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Abstract: Metabolic syndrome (MS) is a growing disorder affecting thousands of people worldwide,
especially in industrialised countries, increasing mortality. Oxidative stress, hyperglycaemia, insulin
resistance, inflammation, dysbiosis, abdominal obesity, atherogenic dyslipidaemia and hypertension
are important factors linked to MS clusters of different pathologies, such as diabesity, cardiovascular
diseases and neurological disorders. All biochemical changes observed in MS, such as dysregulation
in the glucose and lipid metabolism, immune response, endothelial cell function and intestinal
microbiota, promote pathological bridges between metabolic syndrome, diabesity and cardiovascular
and neurodegenerative disorders. This review aims to summarise metabolic syndrome’s involvement
in diabesity and highlight the link between MS and cardiovascular and neurological diseases. A better
understanding of MS could promote a novel strategic approach to reduce MS comorbidities.

Keywords: metabolic syndrome; diabesity; gut microbiota; dysbiosis; cardiovascular diseases;
neurodegeneration

1. Introduction

Metabolic syndrome (MS) is one of the most common health problems today, affecting
almost 30% of the world’s population. It is considered one of the major issues of industri-
alisation in developing countries and will affect more than half of the population in the
next 20 years [1]. The increase in MS is linked to many factors, such as sedentary lifestyle,
environmental factors and diet as the Food Away from Home (FAFH), constituting an
important public health problem [2]. It has been estimated that MS [3], especially among
women [4,5]. Approximately 24% of adults in the USA, 12–37% of the Asian population and
12–26% of the European population suffer from this disease [6], and about 44% of people
are in the age group ≥ 50 years. The concept of MS was introduced in the 1920s [7]. MS has
been described as a cluster of cardiometabolic risk factors, including hyperglycaemia [8,9],
central obesity (waist circumference), hyperinsulinemia and insulin resistance (IR) [10],
hypertension, hypertriglyceridaemia, low plasma high-density lipoprotein (HDL) and high
cholesterol levels. Moreover, ageing and hormonal changes have been associated with
the development of MS [11–15]. Other pathological disorders closely correlated to MS
include liver diseases, such as non-alcoholic fatty liver disease (NAFLD), non-alcoholic
steatohepatitis (NASH) [16], neurological diseases [17] and cancer [18].

Different clinical criteria have been adopted for the definition of MS by international
organisations (Table 1).
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Table 1. Diagnostic clinical criteria of metabolic syndrome by different health organizations.

Clinical
Parameters

Criteria

Central
Obesity

Fasting
Blood
Sugar

↑
Triglycerides

↓ HDL-
Cholesterol

↑ Blood
Pressure

Diagnosed
as MS

IDF (2005)
[19]

Waist
circumference

defined in
terms of
ethnicity-
specific
values

≥100 mg/dL
or on

medication

≥150 mg/dL
or on

medication

Male:
<40 mg/dL

Female:
<50 mg/dL

Diastolic
≥130

and/or
systolic
≥85 mmHg

or on
medication

Absolutely
required
central
obesity

plus
≥2 criteria

AHA/NHLBI
(2005) [20]

Waist
circumference

Male:
≥102 cm
Female:
≥88 cm

≥100 mg/dL
or on

medication

≥150 mg/dL
or on

medication

Male:
<40 mg/dL

Female:
<50 mg/dL

Diastolic
≥130

and/or
systolic
≥85 mmHg

or on
medication

≥3 criteria

AHA/NHLBI
and

IDF:2009
[21]

Waist
circumference

defined in
terms of

population-
and country-

based-specific
definition

≥100 mg/dL
or on

medication

≥150 mg/dL
or on

medication

Male:
<40 mg/dL

Female:
<50 mg/dL

Diastolic
≥130

and/or
systolic
≥85 mmHg

or on
medication

≥3 criteria

Note: IDF, International Diabetes Federation. AHA/NHLBI, American Heart Association/National Heart, Lung
and Blood Institute.

According to a joint agreement between international organisations, individuals suf-
fering from MS must show three clinical signs on the following five criteria: central obesity
(specific definition in relation to the population and country), TG ≥ 150 mg/dL and/or
on pharmacological treatment; HDL-C < 40 mg/dL in males and <50 mg/dL in females;
diastolic BP ≥ 130 and systolic ≥ 85 mmHg and/or under pharmacological treatment; and
FBS ≥ 100 mg/dL and/or drug treatment [20].

The aim of this work is to provide an overview of the main risk factors of MS, related
to oxidative stress, diabesity, cardiovascular diseases and neurological diseases to support
potential strategic approaches to solve the complications of MS.

2. Free Radicals, Oxidative Stress and Metabolic Syndrome

Free radicals are produced during cell metabolism and redox processes. They include
reactive oxygen species (ROS), reactive nitrogen species (RNS) and reactive sulphur species
(RSS) [22,23]. All free radicals are involved in body pathophysiological processes [24].
Superoxide can damage molecules (DNA, proteins and lipids) [25]. The hydroxyl radical
reacts strongly with most organic and inorganic molecules (DNA, proteins, lipids, amino
acids, sugars, vitamins and metals) faster than its speed of generation [26]. It is estimated
that OH• is responsible for 60–70% of the tissue damage caused by ionising radiation [27].
Hydroxyl radicals are involved in several disorders, such as cardiovascular diseases [28]
and cancer [29]. Nitric oxide is also involved in many physiological processes, such as
neurotransmission, relaxation of smooth muscle, vasodilation and regulation of blood pres-
sure, gene expression, defence mechanisms, cell function and regulation of inflammatory
and immune mechanisms, as well as in pathological processes such as neurodegenerative
disorders and heart diseases [30]. Cells and the body can protect themselves from free
radicals through antioxidants to lower the concentration of free radicals and maintain redox
homeostasis in the body [31]. The antioxidant defence systems consist of endogenous
(generated in situ) and exogenous antioxidants (supplied through foods). They play the
role of neutralising excess free radicals and protecting cells from their toxic effects, helping
to prevent diseases. When body defence mechanisms are reduced, free radicals, generated
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by endogenous and exogenous sources, can cause direct oxidative damage to biological
molecules and organs, with consequent oxidative stress and metabolic disorders [24].

Oxidative stress concerns intracellular damage as well as secondary damage due to the
cytotoxic and mutagenic characteristics of the metabolites produced [24,32,33]. In particular,
carbon reactive compounds, such as malondialdehyde (MDA) and 4-hydroxynonenal
(4-HNE), which are formed during lipid oxidation and carbohydrate glycoxidation, reacting
with cell tissues and proteins generate the advanced lipid peroxidation end-product (ALE)
and the advanced glycation end-products (AGE), which cause protein-level dysfunction,
such as loss of activity and increased sensitivity to proteases [34] and in inflammatory
responses and apoptosis [35]. As a result, oxidative stress contributes significantly to the
pathogenesis of different diseases [31]. Carbon reactive compounds, such as MDA, 4-HNE
or oxidised LDL, have been found in cardiovascular disease [36], atherosclerosis [37],
diabetes [38], obesity and IR [39]. The role of oxidative stress in MS is rapidly evolving as a
result of evidence and related manifestations, including atherosclerosis, hypertension and
T2D [40], low-grade inflammation [41], adiposity and IR [42,43], cardiovascular diseases
and neurological disorders [17].

3. Metabolic Syndrome and Diabesity
3.1. Diabetes Mellitus

Diabetes is a complex syndrome characterised by hyperglycaemia induced by an
altered secretion of insulin or by a poor insulin action when the pancreas does not produce
enough insulin or when the body cannot effectively use the insulin it produces, or both cases.
There are different types of diabetes: type 1, type 2, gestational diabetes and secondary or
other specific types of diabetes [44].

Type 1 diabetes (T1D) accounts for about 5% of all types of diabetes [45]. It is a
disease especially prevalent among young people, which causes the destruction of insulin-
producing pancreatic cells and the lack of insulin [46]. T1D is associated with autoimmunity
against pancreatic beta cells, i.e., the destruction of beta cells caused by the expression
of autoantibodies against insulin (IAA), antibodies against insular cells (ICA), antibodies
associated with insulinoma protein-2 antibodies (IA-2A), glutamic acid decarboxylase
antibodies (GADA) and zinc transporter antibodies 8 (ZnT8A) [47]. Type 2 diabetes (T2D)
is more common in older and overweight people [48,49]. T2D includes most diabetic
individuals worldwide (90–95%) [45]. The development from pre-diabetes to T2D is more
gradual and prolonged than T1D [50]. Gestational diabetes affects 3–9% of pregnant women,
mainly during the second or third trimester, due to insufficient insulin secretion [51].
Patients with gestational diabetes, over time, may experience a high risk of developing
permanent T2D [52,53]. Secondary types of diabetes include several specific causes, such as
beta cell function from monogenic defects, pancreatic diseases and drug/chemical-induced
endocrinopathies [44].

Clinical diabetes trials have been linked to high blood glucose levels observed dur-
ing fasting (≥126 mg/dL) and 2 h after an oral glucose load (≥200 mg/dL). A recent
diagnostic test of diabetes, which reflects glycaemia, is the measurement of glycated
hemoglobin (Alc ≥ 6.5% (≥48 mmol/mol) [54]. Clinically, recognizable changes in carbo-
hydrate metabolism that are characteristic of diabetes occur when blood sugar levels reach
levels that cause glycosuria and polyuria, leading to polydipsia. Patients with T2D may
not show these clinical signs early due to the gradual increase in blood sugar over time.
The use of glucose-based diagnostic tests can lead to an increased risk of retinopathy. Au-
toantibodies to IAA, ICA, IA-2A and ZnT8A are employed in the diagnosis and prediction
of T1D in both children and adults, and they can differentiate between latent autoimmune
diabetes in adults (LADA) and T2D [47,55,56].

Hyperglycaemia is a key component of MS. A high concentration of glucose in the
blood contributes to oxidative stress through several mechanisms, such as glucose auto-
oxidation, the formation of advanced glycated products (AGEs) and the increased oxidation
of arachidonic acid (ARA) [57]. Intense glucose variation has many side effects modifying
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the redox balance, increasing circulating free fatty acids (FFAs), NADPH oxidase activity
and TNF-α [58]. A change of the first sites in the mitochondrial membrane leads to the
activation of complex II [59] and to the excessive formation of O2•− by a loss of elec-
trons [60]. NADPH oxidase (NOX) producing ROS is the main source of production of
glucose-induced ROS in the vascular system, kidneys [61], liver [62] and β-cells [63]. The
network of glycation reactions that produce oxidative stress along with glucose toxicity
is important [64]. Advanced glycation end-products (AGE) promote inflammation by
interacting with AGE receptors (RAGE) in immune system cells [65]. The activation of
RAGE stimulates intracellular signals, including kinase (MAP kinase, PI3 kinase), and tran-
scription factors, such as nuclear factor-kB (Nf-kb) and activator protein-1, which further
activate the expression of cytokines, chemokines, enzymes and growth factors, resulting
in a pro-inflammatory environment that leads to oxidative stress [66]. Hyperglycaemia
induces an increase in the production of free radicals that alter both enzymatic and non-
enzymatic antioxidant defence [67]. For example, the accumulation of sorbitol, resulting
from enzymatic conversion for excessive glucose, disrupts osmotic balance [68], and the
formation of AGEs induced by increased fructose production causes β-cell injury [69] and
peripheral IR [70]. High levels of AGEs represent a high risk factor for T1D [71] and lead to
the development from pre-diabetes to diabetes [72]. Haemoglobin A1c, due to the glycation
of haemoglobin, is the most important biomarker of glycaemic exposure [73] related to
oxidative stress. The increase in Hb1Ac predicts the risk of microvascular complications in
T1D [74] and cardiovascular disease in T2D [75].

