzymes such as SOD1, CAT, and GPX1 [19].
Diminished expression of antioxidases indicates a reduced antioxidant capacity whereas
excessive generation of ROS overwhelms the system’s ability to neutralize and eliminate
them, resulting in oxidative stress that contributes to the development of diseases [20].
ROS act directly to damage proteins and nucleic acids, and disrupt mitochondrial Ca2+

homeostasis [21]. A recent study indicates icariin protects endometritis from oxidative
damage by inhibiting TLR4-associated NF-κB pathways [22]. Dexamethasone directly
reduced the generation of ROS by uterine PMN that would protect the endometrium from
tissue damage by excessive extracellular ROS [23]. Elevated levels of ROS also impair
key mitochondrial enzymes such as NADH dehydrogenase, cytochrome c oxidase, and
ATP synthase, ultimately halting mitochondrial energy production. Notably, research in
mammals has consistently shown a significant connection between oxidative stress and
endothelial dysfunction [24,25]. Furthermore, ROS may facilitate mitochondrial permeabil-
ity transition by oxidizing thiol groups on the adenine nucleotide translocator, which is
believed to be part of the mPTP [26].

CypD, an enzyme functioning as a peptidyl-prolyl isomerase, resides in the mitochon-
drial matrix and plays a critical role in the formation and regulation of the mPTP. [27]. In
addition, CypD has been identified as a crucial factor in mediating cell death mechanisms
associated with various inflammation diseases [28,29]. Typically, diseases induced by
oxidative stress are characterized by a decrease in ATP levels and an increase in calcium lev-
els [30]. The mPTP is an indiscriminate and calcium-dependent channel complex situated
within mitochondria that functions primarily to maintain the balance of the mitochondrial
respiratory chain [31]. Increased calcium levels trigger persistent mPTP opening mediated
by CypD, leading to cell death [27,32] and the subsequent release of ROS produced by
mitochondria and cytochrome-C into the cytoplasm [33]. Research has suggested that
mPTP opening is observed in erastin-treated cancer cells, as evidenced by VDAC-1 and
Cyp-D association, mitochondrial depolarization, and cytochrome C release [33].

Mitochondria, as the powerhouse of cellular activity, play a crucial role in energy
metabolism and must be in proper functional state to generate the necessary energy for
basic cellular functions, including proliferation [34]. Structurally, mitochondria consist
of four compartments: the outer membrane, the inner membrane, the intermembrane
space, and the matrix [35]. There are numerous proteins present on and between these
membrane structures that contribute to the synthesis of adenosine triphosphate (ATP). The
mitochondrial respiratory chain complexes encompass five complexes that catalyze the
phosphorylation of adenosine diphosphate to ATP [36]. Mitochondrial damage leads to
a decrease in ATP synthesis. Under conditions of oxidative stress, ROS directly damage
Ca2+-regulating proteins, disrupting Ca2+ homeostasis. Mitochondria play a crucial role
in cellular respiration, producing ATP that is essential for maintaining normal cellular
functions. When mitochondria become dysfunctional, they may generate excessive ROS
which causes oxidative stress and damage to cellular structures.
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In this study, we investigated the effects of mitochondrial dysfunction on BEEC
damage to help clarify the mechanism underlying the development of bovine endometritis
and provide a basis for strategies to improve embryo implantation in dairy cattle.

2. Materials and Methods
2.1. Animals and Ethics Statement

All experiments related to dairy cows were performed according with the guidelines
of Animal Research Institute Committee at Northwest A&F University. Our study exclu-
sively utilized uterine samples obtained from 3 to 5-year-old Holstein–Friesian cows that
had undergone 2–4 parities and were within 40–60 days postpartum. These uteri were
categorized into healthy and endometritis groups based on cytological and histopathologi-
cal diagnoses as outlined previously [7]. The collected uterine tissue samples were then
divided into two portions: one part was preserved in 4% paraformaldehyde for subsequent
histopathological analysis, while the other part was promptly frozen in liquid nitrogen for
subsequent total protein extraction.

2.2. Cell Culture and Treatment

BEECs were isolated from healthy uteri as previously described [28]. BEECs were
cultured in Dulbecco’s modified Eagle’s medium (DMEM)/F12 (Hyclone, Logan, UT, USA)
supplemented with 10% fetal bovine serum (FBS; ZETA, Lower Gwynedd Township, PA,
USA). The culture was maintained at 37 ◦C with a humidified atmosphere containing
5% CO2. The medium was refreshed every 3 days until the cells reached approximately
90% confluence.