Insulin resistance is one of the most important mechanisms linked to MS [14,76]; it is
complex and not perfectly defined. The insulin hormone plays an important role in the
regulation of glucose concentration, lipid homeostasis and energy storage [76]. It promotes
the preservation of glucose as glycogen in the liver and skeletal muscles, and the deposition
of fatty acids as triglycerides in adipose tissue [77]. During insulin resistance, anabolic
metabolism is inhibited by reducing the absorption of glucose and the conservation of
glucose as glycogen and triglycerides, while increasing the hydrolysis of the triglycerides
stored and their mobilisation as free fatty acids and glycerol, and the liver increases the
production of glucose through gluconeogenesis and the inhibition of glycogen synthesis
and depot.

IR promotes the breakdown of energy substrates, such as glucose in the brain, foetal
immune system, fat in the organs and compensatory hyperinsulinaemia [77]; thus, its
metabolic negative effects could be considered a mechanism activated in some physiolog-
ical conditions, such as stress inflammation and fasting, and while in the chronic state,
it constitutes the symptoms of the MS [78]. The increased production of ROS/RNS is a
trigger for IR in different animal models [79]. When cells fail to compensate for IR through
increased insulin production, a reduced glucose tolerance occurs and the excessive produc-
tion of mitochondrial ROS causes intracellular oxidative stress, which can damage cellular
macromolecules as well as inactivate or modulate the insulin receptor and its substrate
function [40].

IR appears to precede and predict the development of diabetes mellitus. The molecular
mechanism of IR is linked to an increase in FFAs, triacylglycerol (TAG), diacylglycerol
(DAG), acylcarnitine and ceramide [80,81], which are associated with the accumulation of
lipids in the liver involved in IR and T2D. A higher FFA concentration results in an increase
in intracellular glucose concentration and a reduction of muscle glucose consumption,
which may lead to a reduction in glucose transport and insulin receptor signalling [82].
Different processes are associated with IR.

Free radicals and oxidative stress play an important role in the dysfunction of β-cells
in diabetes mellitus, as they are involved in the disruption of pancreatic β-cell proliferation
through the alteration of cell cycle regulators, with the resulting development and progres-
sion of diabetes [83]. Metabolic body homeostasis is strictly controlled by the release of
the insulin hormone from the pancreatic β-cells, which interact with target tissues, such as
muscle, adipose tissue and the liver, to eliminate excess glucose from the blood. On the
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contrary, glucagon released from pancreatic-α cells mobilises glucose from these tissues
during periods of fasting or increased energy expenditure to maintain the blood glucose
concentration at a constant level. The alteration of these metabolic processes leads to
chronic conditions of hyperglycaemia and dyslipidaemia, or glucolipotoxic conditions,
which have a harmful influence on the pancreatic islets, causing manifestations of metabolic
diabetes syndrome [83].

Oxidative stress due to progressive mitochondrial and metabolic dysfunction derived
from elevated glucose and/or fatty acid oxidation can reduce insulin secretion from β-cells
as well as impair insulin signalling in target tissues. Low levels of antioxidant enzymes in
β-cells, such as glutathione peroxidase, catalase, thioredoxin and superoxide dismutase,
determine the accumulation of free radicals in β-cells, especially in diabetes [84]. β-cell
dysfunction can induce high superoxide anion (O2•−) and hydrogen peroxide (H2O2)
production [85], with the consequent alteration of mitochondrial function, reduction of ATP
production and insulin secretion [67]. H2O2 and O2•− influence the secretion of glucose-
stimulated insulin [48], and H2O2 may inhibit β-cell metabolic activity and the secretion of
insulin [86]. The limited antioxidant defence system of β-cells can lead to the initiation or
amplification of the inflammatory response [87]. β-cell dysfunction and apoptosis depend
on complex gene activation, regulated by transcription factors such as NF-κB [88], which
translates into the nucleus and stimulates the transcription of several genes related to
pro-inflammatory responses. Gene 88 and kinase associated with interleukin-1 receptor
(IL-1) have been shown to be involved in homeostasis loss, tissue damage and the start of
T1D [89,90].

Inflammation stimulates the development of IR and diabetes through a complex
mechanism that involves different kinases and signalling pathways. Inflammation is
linked with increased cytokine levels, such as IL-6, IL-1β IL-10 IL-17, tumour necrosis
factor α (TNF-α) and interferon γ (IFN-γ) created by immune cells in the islets [91]. T1D
can be considered an autoimmune disease with its attack on pancreatic β-cells, leaving
intact the α-cells and δ-cells of the islets [46]. A common mechanism linking T1D and
T2D may be the activation of NOX and the resulting production of free radicals. NOX
is stimulated by glucose, saturated fatty acids, endocrine factors and pro-inflammatory
cytokines [85], such as TNF-α, IFN-γ and IL-1β, involved in the disorder and decay of
β-cells in T1D, and in inflammation associated with T2D [92]. Inflammatory condition
plays an important role in the development of TD1 and TD2 [48,93]. Free radicals created
by the inflammation of tissues or immune cells by interacting with the insulin receptor
adversely affect its response [48,94]; as a result, the amount of insulin produced by the beta
cells of the pancreas becomes inadequate, causing resistance to insulin, the fundamental
key to T2D disease. There is a relationship between obesity, inflammation and IR. Weight
gain and obesity are linked to IR and to a chronic low-grade inflammatory condition
defined as meta-inflammation [95–97]. During IR, metabolic processes are altered. Adipose
tissue and skeletal muscles reduce the uptake and storage of glucose as glycogen and
triglycerides. Conversely, this increases the hydrolysis of stored triglycerides and their
mobilisation as free fatty acids and glycerol, and the liver increases glucose production
through gluconeogenesis and inhibits the synthesis and storage of glycogen [77]. An
excessive intake of nutrients can induce oxidative stress in adipose tissue [98] and cause
the dysregulation of the function of adipocytes, which is manifested by the inhibition
of the differentiation of adipocytes, a higher infiltration of immune cells in adipocytes
and an increase in the secretion of peptides and proteins defined as adipocytokines [99].
Then, the phenotypic passage to the inflammatory macrophage occurs [100], as well as the
increased infiltration of macrophages into the adipose tissue [96,101] and the induction
of chronic inflammation into the white adipose tissue. It has also been proposed that
with the enlargement of adipocytes, the blood supply becomes insufficient, and hypoxia
occurs. This leads to cellular necrosis and T-cells and macrophages infiltrating the adipose
tissue, causing an overproduction of adipocytokine, such as retinol-binding protein-4
(RBP-4), TNF-α, IL-6, IL-8 and monocyte chemoattractant protein-1 (MCP-1) [102,103]. In
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addition to causing chronic inflammation in adipocytes, cytokines are also released into
the bloodstream, and eventually, the process becomes systemic [96] by inhibiting insulin
signalling, resulting in insulin resistance [104]. Therefore, chronic inflammation in obesity
plays a key role in the pathogenesis of IR, which is recognised as a symptom of MS [78].

IR and hypertension are constituents of MS. Clinical observations indicate that about
50% of people with hypertension tend to show hyperinsulinemia or glucose intolerance,
while about 80% of patients with T2D have hypertension [105,106]. Patients with essential
hypertension are more intolerant to glucose and resistant to insulin. The compensatory
hyperinsulinaemia that prevents T2D in insulin-resistant people acts in the kidneys and
the sympathetic nervous system, improves the reabsorption of sodium and increases the
sympathetic tone contributing to an increase in blood pressure [107]. The loss of water
and the deprivation of sodium due to insufficient sodium intake or excessive sodium loss
may activate both the renin–angiotensin–aldosterone and the neuro–endocrine systems to
increase blood pressure [108,109].

Insulin may have vascular-protective or deleterious effects. IR through an altered
nitric-oxide oxidative mechanism can influence compensatory hyperinsulinaemia, which
can activate the MAPK [76], resulting in higher values of vasoconstriction, proinflammation,
sodium, water retention and blood pressure [110]. Studies in rats have shown a link between
oxidative stress and activated oxidative stress-associated inflammation with an increase in
blood pressure, vascular dysfunction and IR [110]. Ultimately, a significant increase in the
risk of the occurrence of cardiovascular diseases and T2DM derives from the coexistence of
IR and hypertension [105].

3.2. Diabesity

Diabesity is considered a multifactorial pathophysiology (Figure 1) involving genetic
and environmental factors. The World Health Organisation (WHO) underlines the sim-
ilarity of the trends in obesity and diabetes due to a close relationship between obesity
and diabetes. Severe obesity is a major risk factor for the development of type 2 diabetes
mellitus (T2DM). The strong association between obesity and diabetes has led to the coining
of the term “diabesity”. The majority of people with T2DM are obese, highlighting the
central role of increased adiposity as a risk factor for diabetes [111]. Approximately 60–90%
of all patients with T2DM are estimated to be obese (BMI ≥ 30 kg/m2) or overweight
(BMI ≥ 25 kg/m2) [112]. Obesity (BMI ≥ 30 kg/m2) and an unfavourable lifestyle were
associated with a higher risk of T2DM [113]. It has been estimated that for every gain of
a kilogram of body weight, the risk of diabetes increases by about 9% [114]. Changing
lifestyles, combined with high levels of industrialisation and advances in agricultural and
food systems, have led to increased food availability and changes in food consumption
patterns, which are the co-factors responsible for the spread of obesity and diabetes among
the young adult population [115]. Figure 2 summarises the main steps involved in obesity
and diabetes and the close link between the two syndromes responsible for the onset of
diabetes. Obesity results in an increase in plasma levels of FFAs derived from meals and
lipolysis of adipose tissue [116], which affects IR [117,118]. In addition, visceral obesity
fat being more metabolically and lipolytically active releases more FFAs into the blood-
stream [119], increasing their cellular uptake and subsequent mitochondrial β-oxidation;
this inhibits glucose metabolism at the level of substrate competition [116].
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Figure 2. Pathophysiology of diabesity. Genetic and environmental factors (lifestyles) regulate the
function of the pancreatic islets and the interaction between diabetes and obesity. Hyperglycaemia,
resulting from reduced insulin sensitivity due to the reduction of the functional mass of β-cells, is
closely related to obesity, which plays a crucial role in oxidative stress and inflammatory metabolic
processes, glucotoxicity and lipotoxicity, and is associated with insulin resistance/deficiency.
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The increase in FFA levels stimulates the liver and skeletal muscles towards greater
oxidation of FFAs for energy production, resulting in a reduction in their ability to absorb
and metabolise glucose. The prevalent use of lipids at the expense of glucose leads to
a reduction of glucose uptake and glycogen synthesis rate in skeletal muscles [120]; this
induces a state of chronic hyperglycaemia (glucotoxicity) that further impairs insulin sen-
sitivity [121]. The increase of fat in and around the liver, skeletal muscle and pancreatic
β-cells results in the elevated mitochondrial production of toxic reactive lipid species that
cause oxidative damage, inflammation and cellular dysfunction. The release of FFAs then
induces lipotoxicity as lipids and their metabolites create oxidative stress on the endoplas-
mic reticulum and mitochondria; this causes insulin-receptor dysfunction and a consequent
insulin-resistant state. The increase of toxic metabolites in the β-cells of the pancreatic islet
decreases insulin production and increases β-cell apoptosis, accelerating the development
of diabetes [116,118]. Therefore, hyperinsulinaemia constitutes the mechanism by which
pancreatic β-cells initially compensate for the deterioration of peripheral insulin sensitivity,
ensuring normal glucose tolerance; when beta cells can no longer compensate, T2DM
develops. Peripheral IR in muscles and fat reduces cellular glucose absorption, while IR in
the liver results in an inability to suppress glucose production and gluconeogenesis.