2.3. Hematoxylin–Eosin (H&E)

A 4% paraformaldehyde solution was used to fix uterine tissues, and the uteri were
paraffin-embedded and sectioned (5 µm thickness) for H&E staining. The histological and
pathological features were assessed under a microscope (Ni-U, Nikon, Tokyo, Japan).

2.4. Protein Extraction and Western Blot Analysis

Uterine tissues and BEECs were lysed with RIPA buffer (KeyGEN BioTECH, Jangsu,
China) containing phosphatase and protease inhibitors. Mitochondrial proteins were ex-
tracted using a Mitochondrial Protein Extraction Kit (Solarbio, Wuhan, China), and the
protein concentration was determined using Bicinchoninic Acid Assay (BCA) Protein Assay
Kit (KeyGEN BioTECH, Jiangsu, China). Equal amounts of protein were fractionated by
electrophoresis on a 12% or 15% sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) and transferred onto polyvinylidene difluoride (PVDF) membranes. Nonspe-
cific binding sites were blocked for 2 h with TBST (50 mmol/L Tris, pH 7.6, 150 mmol/L
NaCl, and 0.1% Tween 20) containing 5% BSA. The blots were incubated overnight at 4 ◦C
with the following primary antibodies for detection of: CypD (Proteintech, Wuhan, China,
1:2000), cyto-C (Abcam, Boston, MA, USA, 1:2000), SOD1 (Proteintech, China, 1:2000),
p-ERK1/2 (Abways Technology, China, 1:2000), caspase-3 (Abways Technology, Shanghai,
China, 1:2000), p-P65 (Abcam, USA, 1:1000), BAX (Proteintech, Wuhan, China, 1:2000), and
β-Actin (ZHHC, Shangxi, China, 1:5000). The membranes were then washed with TBST
and incubated with horseradish peroxidase-conjugated anti-mouse or anti-rabbit antibody
(ZHHC, Xian, China, 1:5000) for 2 h at room temperature. Protein bands were visualized
by Image J 1.47V software (National Institutes of Health, Bethesda, MD, USA) and then
normalized against β-actin.

2.5. ROS Level Determination

BEECs were cultured in 12-well plates (4–8 × 105/well) and treated as indicated. The
compound 2,’7’-dichlorofluorescein diacetate (DCFH-DA; Beyotime, Shanghai, China) was
used to detect ROS according to the manufacturer’s protocol. BEECs were incubated in
serum-free medium containing 10 µmol/L DCFH-DA and then treated with H2O2 at 37 ◦C
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for 5 h; Rosup was used as a positive control. The fluorescence intensity was measured
using a fluorescence microscope (Olympus, Tokyo, Japan). The relative intensity of each
band was assessed by Image J v 1.47 software.

2.6. Transmission Electron Microscopy

BEECs were plated in 12-well plates at 4–8 × 105 cells/well for 24 h and treated as
indicated before fixation with 2.5% glutaraldehyde at 4 ◦C. After washing with PBS, the
cells were harvested and fixed with 1% osmic acid at 4 ◦C for 12 h, washed with distilled
water and various concentrations alcohol, followed by two treatments with 100% acetone
for 20 min. BEECs were embedded in LR-White, and were cut into 60–80 nm ultrathin
sections. The ultrathin sections were dyed with uranium acetate and lead citrate, and
examined under an HT7800 transmission electron microscope (Hitachi, Tokyo, Japan).

2.7. Mitochondrial Membrane Potential and Apoptosis Detection

The mitochondrial membrane potential (MMP) and apoptosis of BEECs were deter-
mined using Mito-Tracker Red CMXRos (Beyotime, Shanghai, China) and Annexin V-FITC
Kit (Beyotime, Shanghai, China) according to the manufacturer’s instructions. Briefly,
BEECs were plated on 24-well plates (2−5 × 105/well) and incubated with 2 µL Mito-
Tracker Red CMXRos, 5 µL Annexin V-FITC, and 5 µL Hoechst 33342 for 30 min. The
fluorescence intensity was measured by confocal laser scanning microscopy (Nikon A1Rsi,
Tokyo, Japan). The relative intensity was assessed by Image J v 1.47 software.

2.8. Detection of Intracellular Adenosine Triphosphate (ATP)

Intracellular ATP levels were measured using an ATP assay kit (Beyotime, Shanghai,
China) according to the manufacturer’s instructions. Briefly, the lysates of BEECs were
centrifuged at 12,000× g for 15 min at 4 ◦C, and incubated in the ATP-detection buffer. The
luminescence signal (RLU) was measured with a luminometer (TUV800, Vienna, Austria).

2.9. Cell Viability Assay

Cell viability was measured using the Cell Counting Kit-8 (Cell Counting Kit-8, Bey-
otime, Shanghai, China) according to the manufacturer’s instructions. The formation of
formazan was assessed by determining the optical density (OD) at 450 nm with a microplate
spectrophotometer (TUV800, Vienna, Austria).

2.10. Detection of Cytoplasmic Ca2+

Intracellular calcium concentration was detected by Fluo-4 Calcium Assay Kit (Bey-
otime, Shanghai, China) according to the manufacturer’s instructions. Briefly, 2–5 × 105/well
BEECs were seeded in 24-well plates and then pretreated with or without 10 µM Cy-
closporin A (CSA, MedChemExpress, NJ, USA) for 2 h before exposure to H2O2 and Ca2+

detection buffer containing Fluo-4 AM (Beyotime, Shanghai, China) at 37 ◦C for 30 min. The
green (490/525 nm) fluorescence emission was visualized under a laser scanning confocal
microscope (Nikon A1Rsi, Nikon, Tokyo, Japan). The relative intensity was assessed by
Image J v 1.47 software.

2.11. Statistical Analysis

All data analyses were performed using GraphPad Prism 8 (GraphPad InStat Software,
San Diego, CA, USA). Differences between two groups were analyzed by Student’s t-test.
Differences between multiple groups were analyzed by one-way ANOVA. All experiments
were repeated at least three times, and all data are presented as means ± standard error of
the mean (mean ± SEM). Significance was set at p < 0.05.
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3. Results
3.1. Apoptosis-Related Protein Caspase-3, Cyto-C, and mPTP Key Protein CypD Were
Significantly Increased in Dairy Cow Uteri with Endometritis

The initiation of postpartum inflammatory conditions in the uterus is typically trig-
gered by bacterial contamination of the uterine lumen, leading to an influx of polymor-
phonuclear cells (PMNs). Uteri of dairy cows were divided into healthy and endometritis
groups based on H&E staining and the expression of inflammatory factors. As shown in
Figure 1A, epithelial cells in the endometriotic tissues were exfoliated with a large num-
ber of inflammatory cells infiltrating the lamina propria of the uterus compared with the
healthy group. There was a large amount of PMN infiltration in the endometrium com-
pared with the healthy group. These PMNs are attracted to the uterus through chemokine
secretions, and play a pivotal role in the uterine immune response [29,30]. In accordance
with our previous study [28], the uteri were categorized into healthy and the endometritis
groups. Notably, the inflamed uterine mucus exhibited a significant increase in PMN counts
compared to the healthy group (Figure 1A). Furthermore, the endometritis group showed
recruitment of lymphocytes into the lamina propria, as well as notable damage to the
mucosal layer and basement membrane (Figure 1A). Compared with the healthy group, the
expression of the inflammation-related protein p-P65 was higher in the endometritis group
(Figure 1B,C, p < 0.01). The expression of the mPTP key protein CypD (Figure 1B,D p < 0.01)
in the endometritis group was significantly increased at the protein level. The expression
of apoptosis-related proteins cyto-C (Figure 1B,E p < 0.05), caspase-3 (Figure 1B,G p < 0.05),
p-ERK1, and p-ERK2 (Figure 1F,G p < 0.01) were significantly increased in the endometritis
group compared with the healthy group. These findings indicate that in the endometrium
with endometritis the cells were damaged.
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Figure 1. In the endometrium with endometritis, the cells were damaged. (A) H&E staining to detect
the pathological changes and inflammatory cells infiltration in endometrial layer. Scale bar, 100
µm, 25 µm. (B) Inflammatory factor p-P65, mPTP key protein CypD, proapoptotic proteins Cyto,
caspase-3, and p-PERK1/2 were detected by Western blot. Relative expression of protein levels of
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(C) p-P65, (D) CypD, (E) Cyto-C, (F) p-ERK1/2, (G) caspase-3. e indicates a luminal epithelial cell, s
indicates a stroma cell, g indicates a glandular epithelial cell, pmn indicates a polymorphonuclear
cell. Data represent mean ± SEM. Statistical significance was set at p < 0.05, * p < 0.05, ** p < 0.01
(unpaired Student’s t-test).