Oxidative stress and inflammation also participate in the progression from IR to
diabetes. Chronic inflammation, a characteristic of obesity, leads to IR and T2D [122,123].

Literature studies highlight the role of genetic factors that also play a role in diabetes.
Genetic factors affect BMI [113,124–126], and parental obesity is a risk factor for obesity in
offspring [127]. Whole genome studies have identified nearly 150 genetic variants that are
associated with body size or obesity risk [128]. However, the combined contribution of all
known variants associated with body size measurements is <5%; therefore, the influence of
genetic factors on body size remains undefined [129]. However, it is estimated that known
genes preach only 15% of T2D and 5% of obesity risk [130,131]. Most T2D genes appear
to be related to β-cell dysfunction, with much less involvement in IR-related pathways
regardless of obesity [132,133].

Among the environmental factors (Figure 2), lifestyle, such as lack of physical activity,
and inadequate nutrition, such as a high-calorie diet and/or prolonged abundance of food,
contribute to the manifestation of obesity [134,135].

The increase in T2DM is due to a significant increase in obesity and high consumption
of food with high levels of fat and refined carbohydrates [136]. The inability of adipose
tissue to remove free fatty acids from blood circulation has been reported to contribute
to the onset and development of MS [137]. In addition, the increase in the plasma levels
of adipokines (leptin, plasminogen activator-inhibitor 1), cytokines (TNF-α, resistin and
IL-6) and non-esterified fatty acids in obese individuals may block the action of insulin and
promote metabolic dysfunction [138].

There is a link between dietary sugars and body weight gain, likely due to the excess
energy associated with sugar intake [139]. A link was also observed between weight
gain and sugar consumption in the form of sugar-sweetened beverages and total energy
intake [140]. Fructose, the sweetest of all carbohydrates, is commonly used commercially
in soft drinks, juices and bakery products. The consumption of fructose is considered
accountable in MS as a lipogenic compound associated with an excessive accumulation
of ectopic fat, particularly in the liver [141,142]. Dietary fructose is currently suspected
to play a significant role in the development of non-alcoholic fatty liver disease (NAFLD)
associated with obesity [142,143]. The mechanisms responsible seem to involve stimulation
of hepatic de novo lipogenesis and impaired extrahepatic triglyceride-rich lipoprotein
clearance [144].

Non-alcoholic fatty liver disease (NAFLD), renamed metabolic associated fatty liver
disease (MAFLD), also includes different conditions, such as steatosis without inflammation
(NAFL), the necroinflammatory form of non-alcoholic steatohepatitis (NASH) and the
cryptogenic cirrhosis [145,146]. Mechanisms of NAFLD implicate high levels of fatty acids
from one’s diet and adipose tissue, high intrahepatic de novo lipogenesis and defective
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export as very low-density lipoproteins (VLDL) [147]. They are associated with the context
of increased IR and systemic low-grade “metabolic” inflammation due to increased visceral
adiposity and the release of several pro-inflammatory adipocytokines [148–150]. NAFLD is
associated with MS, T2D, obesity and cardiovascular disease [149,151], and affects about
30% of the Western population [152]. Mendrick et al. [153] reported that mitochondrial
dysfunction also seems to play a role in MS and increases as the disease progresses from IR
to T2D, and from non-alcoholic fatty liver disease to non-alcoholic steatohepatitis.

Some studies show that a diet rich in fructose increases the concentrations of intra-
hepatic fat [154], while other trials suggest that the increases in intrahepatic fat may be
more related to the intake of excess energy than that of fructose [155]. In addition, with the
reduction in sugar intake in overweight and obese subjects, a decrease in the concentration
of intrahepatic fat was observed [156,157]. Several studies have shown a link between
sugar intake and the risk of diabetes [158], IR [159], NAFLD [160], hyperuricaemia [161],
hypertension [162] and coronary and cardiovascular diseases [163]. Therefore, the French
National Agency for Food Environment and Labour Safety has proposed a maximum limit
of 100 g/day for the intake of total sugars containing fructose; taking into account the
promotion of fruit and vegetables, fruit provides about 40 g of sugars, and vegetables 6 g
of sugars.

Overweight and obesity affects a wide range of the population worldwide, from
teenagers to the elderly. Different mechanisms are involved in the development of obesity.
BMI is used to classify overweight and obesity in adults and is a measure of the risk factor
for weight gain. The interaction among genetic factors, energy intake and energy expen-
diture leads to the accumulation of fat. Overweight and obesity are caused by a chronic
imbalance between energy intake and energy expenditure, leading to an increase in fat
mass, with a consequent increase in weight. Epidemiological studies up until 2016 have
shown a 40% increase in BMI (≥25 kg/m2) in adults (21% in men and 24% in women). The
morbidity rate of obesity (BMI ≥ 30 kg/m2) in men is growing faster than that of women
(3–12% vs. 7–16%, respectively) [164]. It has been suggested that high fat intake increases
the production of ROS, contributing to MS and diabesity. A diet rich in fat can reduce the
enzymatic activity of SOD [165] and GPx and increase the ratio of glutathione/oxidised
glutathione (GSH/GSSG), associated with hypertriglyceridaemia and the mitochondrial
production of ROS [166]. Lower enzymatic activity of GPx, SOD and CAT was observed in
patients with MS, associated with an increase in oxidative stress and a pro-inflammatory
state, and was also associated with an increase in BMI and waist circumference, strengthen-
ing the establishment of a pro-oxidant condition in obese subjects [167].

Obesity increases with the spread of fat in the body. Fat is classified as brown and
white adipose tissue, which can be subcutaneous and visceral. Lipid overflow, also known
as adipose tissue expandability, is characterised by the abnormal increase in ectopic lipid
reserves at the level of skeletal muscle, the liver and the pancreas. Subcutaneous adipose tis-
sue is the normal fat deposit and is considered less harmful for lipid storage. It can expand
by increasing the cell size (hypertrophic obesity) or by increasing the number of cells (hyper-
plastic obesity). When the nutrient load exceeds the expansion capacity of adipose tissue,
lipids accumulate in other tissues (skeletal muscle, the liver and the pancreas) [90,168].
Hypertrophic obesity is linked to an increased risk of T2D [169,170]. In addition, lipid
storage in less suitable tissues is associated with increased IR and T2D [168,171] due to
the lipotoxicity of lipid metabolites, such as diacylglycerols and ceramides, which hinder
insulin signal transduction [172–174]. Many scholars believe that T2D basically derives
from a disorder of lipid metabolism, rather than from an abnormal glucose metabolism.

The heterogeneity of adipose tissue contributes to the determination of the effects
observed in disorders linked to excess fat (overweight/obesity) or fat loss (lipodystrophy)
and consequent metabolic risks [175,176]. Several studies have highlighted the dynamic
nature of adipose tissue [176], which includes turnover and differentiation [177,178]. The
dynamics of adipocyte and lipid turnover regulate the size of fat mass and functionality.
Regardless of obesity and age, about 10% of adipocytes are replaced each year; the half-life
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of the adipocyte triglycerides is about 1.6 years [177]. The production of adipocytes is
higher in hyperplastic obesity compared to hypertrophic obesity [179]. The hypertrophy of
subcutaneous adipose tissue appears to be associated with glucometabolic disorders, while
in visceral adipose tissue, it is more closely associated with dyslipidaemia [180]. A low
turnover rate and, therefore, the generation of a few but large fat cells represent an early
defect in the development of T2D. Therefore, an altered differentiation of the preadipocytes
into adipocytes in the adipose tissue of subjects with abdominal obesity is an important
risk factor for diabetes [181]. As previously mentioned, the turnover of adipose cells is high
(10%/year), while the lipid turnover is modified six times in 10 years (average lifespan of
an adipose cell) [182,183]. A low lipid turnover rate was found in the visceral region of
subjects with pronounced obesity [183,184]. Visceral adipose tissue is metabolically more
active than subcutaneous tissue, with a greater sensitivity to lipolysis stimulation and a
reduced insulin response [184,185].

Visceral obesity plays a key role in metabolic disorders affecting metabolism and
inflammatory response [186]. Excess adipose tissue produces different pro-inflammatory
cytokines that lead to a state of chronic subclinical inflammation associated with both
IR and T2D [187]. Adipocytes produce many pro-inflammatory markers, such as IL-6,
IL-1β, C-reactive protein (CRP), resistin, visfatin and TNF-α, whose levels are high in obese
patients [96,188]. Three main sites have been implicated as initiators of inflammation in
MS: the liver, intestines and fat deposits [189–192]. Common triggers, such as responses
to metabolic stress to chronic caloric excess and consequent cell death can trigger inflam-
mation at each of these sites [193–195]. The release of inflammation mediators from one
site promotes inflammation in other tissues, amplifying a chronic inflammatory state and
generalised tissue dysfunction/damage [189]. The increased secretion of inflammatory
cytokines derived from adipocytes is associated with reduced insulin sensitivity in obe-
sity [196]. However, inflammatory processes do not fully explain the development of IR
because no changes in inflammatory markers have been detected in subjects with T2D [197].
Thus, inflammation alone cannot be associated with sensitivity to insulin because only
a portion of obese subjects develop T2D. The accumulation of fat in the organs and the
increase of the pro-inflammatory adipokine circulation leads to multiple disorders, such
as diabetes [198], cardiovascular diseases [199] and neurodegenerative conditions [200].
Obese people display an increased development of visceral adipose tissue, which acts as
an endocrine organ, secreting many hormones/cytokines and FFAs that are able to affect
different functions of tissues [201–203]; biological processes, including glucose and lipid
metabolism; food intake; inflammation; coagulation; and the maintenance of metabolic
homeostasis [202]. In obesity, the expansion of fat reserves induces the dysfunction of
endocrine factors, resulting in the metabolic alteration of insulin in the target tissues and in
the pancreatic β-cells.

Many adipokines have been characterised by their role in the modulation of energy
homeostasis and food behaviour [204], such as leptin and adiponectin. Leptin (16-kDa
peptide) regulates food intake and body weight through the central mechanism of the
appetite and the peripheral effects on the modulation of energy expenditure [205]. The
range of interaction processes includes inhibiting insulin secretion from pancreatic β-cells
and glucose utilisation [206]. Changes in the plasma levels of leptin or insulin indicate a
state of altered energy homeostasis and adiposity. The brain responds to these changes
by regulating food intake to restore the mass of adipose tissue to a normal level [207,208].
In obesity, leptin and insulin levels are elevated due to increased fat mass and IR [17].
Leptin improves glucose homeostasis by decreasing the accumulation of intracellular lipids
in the liver and skeletal muscle [209], and by direct activation of AMP-activated protein
kinase (AMPK) in skeletal muscle [210]. In obese subjects, hyperleptinaemia associated
with leptin resistance contributes to the development of obesity and metabolic disorders.
Obese subjects show a strong correlation between leptinaemia and body weight, body fat
percentage, BMI and IR [211,212].
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Adiponectin secreted by adipocytes is involved in controlling food intake and is
closely related to diseases such as obesity and T2D [213,214], in which the biosynthesis
of adiponectin is impaired by various inflammatory and oxidative stress factors [215,216].
Adiponectin regulates the metabolic processes of lipids and glucose. It controls glucose
metabolism and insulin sensitivity [217], increasing the oxidation of FA, reducing TG in
skeletal muscles and the liver and suppressing glucose production in the liver [218]. The
levels of adiponectin are paradoxically inversely correlated with body weight or body
mass index [219]. In several studies, an inverse relationship was observed between the
levels of adiponectin with blood pressure, total cholesterol and low-density lipoproteins
(LDLs) [220]. In addition, low hormone concentrations were observed in diabetes, obesity
and coronary heart disease [221]. Adiponectin concentrations are strongly related to insulin
sensitivity [222], resulting in reduced concentrations in obese patients, obese patients
with mild diabetes and obese patients with T2D [222–224]. It has been indicated as a
predictive marker of T2D in obese subjects even years before the onset of the disease [225].
In obese subjects, other adipokines with higher levels than normal subjects were found,
such as resistin [226], visfatin [227], apelin [228], fatty acid-binding protein specific for
adipocytes [229], adipsin [230] and irisin [231].