3.2. Mitochondrial Dysfunction Promotes the Expression of Apoptotic Proteins of BEECs

BEECs were isolated from a healthy uterus of a dairy cow according to our previous
study [28]. BEECs were exposed to various concentrations of H2O2 (50, 100, and 200 µM)
to induce oxidative stress as a model of bovine endometritis. Compared with the control
(0 µmol/L H2O2) group, expression of the mPTP constituent protein CypD was significantly
increased in H2O2-treated BEECs (Figure 2A,C, p < 0.05). Additionally, expression levels
of the apoptosis-related proteins caspase-3, cyto-C, and BAX were higher in the H2O2-
treated groups compared with that in the control group (Figure 2A,D,E,I, p < 0.05). The
fluorescence intensity associated with ROS levels was also greater in BEECs treated with
H2O2 compared with that in the control group (Figure 2F,G, p < 0.05). The MMP formation
of BEECs was detected after treatment with H2O2; compared with the control group, the
MMP was significantly decreased (Figure 2H,I, p < 0.05).
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Figure 2. H2O2 increased apoptosis-associated proteins and mitochondrial dysfunction in BEECs.
(A–E) Western blot analysis of the expression of apoptosis-related proteins caspase-3, BAX, cyto-C,
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were determined using Mito-Tracker Red CMXRos (red) and Annexin V-FITC (green), respectively,
in BEECs treated with 200 µM H2O2. Scale bar, 25 µm. All experiments were performed at least
three times. Differences between two groups were analyzed by Student’s t-test. Differences between
multiple groups were analyzed by one-way ANOVA. Different letters indicate significance between
two groups. Data represent mean ± SEM. Significance was set at p < 0.05, * p < 0.05.

3.3. ROS Removal by NAC Prevented Mitochondrial Vacuolization in BEECs

To evaluate the effect of ROS on mitochondrial dysfunction, NAC was used to remove
ROS. CCK-8 results showed that NAC incubation had no significant effect on BEEC prolif-
eration compared with the control group (Figure 3C). Incubation with H2O2 significantly
increased ROS levels in BEECs, and this effect was significantly (p < 0.05) inhibited by
NAC treatment (Figure 3A,B). H2O2 treatment significantly increased ROS levels in BEECs
compared with the control group (Figure 3A,B). A large number of mitochondria exhib-
ited vacuolation, swelling, and ridge disappearance after incubation with 200 µM H2O2 in
BEECs. After removal of ROS by NAC treatment, H2O2-induced mitochondrial damage
was alleviated and the number of swelling mitochondria was significantly reduced; mito-
chondrial damage was significantly reduced compared with the control group (Figure 3A,B).
These results indicated that ROS are the main cause of mitochondrial damage in BEECs.
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Figure 3. ROS removal by NAC treatment significantly reduced the expression of mitochondria-
dependent apoptotic proteins. (A,B) NAC was used to remove ROS induced by 200 µM H2O2. Scale
bar, 100 µm. (C) CCK-8 assay of the cytotoxic effects of NAC (60 µM) on BEECs. (D) Mitochondrial
morphology in BEECs subjected to H2O2 and NAC treatments, as well as in untreated cells examined
by transmission electron microscopy. Scale bar, 5 µm and 2 µm. The arrow points to the mitochondria.
H, H2O2; Mitochondrial morphology in BEECs subjected to H2O2 and NAC treatments, as well as in
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untreated cells examined by transmission electron microscopy. Scale bar, 5 µm and 2 µm. The
arrow points to the mitochondria. H, H2O2; N, NAC; ROSup was a positive control reagent that
significantly enhance the intracellular ROS. All experiments were performed at least three times. Data
represent mean ± SEM. Statistical significance was set at p < 0.05. Differences between two groups
were analyzed by Student’s t-test. Differences between multiple groups were analyzed by one-way
ANOVA. Different letters indicate significance between two groups.