Ghrelin is another orexigenic hormone that plays a role in energy metabolism, stimulat-
ing food intake and favouring the increase of weight and fat and plays significant roles as a
regulator of glycaemia and insulinaemia [232]. The acylated ghrelin shows hyperglycaemic
effects leading to IR, while non-acylated ghrelin contrasts hyperglycaemia and improves
insulin sensitivity [233]. High circulating levels of active ghrelin were observed in obese
and T2D individuals [234].

3.3. Gut Microbiota Interactions

Gut microbiota has multiple functional characteristics that result in a wide range of
physiological and pathological effects (Figure 3).

Several studies indicate that the gut microbiota is involved in the development of
obesity, diabetes and associated comorbidities [235–237]. The complex interactions between
genetic background and biological and lifestyle factors, influenced by an obesogenic envi-
ronment, can induce pathophysiological alterations with characteristics of MS and suscepti-
bility to obesity and diabetes, as depicted in Figure 3. The synergistic effect between the gut
microbiota and the host involves the bi-directional gut–brain axis, which is of fundamental
importance for the regulation of energy metabolism and health [238–240]. The symbiotic
relationship with the host ensures the adequate development of the metabolic system, per-
forming important functions of health, such as nutritional status and immunity [241,242].
The human gastrointestinal tract (GIT) involves a wide group of micro-organisms (micro-
biota), including bacteria (dominant) [243], fungi, archaea and viruses [244], which generate
a biomass of 1–2 kg, while their combined genomes (microbiome) are about 150 times higher
than the human genome, with an estimated 3.3 million microbial genes [245–247]. The
human genome consists of about 23,000 genes [248]. In recent years, the sequencing of the
ribosomal RNA gene (16S RNA) has been considered the most suitable technique for high-
lighting the diversity and wealth of the microbiome [249,250], and metagenomic sequencing
is considered a powerful tool for the analysis of complex microbial communities [251].

The composition of the intestinal microbiota is exclusive for each individual and widely
variable in the species, while gene profiles among healthy people are similar [245,252]. The
intestine is sterile at birth, although colonisation of the intestine seems to begin before
birth [253]. Intestinal colonisation occurs during the first months of life and is completed
at 3–4 years of age [254]. The developing microbiota is affected by vital events and the
infant’s diet [255,256]. A profile of the intestinal microbiota of a newborn at term, deliv-
ered vaginally and breastfed, with a balanced maternal milk microbiota, is considered
optimal [257].
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dominated by non-pathogenic microorganisms that are important for physiological interactions with
other systems, such as the brain and organs and tissues involved in metabolism, to prevent and combat
the progression of metabolic syndrome. Dysbiosis in the gut microbiota, caused by many factors
(antibiotics, diet, lifestyle), is associated with metabolic alterations leading to diabetes and related
comorbidities. CVD, cardiovascular disease; IEC, intestinal epithelial cell; LPS, lipopolysaccharide;
SCFA, short chain fatty acid; TJ, tight junction; LDL-C, low-density lipoprotein cholesterol.

Infants born vaginally exhibit a microbiota composed of Lactobacillus, Prevotella and
Sneathia spp. coming from the vaginal tract, while children born by caesarean section
highlight Staphylococcus, Corynebacterium and Propionibacterium spp. [258]. During breast-
feeding, Actinobacteria predominate among the genus Bifidobacterium. The major changes
in the intestinal microbiota in the baby occur with the introduction of solid foods and
the end of breastfeeding/weaning. At this time, the microbiota acquires new strains,
influenced by changes in diet and diseases, and gradually begins to resemble the adult
composition [259]. In the human gastrointestinal tract, large groups of bacteria or phyla
belonging to Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria and Verrucomicrobia were
identified, with the two predominant phyla Bacteroidetes (Gram-negative) and Firmicutes
(Gram-positive) accounting for 90% of the gut microbiota [254,260]. There is considerable
diversity of species and their numbers [258]. Firmicutes phylum contains over 274 genera,
including Clostridium, Bacillus, Lactobacillus and Ruminococcus, with the genus Clostridium as
the most representative, as well as the butyrate producers Eubacterium, Fecalibacterium and
Roseburia. Bacteroidetes comprise about 20 genera; they are efficient degraders of dietary
fiber and include Bacteroides, Prevotella and Xylanibacter, and the most representative is
Bacteroides [260]. Bifidobacterium is an important genus within Actinobacteria; Proteobacteria
includes Escherichia and Desulfovibrio, while Verrucomicrobia includes the genus Akkermansia,
which degrades mucus [261].

The digestive system, along with its length, is characterised by a different composition
of microbiota [242,262]. There is a small diversity and a low amount of microorganisms
in the stomach and a large variety and a high number of microorganisms in the large
intestine. Several populations of obligatory and optional anaerobic microorganisms act
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in the degradation of undigested food [263] in an increasing gradient, from stomach to
jejunum, ileum and colon [264], and there is continuously increasing diversity and microbial
density from the stomach and duodenum (101–103 bacteria/g) to the jejunum and ileum
(104–107 bacteria/g), which culminates in the colon (1011–1012 bacteria/g) [242,247]. The
small intestine exhibits less microbial diversity compared to the colon due to higher acidity,
higher levels of oxygen, shorter transit time and antimicrobial factors mediated by immune
cells. The profile of the jejunum is closely related to that of the stomach with the presence
of Bacilli, mainly of the species Streptococcaceae (50–70%) [265,266]; in the ileum and distal
ileum, the species Bacilli fall, respectively, to 20 and 5% [266]. Conversely, Clostridia species,
such as IX, XIVb, XIVa and IV, reach 30% of the microbiome, and Bacteroidetes species reach
49% [265,266]. The microbial composition of the gut is usually based on the analysis of
faecal material, which is easily accessible but does not fully reflect the microbiota content
throughout the digestive system. In addition, there is a large inter-individual difference
in microflora [267]; thus, the accurate composition of microflora and its functions can be
fallacious [268].

Microbiota and their metabolites play a critical role in regulating metabolic pathways
in health and disease. The gut microbiota both directly and indirectly performs multiple
vital functions for the maintenance of the human host health, including nutrition and
metabolism, such as the digestion of complex dietary foods, the production of vitamins,
the biotransformation of bile acids, the resistance against infections, the regulation of
intestinal permeability and the development of immune cells [269,270]. The microbiota
can digest complex plant polysaccharides in one’s diet [271]. Many species belonging to
the phyla Bacteroidetes and Firmicutes possess enzymes, which determine the extraction
of energy from the diet. The Bacteroides enterotype has a wide saccharolytic potential,
and Ruminococcus carries and degrades the constituent sugars [272]. Bacterial glycosides
hydrolase degrade soluble fibers into short chain fatty acids (SCFAs), such as acetate,
butyrate and propionate [273,274]. They are present in a molar ratio of about 60:20:20 [275]
and constitute about 5–10% of the energy source in healthy hosts [276]. The major producers
of SCFAs include Roseburia spp., Eubacterium rectale and F. prausnitzii and Clostridium groups
IV and XIVa in the gut [272]. The total amount of SCFA was found to be lower in normal
healthy subjects [277].

The fermentation of indigestible carbohydrates occurs especially in the proximal colon,
resulting in the production of gas, SCFAs and succinate. In the distal colon, carbohydrates
are gradually exhausted, especially in Western diets characterised by low amounts of
indigestible carbohydrates; there is a shift in the fermentation of microbial proteins, which
produces a diverse range of metabolites, such as branched-chain fatty acids (BCFAs),
phenolic compounds, amines and ammonia [278]. Metabolites such as indole and hydrogen
sulphide can positively affect the functionality of the intestine and peripheral tissue [279].
SCFAs are readily absorbed by colonocytes [280] and used as respiratory fuels in the
preferential order of butyrate > propionate > acetate. While butyrate provides energy to the
epithelial cells of the colon, acetate and propionate reach the liver and peripheral organs,
where they are used as substrates for gluconeogenesis and lipogenesis. Additionally, acetate
is also a substrate for cholesterol biosynthesis [281,282]. The decrease in pH due to SCFAs
affects microbial ecosystems [283]; it can inhibit the undesirable growth of microorganisms
and increase the absorption of certain nutrients, contributing to the health of the host [284].
SCFAs are important regulators of gut barrier integrity and metabolism. SCFAs, particularly
butyrate, play a role in controlling the integrity of the gut epithelial barrier through the
regulation of tight junction proteins, which regulate the molecular transit between the
lumen and the liver portal system. Butyrate appears to improve intestinal barrier function
by increasing the expression of Claudin-1 and Zonula occludens-1, as well as occludin
redistribution [285]. Gut microbiota prevents bacteria invasion by maintaining the intestinal
epithelium integrity [286] through butyrate producers such as Faecalibacterium and Roseburia,
which increase mucin production, tight junction assembly and mucin degraders Prevotella
and Akkermansia [287]. Bacteroides vulgatus and B. dorei have been shown to control the
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expression of tight junction genes in the colon, reducing intestinal permeability, LPS
production and endotoxaemia [288]. Butyrate, produced by Faecali bacterium Roseburia,
reduces intestinal permeability through serotonin transporters and peroxisome proliferator-
activated receptor gamma pathways (PPAR-γ) [289]. Akkermansia muciniphila protects
the intestinal mucosa by increasing levels of anti-inflammatory endocannabinoids, which
control the intestinal barrier [290]; it was proposed as an indicator of gut integrity [287].

SCFAs from the intestinal microflora have a beneficial effect on host metabolism and
appetite. SCFAs play a potential role in controlling glucose and lipid metabolism and en-
ergy homeostasis [291,292]. Both the central nervous system (CNS) and the enteric nervous
system (ENS) interact with the microbiota (Figure 2) to regulate the metabolism of nutri-
ents, controlling the functions of the GIT and eating behaviour [238,240]. Through vagal
neurons, the gut microbiota can control intestinal peptides secreted by enteroendocrine
cells, such as cholecystokinin, ghrelin, leptin, tyrosine peptide (PYY) and glucagon-like
peptide-1 (GLP-1). The link of SCFAs with G-protein-coupled receptors 43 (Gpr 43) and 41
(Gpr 41) [293] increases plasma levels of satiety hormones derived from enteroendocrine
cells, glucagon-like peptide 1 (GLP-1) and peptide YY (PYY) [294,295], as well as leptin
from human adipocytes [296], resulting in improved glucose homeostasis and reduced
appetite [297]. In particular, by stimulating the activity of peptide YY, Gpr41 increases the
intestinal transit rate and reduces the collection of energy from one’s diet [298]. Gpr43 stimu-
lates GLP-1 to increase insulin sensitivity [292], while the activation of Gpr43 on adipocytes
suppresses insulin signalling and inhibits fat accumulation in adipose tissue [299].

Propionate and butyrate can prevent IR by the induction of intestinal gluconeogenesis;
butyrate through a cAMP-dependent mechanism, propionate by the intestinal circuit-
neuronal brain involving Gpr41 and the consequent release of glucose into the portal vein
leads to the regulation of blood glucose and insulin sensitivity [300]. Overall, the upregu-
lation of intestinal gluconeogenesis results in a reduction in hepatic glucose production,
contributing to improved energy homeostasis.