3.4. ROS Removal by NAC Restores Mitochondrial Membrane Potential and Energy Synthesis to
Normal Levels

The decreased MMP induced by H2O2 was significantly enhanced by pretreatment of
60 µM NAC in BEECs. (Figure 4A,B, p < 0.05). The effects of H2O2 treatment on ATP levels
in BEECs were inhibited after the removal of ROS by NAC (Figure 4C, p < 0.05).
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Figure 4. ROS removal by NAC inhibited the effects of H2O2 treatment on the mitochondrial
function. (A,B) The MMP and apoptosis of BEECs pretreated with or without NAC followed by
challenge with 200 µM H2O2 determined using Mito-Tracker Red CMXRos (red) and Annexin V-FITC
(green). Scale bar, 25 µm. (C) ATP synthesis was detected in BEECs pretreated with 60 µM NAC
in the absence or presence of H2O2. H, H2O2; N, NAC. All experiments were performed at least
three times. Data represent mean ± SEM. Statistical significance was set at p < 0.05. Differences
between multiple groups were analyzed by one-way ANOVA. Different letters indicate significance
between two groups.

3.5. ROS Removal by NAC Treatment Significantly Reduced the Expression of
Mitochondria-Dependent Apoptotic Proteins

To evaluate effect of ROS on mitochondrial dysfunction, NAC was used to remove
ROS. Activation of the key mPTP protein CypD by H2O2 was inhibited after ROS removal
by NAC treatment (Figure 5A,B). In addition, expression of the mitochondrial proapoptotic
protein BAX was significantly decreased after ROS removal (Figure 5A,C, p < 0.05). Western
blot was used to analyze of the mitochondrial pathway-related apoptosis protein cyto-
C. Compared with the H2O2 treated group, the expression of cyto-C was significantly
decreased after ROS removal by NAC treatment (Figure 5A,D, p < 0.05). Additionally,
after ROS removal, the expression levels of the apoptosis executioner protein caspase-3
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(Figure 5A,E, p < 0.05) and p-ERK1/2 (Figure 5A,F, p < 0.05) were decreased compared with
the control group. These results indicated that ROS are the main cause of mitochondrial
damage in BEECs.
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Figure 5. ROS removal by NAC treatment significantly reduced the expression of mitochondria-
dependent apoptotic proteins. (A,B) Western blot analysis the expression of mPTP key protein CypD.
(A,C,D,E) Western blot analysis of the expression of mitochondria-dependent apoptotic proteins
BAX, cyto-C, caspase-3, and p-ERK1/2 expression levels in BEECs pretreated with 60 µM NAC in the
absence or presence of H2O2. All experiments were performed at least three times. Data represent
mean ± SEM. Statistical significance was set at p < 0.05. Differences between multiple groups were
analyzed by one-way ANOVA. Different letters indicate significance between two groups.

3.6. mPTP Inhibition Prevented the Release of Cyto-C and Ca 2+ into the Cytoplasm

CypD is a mitochondrial protein involved in the regulation of the mPTP, which is
a key factor in the pathogenesis of mitochondrial dysfunction. Cyclosporin A (CSA),
which blocks mPTP opening, significantly (p < 0.05) reduced the expression of CypD
induced by H2O2 in BEECs (Figure 6A,B, p < 0.05). However, CSA had no significant
effects on the expression of cyto-C in BEECs treated with H2O2 compared with the
control group (Figure 6A,C, p < 0.05). Furthermore, the levels of cyto-C induced by H2O2
were significantly decreased in the cytoplasm when mPTP opening was inhibited by
CSA (Figure 6D–F, p < 0.05). Compared with the levels in the mitochondria of BEECs
treated with H2O2 alone, cyto-C levels were significantly increased after treatment with
CSA to inhibit mPTP opening (Figure 6D–F, p < 0.05). These findings indicate that
cyto-C efflux from the mitochondria to the cytoplasm was significantly decreased after
mPTP inhibition. Furthermore, H2O2 significantly induced mitochondrial calcium efflux
and inhibition of mPTP opening by CSA treatment, preventing Ca2+ outflow into the
cytoplasm (Figure 6G,H, p < 0.05). These results indicated that in mitochondria-dependent
apoptosis processes, proapoptotic protein cyto-C and Ca2+ flow to the cytoplasm through
CypD-controlled mPTP to induce BEEC apoptosis.
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Figure 6. Inhibiting mPTP effectively prevented H2O2-induced mitochondrial damage and apoptosis
in BEECs. BEECs were pretreated with 5 µM CSA in the absence or presence of H2O2. (A–C) Western
blot analysis of the total protein expression levels of CypD and cyto-C. (D–F) BEECs were pretreated
with 5 µM CSA in the absence or presence of H2O2. Western blot analysis of mitochondrial and
extramitochondrial protein expression levels of CypD and cyto-C. (G,H) Ca2+ levels monitored
using Fluo-4 AM. H, H2O2; N, NAC; CSA, cyclosporin A. Scale bar, 10 µm. All experiments were
performed at least three times. Data represent mean ± SEM. Statistical significance was set at p < 0.05.
Differences between multiple groups were analyzed by one-way ANOVA. Different letters indicate
significance between two groups.