SCFAs have different functions in tissues [301,302]. They prevent obesity by inhibiting
the action of lipoprotein lipase, which determines the accumulation of triglycerides in
adipocytes [303]. The effects of SCFAs on energy expenditure are associated with the
regulation of the genes PPARγ co-activator 1α (PPARGC1A, encoding PGC1α) and uncou-
pling protein 1 (UCP1) in brown adipose tissue [304]. Butyrate triggers the oxidation and
thermogenesis of fatty acids through increased phosphorylation of the 1α-coactivator of
the gamma receptor activated by the peroxisome proliferator (PGC-1α), AMPK in the liver
and muscles and expression of PGC-1α and mitochondrial-1 decoupling protein (UCP-1)
in brown adipose tissues [305]. Butyrate and propionate also stimulate intestinal gluco-
neogenesis through the gut–brain circuit, contributing to glucose regulation and metabolic
benefits on body weight [300]. Acetate reduces appetite by activating the tricarboxylic acid
cycle (TCA), thus altering the expression of the neuropeptide that regulates hypothalamic
appetite [306].

Acetate and propionate can increase energy expenditure and lipid oxidation by in-
creasing thermogenesis in adipose tissue and inducing browning of adipose tissue [307],
preventing adiposity.

The gut microbiota regulates both the synthesis of bile acids and cholesterol
metabolism [308]. Primary bile acids, such as colic acid and chenodeoxycholic acid, are
synthesised in the liver from cholesterol [309] and conjugated with glycine or taurine before
secretion into bile, which is then deposited in the gallbladder. They are released in the
small intestine to support the digestion and absorption of fats, triglycerides, cholesterol
and fat-soluble vitamins. Approximately 95% of bile acids are reabsorbed in the ileum, and
through the enterohepatic circulation, it returns to the liver at a different time of day for
secretion, thus maintaining the gluco-lipidic and energetic homeostasis and preventing
hyperglycaemia, dyslipidaemia, obesity and metabolic and cardiovascular disorders [310].
A low percentage of bile acids that escape ileal absorption can be reabsorbed in the colon or
modified by intestinal microorganisms to produce secondary bile acids, contributing to pool
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heterogeneity of bile acids [311,312], and are subsequently absorbed by passive diffusion in
the colon and returned to the liver [313]. Secondary bile acids entering circulation act as
signals to influence the host’s metabolism [314,315].

Bile acids also have an endocrine function by signalling and activating receptors
such as farnesoid receptor x (FXR) and bile acid receptor 1 coupled to proteins G (TGR5),
which regulate lipid and glucose metabolism in the liver [316,317]. The activation of the
G protein TGR5 receptor on enteroendocrine cells leads to the secretion of GLP-1 [318],
which regulates appetite, insulin sensitivity and glucose metabolism [319]. Then, bile acid
signalling is associated with the secretion of gastrointestinal hormones PYY and GLP-1,
important in the maintenance of energetic and metabolic homeostasis [319–321].

Microbial stability reduces obesity through the increased expression and/or activity
of fasting-induced adipose factor (FIAF), which regulates lipoprotein lipase produced by
the intestine, liver and adipose tissue [322,323], and controls the synthesis of angiopoietin-
like factor IV, thus regulating peripheral fat storage and adiposity [324]. The metabolic
pathway of antimicrobial peptide (AMP)-activated protein kinase (AMPK) also protects
against obesity [325]. The gut microbiota influences both the innate and adaptive immune
systems; it plays an important role in the development of CD4+ T-cells [326,327]. The
association of specific bacterial species with the development of T-cell subtypes has been
revealed. For instance, Bacteroides fragilis has been shown to induce the development of a
systemic Th1 response through its polysaccharide A molecules [328,329], demonstrating
that colonic Tregs have a unique TCR repertoire that primarily recognises bacteria from
colonic contents. Gut microbiota and its products regulate the development and function
of immune cells [269,330]. Butyrate stimulates the formation of peripheral regulatory
T-cells [331,332]. The effect on the immune system is obtained through the interaction
between microbial patterns, such as lipopolysaccharide (LPS), lipoteichoic acids of bacterial
walls, flagellin, stranded RNA/DNA and toll-like receptors (TLRs) of epithelial cells of
the intestinal tract [330,333]. For example, TLR5 is a pattern recognition receptor for
flagellin, and signals derived from TLR5 are important for the maintenance of intestinal
homeostasis [334].

Many factors can affect the composition and/or functionality of the gut microbiota,
also known as dysbiosis, including genetics [335], age [336], mode of delivery at birth [256],
method of feeding in infants [255], sex [337], geographical location [338], diet [339,340],
BMI [341], physical activity [342], antibiotic consumption [343,344] and diseases [345,346].

There is no consensus on the composition of the intestinal microbiota in an obese/
overweight individual’s gut [347]. However, obesity-related dysbiosis has been strongly cor-
related with a higher ratio of Firmicutes/Bacteroidetes [260], as observed in children [348,349],
obese women with MS [350] or obese individuals [351]. Different studies have observed
the link between obesity and unbalanced dominant intestinal phyla, with reductions in
Bacteroidetes associated with a proportional increase in Firmicutes [352,353], whereas other
studies have found no differences between Firmicutes and Bacteroidetes in obese individu-
als [354,355]. Among the phyla Bacteroidetes and Firmicutes, there are species that promote
a higher extraction of energy from the diet and the preservation of extra calories [303].
Jumpertz et al. [355] reported an increase of 20% in Firmicutes and a decrease of 20% in
Bacteroidetes associated with the supplementary extraction of 150 Kcal per day from one’s
diet. Many studies show high changes at family, genus and species levels, with a tendency
towards excessive growth of bacteria that are more efficient in extracting energy from food,
inducing excessive fat accumulation with consequent obesogenic and pro-inflammatory
profiles [356–358]. The Firmicutes phylum contains many species that produce butyrate,
which may contribute to increased energy conservation in obese people [355]. Considering
obesity due to unbalanced nutrition and inflammatory disease, dysbiosis plays a key role
in the development of adiposity and T2D [274]. The gut microbiota plays a crucial role in
metabolism, influencing energy balance, glucose metabolism and low-grade inflammation
associated with obesity [359]. Among the environmental factors, dietary habits can affect
gut microbiota composition. The evolutionary process of the human diet indicates a link
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with the diet of monkeys, whose genetic diversity is about 2–3% [360]. The ancestral human
diet was essentially vegetarian [361], consisting of complex carbohydrates fermented by the
intestinal microbiota to produce energy [362]. Western diets are generally low in fiber and
rich in fat and digestible sugars [363], as well as high uptake of SFA [364,365], which can
lead to an alteration in the composition of the gut microbiota, obesity and diabetes [365]. In
particular, the consumption of SFA has been linked to a decrease in Bacteroides, Prevotella,
Lactobacillus ssp. and Bifidobacterium spp. [366–368].

The intestinal microbiota is involved in storing energy through different mechanisms.
Intestinal dysbiosis alters the production of gastrointestinal factors related to satiety and
metabolism, with a consequent increase in fat storage. The total amount of SCFAs was
found to be higher in obese subjects [277]. In animals subjected to a high-fat diet, acetate
and propionate cause the expansion of adipose tissue through the inhibition of lipolysis
and adipocyte differentiation [369,370]. Metabolite SCFAs can promote the accumulation
of fat through the activation of specific receptors (GPR43 and 41), expressed in different cell
types (immune cells, endocrine cells, adipocytes) [293]. The activation of GPR43 and 41
is associated with an increased expression of GLP-1 (mechanism involving GPR43) and
peptide YY (PYY track, GPR41) in the intestine [282]. Both peptides are related to the
reduction of hunger and appetite, but the PYY also reduces intestinal transit and may
increase the absorption of nutrients, including SCFAs [371], favouring the increase in
weight and obesity. Other microbial messengers to induce obesity involve farnesoid X
receptor, proliferator-activated receptor-α [372,373], methylamine N-oxide [374,375] and
indoles [375].

The intestinal microbiota can modify the primary bile acids through the activity of the
bile salt hydrolase in secondary bile acids (deoxycholic acid, lithocholic acid, ursodeoxy-
cholic acid) and modify their bioactivity and bioavailability [376,377], influencing the
metabolic responses involved [378]. Modified bile acids contribute to their pool hetero-
geneity [311]. Intestinal bacteria, by altering the composition of bile acids, can modify
the cellular metabolism and the physiology of the host [376,379]. Secondary bile acids
derived from the microbiota enter the circulation and, as signalling molecules, influence
the host’s metabolism [315]. Bile acids interact with receptors such as FXR and TGR5,
affecting cardiovascular function [380]. Secondary bile acids are involved in pathological
processes, including irritable bowel syndrome (IBS), colon cancer [381], liver problems [382],
gallstones and high cholesterol in some patients [383].

Bacterial activities on the bile acids may also affect the activation of the receptor G
protein TGR5 on enteroendocrine L cells, which leads to the secretion of GLP-1, regulating
appetite, insulin sensitivity and glucose metabolism [319].

Fat storage can also be influenced by FIAF, which regulates LPL [323]. Microbial
suppression of the FIAF, a peptide potent inhibitor of LPL, promotes obesity [322,323], as
well as the major synthesis of angiopoietin-like factor IV [324].

Changes in the composition and activity of the gut microbiota affect type 1 diabetes.
The genus Bacteroides is the most representative of dysbiosis associated with T1D in chil-
dren [287,384,385], known as juvenile diabetes. In addition, it is characterised by an
increased Bacteroidetes–Firmicutes ratio [287]; large amounts of Blautia spp., Streptococcus
spp. and Rikenellaceae; and low levels of Lactobacillus, Bifidobacterium, Blautia coccoides,
Faecalibacterium spp. and bacteria that degrade mucin as Akkermansia spp. and Prevotella
spp. [287,386]. It should be noted that, although T1D is one of the most represented
chronic diseases in childhood, about 25% of adults report the disease [387], the incidence of
which has been increasing for several decades in Western countries after the Second World
War [388,389]. The onset of T1D was associated with a change in the Bacteroidetes:Firmicutes
ratio [287,390]. Then, the Bacteroidetes:Firmicutes ratio, along with the Bacteroides dorei and B.
vulgatus, have been proposed as predictors of T1D-associated autoimmunity [391].

T1D is regarded as a disease characterised by insulin deficiency resulting from autoim-
mune destruction or loss of the function of pancreatic β-cells [392]. Autoimmunity against
insulin is expressed through the release of cytokines and chemokines by beta cells that
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attract lymphocytes and macrophages, causing immune invasion of the islets. Circulating
autoantibodies targeting autoantigens, such as insulin, as well as cytokines released by
infiltrating lymphocytes, such as IL-1β, IFN-γ and TNF-α, cause progressive destruction
of β-cells [393,394]. However, the triggering factor for autoimmunity in T1D is not well
defined [395].

The methods of birth and feeding of the infant influence the composition of the
microbiota. In particular, children born vaginally show a higher level of bacterioides
and a quicker maturation of the microbiota [396]. Breast milk contains favourable prop-
erties against T1D [397]. Bifidobacterium and Lactobacillus, transferred from mother to
child [398,399], preserve the intestinal barrier, stimulating the production of IgA antibodies,
and are involved in the production of SCFAs [398,400]. Bifidobacterium infantis plays an
important role in immune regulation [401] and in the protection of children at risk of
T1D. Bacteroides species, such as B. dorei, inhibit immune stimulation and inflammatory
cytokines modulated by high levels of LPS derived from Bacteroides [402]. The link between
LPS and TD1 involves toll-like receptor-3 and innate immune signal transduction adaptor
(MyD88) in mice [402,403].

A high-fiber diet is linked to a butyrate beach SCFAs [404]. Butyrate plays an impor-
tant role in modulating the immune response through the differentiation of regulatory T
lymphocytes (Tregs), such as Fox3p + Tregs, and through the inhibition of inflammatory
cytokines, such as IFN-γ [332,405].

The SCFA-producing species, such as Bifidobacterium adolescentis, Roseburia faecis and
Faecalibacterium prausnitzii, are capable of producing butyrate, generate fewer autoantibod-
ies [406] and are protective in children at risk of T1D. This occurs with various clusters of
Clostridium able to form butyrate from acetate, along with the Bifidobacterium species that can
form butyrate through lactate metabolism. This substrate can be transformed into butyrate
or in other SCFAs, such as acetate, succinate and propionate, during their anaerobic bacterial
fermentation in the gut, depending on the type of microbiota [407]. It has also been re-
ported that butyrate producers, such as Faecalibacterium and Roseburia, and mucin degraders
Prevotella and Akkermansia perform a protective action against T1D [287,365,386,390,406]
because butyrate increases mucin synthesis, tight joint assembly and epithelial cell in-
tegrity [408]. In contrast, when microorganisms such as Bacteroides and Veillonella are
abundant, the substrate follows the pathway for succinate, acetate and propionate, which
alter mucin synthesis, tight junctions and paracellular permeability [407]. Thus, dysbiosis
can trigger a low-grade chronic inflammation state and exposure to LPS, which, by binding
to TLR4 and its co-receptors, stimulate a cascade of responses, ultimately determining the
release of pro-inflammatory molecules that interfere with the modulation of glucose and
insulin metabolism [406].

Dysbiosis triggers pathogenic mechanisms that promote the development of obesity,
T2D and MS [282,409]. However, the composition and/or metabolic activity of intestinal
microorganisms contributing to the onset of obesity and T2D remain unclear.

Distinct modifications in the gut microbiota have been associated with T2D [410]: a
noticeable decline in the phylum Firmicutes and Bifidobacterium spp., a positive correla-
tion between plasma glucose and the relationship between Bacteroidetes and Firmicutes,
the relationship between Bacteroides-Prevotella and Clostridium coccoides and the content of
Betaproteobacteria. Thus, an increased community of Gram-negative bacteria (Bacteroides-
Prevotella and Betaproteobacteria) is related to glucose intolerance [410], and the Faecalibac-
terium prausnitziis species has been negatively correlated with an inflammatory state and
diabetes [411].

Gut microbiota in patients with T2D mellitus is characterised by the depletion of
different bacteria that produce butyrate, such as the species Clostridium, Eubacterium rectale,
Faecalibacterium prausnitzii, Roseburia intestinalis and Roseburia inulinivorans, and by an in-
crease in opportunistic pathogens [412,413]. The correlation between changes in the gut
microbiota and T2D markers indicates that Clostridium species are negatively related to fast-
ing glucose levels, glycated haemoglobin (Hba1c) and insulin [413]. A high concentration
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of glucose in the blood may be expected from a reduction in the proportion of anaerobic
species, in particular, Bacteroides [414].

In the pathological conditions of obesity and T2D, specific molecular models associated
with microbes, such as LPS, play an important role in the onset of disorders associated
with obesity [415,416]. LPS is a component of the cell wall of Gram-negative bacteria
released by the microbiota [417]. It is an amphiphilic molecule; the hydrophilic lipid
portion is associated with immunomodulation and toxicity of LPS [418]. An increased
concentration of endotoxin in the blood is referred to as metabolic endotoxaemia in obese
individuals [419]. In addition, the Firmicutes:Bacteroidetes ratio is found to be higher in very
obese individuals than in “healthy obese” and lean individuals [411,420].

In the lipid storage mechanism, the abnormal expansion of white adipose mass,
through hyperplasia and adipocyte hypertrophy, results in cellular stress and a local
inflammatory response with the infiltration of macrophages and release of inflammatory
pro-cytokines [99,421]. The low-grade chronic inflammation of adipose tissue contributes
to obesity, IR, the development of hyperglycaemia, and, therefore, the manifestation of
T2D [102,137].

LPS affects the secretion of pro-inflammatory cytokines and is identified as a trigger
of IR [415]. LPS is able to trigger low-grade inflammation and IR when it translocates
in the bloodstream [422–424]. The immune response occurs by binding LPS to the LPS
binding protein, which activates the CD14 receptor [425]. This complex binds to toll-like
receptor 4 (TLR4) on macrophages and adipose tissue, which activates the expression of
genes encoding pro-inflammatory proteins, such as factor nuclear kappa B (NF-κB) and
activator protein 1 (AP-1) [334,425], resulting in metabolic endotoxaemia (i.e., increased
plasma LPS levels), which characterises both obesity and diabetes [415,426,427].

Intestinal bacteria can also induce metabolic endotoxaemia through the alteration
and the permeability of the intestinal barrier due to the reduction of soluble IgA and the
level of glucagon-like peptide-2 (GLP-2) [428,429], which improves the barrier function of
the mucosa by increasing the rate proliferation of crypt cells and elongation of villus, and
reducing apoptosis [429,430]. In addition, increased intestinal permeability can also derive
from the reduced integrity of the epithelial tight-junction proteins (zona occludens-1 and
occludin) of the intestine [366], and from the reduced thickness of the mucus layer [290]
as well as from the activation of the endocannabinoid (ECB) system, which may lead to
higher levels of plasma LPS [415,431].

NASH and NAFLD related to endotoxaemia are associated with greater intestinal
permeability [432,433]. Increases in LPS levels and functional alterations of the intestinal
barrier have been related to body mass index and high-fat diets in humans [434–437].

Dysfunction of the intestinal barrier linked to dysbiosis promotes intestinal dis-
eases [438,439], while numerous immune disorders can result from commensal dysbio-
sis [327,440], such as inflammatory bowel disease (IBD) [441], rheumatoid arthritis [442],
cardiometabolic diseases [443] and cancer [444].

4. Metabolic Syndrome and Cardiovascular Diseases

In recent decades, abundant evidence has shown that MS plays an important role in
cardiovascular diseases (CVDs) [445,446].

Chronic stress is included among the main factors increasing the risk of CVD [446,447].
In the presence of oxidative stress and superoxide anions, factors of vascular homeostasis
decrease and factors of contraction, such as the contraction factor derived from endothelium
(EDCF), prostaglandin (PGH2), endothelin-1 (ET-1) and thromboxane A2 (TXA2), increase.
O2
•¯ decreases the bioavailability of NO, forms peroxynitrites and inhibits the activity

of soluble guanylate cyclase (sGC) [448]. A high concentration of peroxinitrites inhibits
sGC, prostacyclin production and SOD. The toxic effects of peroxynitrites on vasculature
induce damage to the myocardium [449]. The loss of NO availability promotes many
disorders, such as the formation of a thrombogenic surface in the vessels, an increase in the
permeability of endothelium and an accumulation of oxy-LDL. This attracts monocytes
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and T lymphocytes, promotes the proliferation of smooth muscle cells and results in the
growth of vascular walls, ultimately leading to atherosclerosis and vasculopathy [450].

Genetic and environmental factors affect the interactions between lipids, the endothe-
lium, smooth muscle cells, inflammatory cells and the coagulation system, leading to the
development of CVD.

4.1. Dyslipidaemia

The dyslipidaemia, an important factor in MS and defined as a common co-morbidity
of diabetes and obesity, can lead to cardiovascular complications. Recent studies indicate
that obese subjects exhibit concentric left ventricular hypertrophy and mild diastolic and/or
systolic dysfunction [451]. Dyslipidaemia is characterised by a high plasma concentration
of TG, reduced HDL and increased LDL and apolipoprotein levels [452]. The increased
flow of free fatty acids into the bloodstream, resulting from IR or dysfunctional adipose
tissue, is absorbed by the liver, stimulating the synthesis of triglycerides and the production
of apolipoproteins B100 and VLDL [452,453]. At high levels of triglycerides, the cholesteryl
ester transfer protein (CETP) promotes the exchange of a cholesterol ester from a particle
of LDL or HDL with a triglyceride of a particle of VLDL [454]. The particles of LDL
and HDL enriched with triglycerides are affected by hepatic lipase, which leads to the
generation of particles of LDL that are both smaller and denser and particles of HDL that
are smaller [455].

HDL has an inverse correlation with the risk of CVD, which includes antioxidant,
anti-inflammatory, anti-thrombotic and pro-fibrinolytic activities, which contribute to its
antiatherogenic role.

Different studies show that high levels of HDL are positively correlated with right
ventricle functionality and pulmonary arterial hypertension [456], while high levels of
LDLs are associated with increased mortality [457]. The small, dense particles of LDL are
associated with an increase in cardiovascular risk. Different mechanisms may increase the
atherogenicity of small dense particles of LDL, which can more quickly cross the arterial
wall, bind more easily to proteoglycans in the wall of the vessel and have a greater provision
to oxidation [458,459]. The circulating LDL is oxidised through the interaction with free
radicals and becomes ox-LDL [460]. Ox-LDLs are one of the harmful lipids that can alter
vascular functions. The development of atherosclerotic plaque is triggered by the binding
of ox-LDL to a lectin-like ox-LDL receptor-1 (LOX-1) of endothelial cells.

4.2. Hypertension

The link between MS, hypertension and CVD is not well defined. However, abnormal
metabolic pathways involved in MS can affect the cardiovascular system. Animal studies
have shown that hypertension is associated with oxidative stress and the inactivation of
nitric oxide production, which may cause endothelial dysfunction [461]. The vascular alter-
ations are particularly associated with MS [462]. High blood pressure may increase arterial
stiffness, and individuals with MS tend to have low capillary density [463]. Moreover,
endothelial dysfunction [464] and inflammation [465] can contribute to hypertension. In
patients with hypertension, the rigidity of the large elastic arteries, such as the carotids and
the aorta, is accelerated [466]. Vascular degeneration causes deficient circulation, which
leads to hypoxia in target organs such as the brain [467]. Endothelial dysfunction of small
cerebral vessels [467,468] may lead to vascular cognitive deterioration and dementia [469].

4.3. Hyperglycaemia and Vascular Complications

Metabolic syndrome affects vascular complications, as observed in the mesenteric
artery, heart, brain, kidneys and retina [470], as well as in pulmonary vascular function [471].
Lack of insulin secretion in T1D and a combination of IR with an inadequate compensatory
response to insulin secretion in T2D lead to hyperglycaemia [472] and, consequently, to
macro and microvascular diseases [470].
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The high production of ROS/RNS caused by hyperglycaemia affects CVD and atheroscle-
rosis [473,474], with vascular complications in endothelial cells (EC), smooth muscle cells
(SMC) and monocytes. Endothelial cells control the spread of oxygen and carbon dioxide,
revascularisation by stimulation of the vascular endothelial growth factor (VEGF), the self-
regulation of blood flow, the migration of circulating cells and oversised solutes [467,475].
The endothelium increases or decreases the diameter of vessels and distal blood flow
through the vasodilator mechanisms of nitric oxide, which determine the relaxation of
SMC, allowing for the dilation of the vessels.

Vascular SMCs increase contractility by increasing Ca2+ influx and EDCF produc-
tion [476]. Dysfunctional ECs cause a reduction in endothelial relaxation and increased
vasoconstriction due to the reduced availability of nitric oxide [475] and increased produc-
tion of contraction factors, such as endotheline-1 (ET-1) and thromboxane A2 [477,478]. In
addition, the proliferation of SMC on the abluminal side [479] and platelet adhesion on the
luminal side [480] restrict the vessels, while more proliferative SMC may result in increased
vascular thickness [481].