4. Discussion

Oxidative stress and inflammation are two interrelated processes that occur in response
to a variety of factors [37], including infection, injury, and chronic diseases. In our previous
study, dairy cows with endometritis exhibited oxidative damage, evidenced by elevated lev-
els of ROS in mitochondria, leading to damage in BEECs through mitochondria-dependent
pathways [7]. As reported, epithelial cells are particularly susceptible to oxidative damage
due to their exposure to various environmental factors such as ultraviolet irradiation, air
pollutants, and chemicals [38]. ROS accumulation has been reported to induce oxidative
damage and endoplasmic reticulum stress in immortalized human keratinocytes [39]. Ox-
idative damage to epithelial cells results in a variety of pathological conditions, including
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inflammation, tissue injury, cancer, and Alzheimer’s disease [40,41]. Removing ROS by
antioxidants is shown to enhance anti-inflammatory, antidiabetic, and anticancer proper-
ties, improving the gut microbiome [42]. Cyto-C is a protein encoded by the nucleus gene,
and plays a vital role in the mitochondrial electron transport chain [13]. Under normal
circumstances, it exists in the space between the inner and outer membrane of mitochon-
dria [43]. In pathologic conditions, such as ischemia-reperfusion, phosphorylations are lost,
leading to maximum electron transport chain flux, MMP hyperpolarization, excessive ROS
generation, and the release of cyto-C [43]. The release of cyto-C from mitochondria plays
an important role in apoptosis. The stimulation of an apoptosis signal causes cyto-C to be
released from the mitochondria into the cytoplasm, mediating apoptosis [44].

In the present study, high levels of ROS in BEECs induced high expression of pro-
apoptosis-related proteins cytochrome C and caspase 3. Mitochondria are the main place to
produce ROS. During oxidative stress, the normal function of mitochondria will be seriously
damaged [45]. Under conditions of chronic oxidative stress, the defense mechanisms of
epithelial cells become overwhelmed, leading to cellular damage and dysfunction [46].
H2O2 was used to establish a model of endometritis in vitro. We found that the expression
of mitochondria-dependent proapoptotic protein was significantly increased. with the
increase of H2O2. We also found that mitochondrial dysfunction such as ATP synthesis
was blocked, and mitochondrial membrane potential decreased. In accordance with these
reports, we found a higher degree of inflammatory cell infiltration in the uteri with oxidative
stress. These findings are consistent with a previous report describing increased oxidative
damage in uteri with endometritis [47]. Based on our results, we found that mitochondrial
dysfunction was accompanied with an inflammatory response in BEECs.

CypD, which is a mitochondrial protein involved in the regulation of mPTP, is a
key factor in the pathogenesis of mitochondrial dysfunction [48] and has been implicated
in the development of inflammation [29]. Mounting evidence implicates a decline in
mitochondrial function due to increased opening of mPTP [49]. CypD has been shown to be
involved in opening of mPTP, leading to mitochondrial dysfunction and cell death. Studies
have shown that inhibition of CypD reduces the severity of inflammation in MC3T3-E1 cells
by reducing apoptosis and oxidative stress [29]. Cyto-C is a protein that is normally found
in the mitochondrial intermembrane space. During apoptosis, cyto-C is released into the
cytosol where it binds to the protein Apaf-1, forming a complex called the apoptosome [50].
In accordance with our findings, inhibition of CypD by CSA significantly reduced the
levels of the proapoptotic protein cyto-C in the cytoplasm of BEECs. The apoptosome
then activates caspase-9, which in turn activates caspase-3, which initiates the apoptotic
process [44]. In the current study, we found that the levels of CypD and cyto-C proteins
were significantly increased in uteri with endometritis and in BEECs treated with H2O2
compared with those in the healthy group.