EC dysfunction includes increased pro-inflammatory stimuli, adhesion molecules
and reduction of barrier permeability, with infiltration of macrophages, LDL transport
and production of foam cells [482–484]. Then, the proliferation of SMC and migration
increase infiltration of inflammatory cells, the degradation of the matrix leading to the
generation of plaque. Atheroma plaque develops very gradually, with enrichment in
lipids, smooth muscle cells, collagen, proteoglycans and calcium [485]. The expanding
atheroma swells within the arteries reducing the area of the vessel and blood flow. At
the centre of an atheroma plaque, there is a lipid pool, surrounded by a fibrous cap of
smooth muscle cells and a matrix rich in collagen. The production of connective tissue
by fibroblasts and the deposit of calcium in the lesion cause sclerosis or hardening of
the arteries; plaque rupture, formation of clots and thrombosis cause vascular occlusion
and obstruction of blood flow [486–488]. It is estimated that about 75% of plaques that
cause acute coronary incidents exhibit rupture, and about 25% show endothelial coating
erosion; a limited number show calcified nodules [489]. Plaque rupture, which causes
acute cardiovascular accidents, is more associated with plaques with necrotic nuclei and
thinner fibrous caps, a reduced number of smooth muscle cells, a larger lipid pool and
more inflammatory cells [488,490,491]. Unlike heart failure associated with atherosclerotic
disease, diastolic dysfunction is a dominant aspect of the obesity-associated impairment in
myocardial function [492].

5. Metabolic Syndrome and Neurological Diseases

Metabolic syndrome is a risk factor for neurological disorders. The brain is the most
vulnerable part of the body due to high oxygen consumption and enrichment in PUFA. The
brain consumes 20% more oxygen than other parts of the body.

Lipids are rich in the brain, such as cholesterol, glycerophospholipids (GP) and sphin-
golipids [493], and they are found to a greater extent in the plasma membrane, where they
act as a barrier [494]; in nerve cells, lipids account for 50–60% of cell membrane constituents.
Fatty acids are structural components of neuronal membranes. PUFAs are constituents
of phospholipids and sphingolipids of cell membranes. The neuronal membrane is com-
posed of about 50% of PUFA, while in the myelin scabbard, these lipids make up about
70% [495]. Notably, docosahexaenoic acid (DHA) and arachidonic acid (AA) are important
for brain development, synaptogenesis and neurogenesis. Because brain cell membranes
are rich in PUFA, they are more vulnerable to ROS/RNS, which cause oxidative stress and
are prone to lipid peroxidation [496,497]. This, in turn, reduces membrane fluidity and
increases membrane damage. ROS causes a harmful effect on neurons and accumulates
in the brain, causing neurodegenerative diseases. Then, a reduced level of antioxidant
GSH and high level of ROS in the brain lead to neurodegenerative disorders, such as
Alzheimer’s disease (AD) [498], Parkinson’s disease (PD) [499], Huntington’s disease [500]
and Machado–Joseph’s disease [501]. The bases of DNA/ RNA, in particular, guanine, are
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susceptible to oxidation with the consequent formation of 8-hydroxyquine and 8-hydroxy-
2-deoxyguanosine. Carbonylation and protein nitrification are predominantly observed in
the brains of patients with Alzheimer’s disease [502].

Increasing data indicate that lipid homeostasis in the nervous system is impaired
during ageing and in various neurodegenerative diseases, such as AD and PD [503]. Cell
membranes contain microstructures called lipid rafts, domains ordered for fluids rich
in sphingolipid and cholesterol. Lipid rafts include protein complexes that interact to
develop the signal regulation of the signal transduction cascade [504]. An alteration in
lipid rafts can affect the amyloidogenic process and the aggregation of Aβ peptide and
α-synuleic [505,506], contributing to promoting neuropathological processes as observed
in AD and PD [506,507].

To explain the complex relationship between metabolic and cognitive disorders [508],
a metabolic–cognitive syndrome has been proposed that considers metabolic alterations
to be a continuum leading to varying degrees of cognitive disorders [509]. High levels
and interactions between lipid mediators derived from phospholipids, sphingolipids and
cholesterol trigger oxidative stress, neuroinflammation and apoptotic cell death [17]. In
animal models, a chronic reduction in insulin receptors in the ventromedial hypothalamus
produces glucose intolerance. Studies have linked IR [510], T2D, visceral obesity [511]
and MS [512] to cerebral atrophy and cognitive impairment with the decline of executive
function [513].

Many data show that hypertension [514], diabetes [515] and obesity [516] are linked
to cardiovascular diseases, as well as to stroke, AD and depression [17]. Mechanisms
may involve IR, insulin receptor and insulin growth factor (IGF) alteration, glucose tox-
icity, the generation of ROS and advanced glycation end products (AGE) and receptor
activation for advanced glycation end products (RAGE), together with the manifestation of
adipokines/cytokines and the increase in lipid mediators associated with low-grade chronic
inflammation induction in the vascular and nervous systems [17]. The neurovascular unit
maintains brain homeostasis [517], and its dysfunction plays a determining role regarding
the onset of neurodegenerative conditions, such as stroke AD and depression [518,519].

5.1. Stroke

MS is the link between cardiovascular and cerebrovascular diseases, including cerebral
infarction. In fact, an alteration of antioxidant systems, an increase in lipid peroxidation
products and an inflammatory state have been observed in patients with stroke [520].
IR/hyperinsulinaemia, proven risks of hypertension, dyslipidaemia and obesity increase
the risk of stroke in patients with diabetes and MS [521], as IR and sympathetic nerve hy-
peractivity can raise blood pressure, causing spontaneous intracerebral haemorrhages [522].
High glycaemia is a strong predictive cause of recurrent stroke, especially among women
compared to men, and with ischemic stroke [523]. The phenomenon is associated with the
increased presence of endothelial dysfunction and hypertension in diabetic women and
the inflammatory effects of diabetes on the increased damage of stroke to the brain [524].
IR and hyperinsulinaemia can explain the increased risk of stroke in people with diabetes
and MS [525]. Stroke can trigger neurodegeneration and cognitive decline [526], possibly
inducing inflammation [527]. Regarding the incidence and risk factors associated with
pre- and post-stroke dementia, the mechanisms remain unclear [528], beyond the fact
that neurodegenerative and vascular mechanisms contribute to cognitive decline. The
examination of the incidence of stroke and dementia for 12 years [529,530] suggests that
the prevention of stroke can also prevent certain forms of dementia.

5.2. Alzheimer

Alzheimer’s disease is the most common form of dementia in old age. About 44 million
people live with dementia in the world, and about 70% is caused by AD, with a great impact
on both health and social systems [531]. In Europe, dementia affected about 10.5 million
citizens between 30 and 95+ years of age in 2015 and is estimated to increase to 13.42
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million people by 2030 [532]. AD is characterised by memory loss and cognitive decline,
also associated with behavioural disorders [533,534]. The exact cause of AD is not yet
known, but environmental factors and hereditary predisposition may contribute to its
onset. Alzheimer’s disease is manifested by the deposition of protein aggregates, including
extracellular amyloid plaques (Aβ), hyperphosphorylation of the Tau protein, formation of
neurofibrillary tangles and loss of synapses and neurons, responsible for cerebral atrophy
and cognitive decline [535–537]. In particular, the aggregation of Aβ results from an
abnormal splitting of the amyloid precursor protein by β- and γ-secretases to produce Aβ

peptides with amino acid residues [538]; diffuse plaques are the result of the deposition of
both Aβ-42 and Aβ-40 [539]. The extracellular transport of Aβ is accelerated by insulin, thus
explaining why diabetics have a significantly increased incidence of AD [540]. Although the
Aβ peptides have a role in the defence of the brain from infections [111], their accumulation
promotes an inflammatory response mediated by microglia and astrocytes [541]. Whether
the inflammation is the cause or the consequence of the accumulation of Aβ is not yet clear.
However, an important role of the immune system has been proposed in the development
or progression of AD [542,543].

Neuroinflammatory responses involve both cellular and molecular players [544] and
are also based on the activation of NLRP3 microglial inflammasome. Aβ deposits have
been shown to activate NLRP inflammasome, leading to the production of IL-1β and IL-18,
which can contribute to the pathogenesis of AD and cause cognitive impairment [545,546].
The onset of neurodegeneration in AD commonly occurs after age 65. However, an early
form of AD has also been reported before the age of 65 due to genetic mutations that lead
to an overproduction of amyloid Aβ peptides in the brain of the patient. In both forms of
AD, Aβ cascades have been involved in neuronal loss, memory loss and alterations of other
cognitive functions [547]. Systemic inflammation impairs the blood–brain barrier, which
becomes more prone to altered secretory transport and functioning, and which leads to
neurodegenerative AD disorders [548]. Obesity and diabetes are characterised by a broken
blood–brain barrier with noticeably lower levels of annexe A1 expression [549].

5.3. Depression

Metabolic syndrome can lead to depression in young people, adults [550] and middle-
aged people [551], causing disability and economic damage [552].

The hippocampus represents the key brain area for the mediation of cognitive disor-
ders linked to MS associated with emotional alterations. Chronic stress is one of the main
contributors to the development of depression due to the deregulation of the hypothalamus–
pituitary–adrenal axis (HPA) and the autonomic nervous system. Stress stimulates the
rapid release of cortisol and noradrenaline.

Among the biological constituents that can affect brain activity, insulin, leptin and
inflammatory factors are the basis of behavioural alterations associated with MS [512].

Different studies and meta-analyses have shown that depressive and anxiety disor-
ders are linked to physiological disorders such as systemic inflammation [553], oxidative
stress [554], hyperactivity of the hypothalamic–pituitary–adrenal axis (HPA) [555] and
dysregulated autonomous tone [556], along with an alteration of MS [552]. Meta-analyses
indicate that people with depressive and anxiety disorders have higher risks of diabetes,
stroke, obesity [557], physical decline and cognitive decline [558]. Type 2 diabetes and
depression are linked together through stress that alters the brain’s ability to regulate the
release of corticosteroids, resulting in hypercortisolaemia [559]. Excessive stimulation of
corticosteroid receptors in the hippocampus can lead to atrophy of the hippocampus, caus-
ing depression and dementia [560]. Depression is related to obesity through the disordering
of the autonomic nervous system and HPA [561].

6. Management of Metabolic Syndrome

The modern management of MS involves a multidisciplinary approach that combines
lifestyle changes and pharmacological interventions. Pharmacotherapy and associated
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comorbidities necessitate the prolonged use of multiple medications, which is challenging
for patients with poor compliance. Thus, there is a growing interest in lifestyle changes
to the management of metabolic dysfunction, such as the control of body weight and
healthy diets.

Based on animal and human studies, anti-oxidative therapies have been found to be
effective in the treatment of a common node, such as redox imbalance, between multifacto-
rial disorders associated with MS [562,563]. The imbalance between free radicals/oxidants
and antioxidant defences leads to oxidative stress, which promotes a wide range of clinical
disorders, both as a source and as a result, and diseases [31].