In the early stages of mitochondria-dependent apoptosis, the MMP decreases, while
the mitochondrial outer membrane permeability increases, along with high expression
levels of cyto-C [51]. These two major changes facilitate the release of soluble membrane
proteins from the mitochondria. In a normal state, the mPTP is closed, preventing the
release of cyto-c and Ca2+ into the cytoplasm [52]. The inactive mPTP (closed) prevents
the uncontrolled influx of protons and solutes, which is important for maintaining the
electrochemical gradient and oxidative phosphorylation [53]. Evidence suggests that brief
mPTP opening plays an important role in maintaining mitochondrial homeostasis [54].
The imbalance of Ca2+ or mitochondrial signaling leads to functional abnormalities, cell
damage, and even cell death, leading to muscle dysfunction or heart disease [55]. We found
that H2O2-induced disturbances such as MMP decreased, and ROS increased in BEECs
(Figure 7). However, the cytoplasmic Ca2+ concentration was significantly reduced after
CSA-mediated inhibition of CypD, suggesting that the mPTP is essential for Ca2+ regulation,
and an imbalance in the cellular levels of Ca2+ is a key factor that induces mitochondrial
dysfunction and cyto-C release. CypD is located in the mitochondrial matrix and is a key
promoter of mPTP opening, regulating the permeability of mPTP in response to various



Antioxidants 2023, 12, 2123 12 of 15

stress stimuli [56,57]. CypD overexpression disrupts its recruitment to mPTP channels,
leading to continuous pore opening and widespread swelling of mitochondria [58]. In this
study, we demonstrated that CSA-mediated inhibition of CypD significantly diminished the
flow of cyto-C and Ca2+ from mitochondria to the cytoplasm (Figure 7). Recent studies have
shown that CypD promotes ROS production by regulating mPTP opening [29], leading
to a decrease in MMP and an increase in electron leakage in the electron transfer chain
(ETC). CypD has been shown to limit mitochondrial ROS production and protect against
ischemia-reperfusion injury in the heart and brain [59,60]. Mitochondria are the main
targets of excessive ROS, which induce the opening of the mPTP, leading to the release of
Ca2+, cyto-C, and apoptosis-inducing factors, which activate caspase-9 and caspase-3/6/7
through activating the cysteine aspartate-specific protease [61]. Moreover, ROS uncouples
the mitochondrial ETC, downregulates ATP production levels, upregulates the expression
of the proapoptotic protein Bax, and ultimately causes rupture of the mitochondrial outer
membrane, resulting in cell apoptosis [62]. In our study, ATP synthesis was significantly
reduced and Bax expression was significantly increased under oxidative stress. In BEECs
pretreated with NAC to scavenge ROS, we found that ATP synthesis returned to normal
levels, and there was no significant change in the expression of proapoptotic proteins
compared with those in the control group. We found that the key upstream signaling
pathways of mitochondrial dysfunction in BEECs under oxidative stress mainly involved
disturbances in Ca2+ homeostasis, leading to Ca2+ overload and subsequent activation of
the mPTP due to altered low conductance permeability (Figure 7).
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Figure 7. A schematic model of mitochondrial dysfunction-induced BEEC apoptosis.

5. Conclusions

The expression of mitochondrial proapoptotic protein was significantly increased in
uteri with endometritis. In the context of the inflammatory response mediated by oxidative
stress, mitochondria exhibited mitochondrial dysfunction in BEECs in vitro. Mitochon-
drial dysfunction of BEECs includes diminished MMP, disrupted calcium homeostasis,
diminished ATP synthesis, excessive expression, and continued activation of mPTP. Cyto-
C released from the injured mitochondria into the cytoplasm through mPTP activated
apoptosis executive protein caspase3. Ultimately, this intricate series of events results
in mitochondrial damage-dependent apoptosis in BEECs. Thus, our study is the first
to demonstrate that apoptosis is induced in BEECs via a ROS-CypD-cyto-C-dependent
mechanism, which represents a potential therapeutic target for oxidative injury-related en-
dometritis.
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