Antioxidant systems include endogenous antioxidant defence mechanisms that act
along with exogenous antioxidants, such as vitamins and derivatives of dietary polyphe-
nols, to counteract stress and oxidative damage [564]. Antioxidants, such as vitamins
(E, C, Q) and carotenoids or polyphenols (as phenolic acids and flavonoids), are derived
from food [565–567]. Antioxidants act synergistically by trapping single electrons from
free radicals or by reducing ROS enzymatically. There is a general trend toward the use
of natural rather than synthetic antioxidants [568,569]. Plant antioxidant therapies have
shown significant effects in various stress conditions [561,562,570,571] and in the protection
of diseases associated with MS [572]. Many natural compounds derived from plant ex-
tracts, spices, herbs and essential oils have beneficial effects in patients with MS [573–575].
Polyphenols are the most prevalent antioxidants in plant-based diets, including fruits,
vegetables and cereals [576], whose consumption reduces the risk of MS [337]. A high-
quality plant-based diet is an effective intervention for weight management [577]. A higher
consumption of fruits and vegetables reduces the risk of cognitive impairment and de-
mentia [578]. The phytochemicals of fruits and vegetables have protective effects against
PD [579]. Mediterranean diets rich in neuroprotective nutrients have a beneficial effect
on developing Alzheimer’s disease [580]. However, many problems still remain elusive:
most exogenously administrated antioxidants are not selective or uniformly distributed in
the various parts of cells or tissues [581,582]; the threshold level of antioxidant nutrients
needed for optimal nutrition is unclear [573,583], as well as the specificity of antioxidants
and their possible interactions [573,584]. Therefore, it is suggested to focus on developing
innovative targeted antioxidants to achieve precise therapeutic effects [581,585].

Lifestyle is important in the prevention and treatment of obesity, diabetes and diseases
linked to MS [586]. Weight loss may prevent and reverse diabetes [587–589] and improve
blood glucose, insulin sensitivity and comorbidities [590]. The decrease in weight can
reduce cardiovascular risk associated with obesity and diabetes [591,592]. Dietary energy
restriction promotes weight loss and reduces risks of metabolic disorders [593,594]. It also
improves lipid and cytokine profiles, reduces cardiovascular risks [595] and improves blood
sugar and insulin sensitivity in obese patients with T2D [596]. Johnston and coworkers [597]
reported that low carbohydrate ketogenic diets were similarly effective in reducing body
weight and IR in patients with diabesity. Dietary protein restriction has been associated with
a reduction in diabetes [593] and can lead to the same clinical results as calorie restriction
without reducing calorie intake [598]. Evidence indicates that intermittent fasting can
replace the mechanisms of dietary or caloric restriction in weight loss [599,600].

Microbiota control can play an important role in the development of obesity and
diabetes [601]. The Mediterranean diet is associated with a wide range of benefits in
young and adult patients with diabesity and metabolic syndrome in the prevention of
derived complications [602–606], partly due to the ability to regulate microbial populations,
improving the growth of Lactobacillus spp., Bifidobacterium spp. and Prevotella spp. and
limiting Clostridium spp. development [607]. Restoring intestinal microbiota composition
and function can have a significant impact on improving cardiovascular disease [608] and
neurodegenerative diseases [609].
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7. Conclusions and Future Perspectives

MS is a growing disorder that affects thousands of people around the world, especially
in industrialised countries, increasing mortality.

Hyperglycaemia, IR, inflammation, oxidative stress, dysbiosis, abdominal obesity,
atherogenic dyslipidaemia and hypertension are the main pathological comorbidities asso-
ciated with MS. All cellular and biochemical alterations observed in MS as dysregulation
in the glucose and lipid metabolism, expression in immune response, impairment of en-
dothelial cell function and dysbiosis may represent a pathological bridge between MS
and diseases. These factors, taken together, constitute the best indicator of the MS risk
for diabesity, cardiovascular diseases and neurological disorders. Recent discoveries im-
prove our understanding of them and could lead to better therapeutic strategies in the
future. The interaction between the microbiome, metabolic processes and health outcomes
should also be considered relevant to these health effects, justifying further research. A
better understanding of metabolic disorders is expected to promote the development of
new biomarkers for risk or diagnosis, as well as beneficial treatments to reduce diseases
associated with metabolic syndrome, including integrative approaches aimed at improving
lifestyle and diet routine.
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P. Low-density lipoprotein cholesterol and survival in pulmonary arterial hypertension. Sci. Rep. 2017, 7, 41650. [CrossRef]

458. Hurt-Camejo, E.; Camejo, G.; Rosengren, B.; Lopez, F.; Wiklund, O.; Bondjers, G. Differential uptake of proteoglycan-selected
subfractions of low density lipoprotein by human macrophages. J. Lipid Res. 1990, 31, 1387–1398. [CrossRef]

459. Tribble, D.L.; Rizzo, M.; Chait, A.; Lewis, D.M.; Blanche, P.J.; Krauss, R.M. Enhanced oxidative susceptibility and reduced
antioxidant content of metabolic precursors of small, dense low-density lipoproteins. Am. J. Med. 2001, 110, 103–110. [CrossRef]

460. Zmysłowski, A.; Szterk, A. Current knowledge on the mechanism of atherosclerosis and pro-atherosclerotic properties of
oxysterols. Lipids Health Dis. 2017, 16, 188. [CrossRef] [PubMed]

461. Roberts, C.K.; Barnard, R.J.; Sindhu, R.K.; Jurczak, M.; Ehdaie, A.; Vaziri, N.D. A high-fat, refined-carbohydrate diet induces
endothelial dysfunction and oxidant/antioxidant imbalance and depresses NOS protein expression. J. Appl. Physiol. 2005, 98,
203–210. [CrossRef] [PubMed]

462. Czernichow, S.; Greenfield, J.R.; Galan, P.; Jellouli, F.; E Safar, M.; Blacher, J.; Hercberg, S.; I Levy, B. Macrovascular and
microvascular dysfunction in the metabolic syndrome. Hypertens. Res. 2010, 33, 293–297. [CrossRef]

463. Greenstein, A.S.; Khavandi, K.; Withers, S.B.; Sonoyama, K.; Clancy, O.; Jeziorska, M.; Laing, I.; Yates, A.P.; Pemberton, P.W.;
Malik, R.A.; et al. Local inflammation and hypoxia abolish the protective anticontractile properties of perivascular fat in obese
patients. Circulation 2009, 119, 1661–1670. [CrossRef]

464. Lteif, A.A.; Han, K.; Mather, K.J. Obesity, insulin resistance, and the metabolic syndrome: Determinants of endothelial dysfunction
in whites and blacks. Circulation 2005, 112, 32–38. [CrossRef]

465. Rutter, M.K.; Meigs, J.B.; Sullivan, L.M.; D’Agostino RBSr Wilson, P.W. C-reactive protein, the metabolic syndrome, and prediction
of cardiovascular events in the Framingham Offspring Study. Circulation 2004, 110, 380–385. [CrossRef]

466. Prenner, S.B.; Chirinos, J.A. Arterial stiffness in diabetes mellitus. Atherosclerosis 2015, 238, 370–379. [CrossRef] [PubMed]
467. Hainsworth, A.H.; Oommen, A.T.; Bridges, L.R. Endothelial cells and human cerebral small vessel disease. Brain Pathol. 2015, 25,

44–50. [CrossRef] [PubMed]
468. Moorhouse, P.; Rockwood, K. Vascular cognitive impairment: Current concepts and clinical developments. Lancet Neurol. 2008, 7,

246–255. [CrossRef]
469. van Norden, A.G.; van Dijk, E.J.; de Laat, K.F.; Scheltens, P.; Olderikkert, M.G.; de Leeuw, F.E. Dementia: Alzheimer pathology

and vascular factors: From mutually exclusive to interaction. Biochim. Biophys. Acta 2012, 1822, 340–349. [CrossRef] [PubMed]
470. Fowler, M.J. Microvascular and macrovascular complications of diabetes. Clin. Diabetes 2008, 26, 77–82. [CrossRef]
471. Pugh, M.E.; Hemnes, A.R. Metabolic and hormonal derangements in pulmonary hypertension: From mouse to man. Int. J. Clin.

Pract. Suppl. 2010, 64, 5–13. [CrossRef]

https://doi.org/10.1016/j.ccell.2018.03.015
https://www.ncbi.nlm.nih.gov/pubmed/29634945
https://doi.org/10.3390/nu7075177
https://doi.org/10.1155/2022/9154295
https://www.ncbi.nlm.nih.gov/pubmed/35783193
https://doi.org/10.1002/dmrr.3502
https://doi.org/10.1161/01.ATV.0000168896.64927.bb
https://www.ncbi.nlm.nih.gov/pubmed/15879305
https://doi.org/10.2337/diabetes.51.4.1076
https://doi.org/10.1161/01.RES.87.10.840
https://doi.org/10.1016/j.jcmg.2009.10.012
https://www.ncbi.nlm.nih.gov/pubmed/20223423
https://doi.org/10.1056/NEJMra1011035
https://doi.org/10.1301/nr.2003.nov.363-375
https://doi.org/10.1042/bj2080001
https://doi.org/10.1097/00041433-199806000-00005
https://doi.org/10.1371/journal.pone.0197700
https://www.ncbi.nlm.nih.gov/pubmed/29813091
https://doi.org/10.1038/srep41650
https://doi.org/10.1016/S0022-2275(20)42610-0
https://doi.org/10.1016/S0002-9343(00)00700-2
https://doi.org/10.1186/s12944-017-0579-2
https://www.ncbi.nlm.nih.gov/pubmed/28969682
https://doi.org/10.1152/japplphysiol.00463.2004
https://www.ncbi.nlm.nih.gov/pubmed/15333612
https://doi.org/10.1038/hr.2009.228
https://doi.org/10.1161/CIRCULATIONAHA.108.821181
https://doi.org/10.1161/CIRCULATIONAHA.104.520130
https://doi.org/10.1161/01.CIR.0000136581.59584.0E
https://doi.org/10.1016/j.atherosclerosis.2014.12.023
https://www.ncbi.nlm.nih.gov/pubmed/25558032
https://doi.org/10.1111/bpa.12224
https://www.ncbi.nlm.nih.gov/pubmed/25521176
https://doi.org/10.1016/S1474-4422(08)70040-1
https://doi.org/10.1016/j.bbadis.2011.07.003
https://www.ncbi.nlm.nih.gov/pubmed/21777675
https://doi.org/10.2337/diaclin.26.2.77
https://doi.org/10.1111/j.1742-1241.2010.02523.x


Antioxidants 2023, 12, 2091 42 of 46

472. Magliano, D.J.; Islam, R.M.; Barr, E.L.M.; Gregg, E.W.; E Pavkov, M.; Harding, J.L.; Tabesh, M.; Koye, D.N.; E Shaw, J. Trends in
incidence of total or type 2 diabetes: Systematic review. BMJ 2019, 366, l5003. [CrossRef]

473. Ross, R. Atherosclerosis—An inflammatory disease. N. Engl. J. Med. 1999, 340, 115–126. [CrossRef]
474. Kolluru, G.K.; Bir, S.C.; Kevil, C.G. Endothelial dysfunction and diabetes: Effects on angiogenesis, vascular remodeling, and

wound healing. Int. J. Vasc. Med. 2012, 2012, 918267. [CrossRef]
475. Hamilton, S.J.; Watts, G.F. Endothelial dysfunction in diabetes: Pathogenesis, significance, and treatment. Rev. Diabet. Stud. 2013,

10, 133–156. [CrossRef]
476. El-Najjar, N.; Kulkarni, R.P.; Nader, N.; Hodeify, R.; Machaca, K. Effects of Hyperglycemia on Vascular Smooth Muscle Ca2+

Signaling. BioMed Res. Int. 2017, 2017, 3691349. [CrossRef]
477. Makino, A.; Kamata, K. Time-course changes in plasma endothelin-1 and its effects on the mesenteric arterial bed in streptozotocin-

induced diabetic rats. Diabetes Obes. Metab. 2000, 2, 47–55. [CrossRef]
478. Kizub, I.V.; Klymenko, K.I.; Soloviev, A.I. Protein kinase C in enhanced vascular tone in diabetes mellitus. Int. J. Cardiol. 2014, 174,

230–242. [CrossRef] [PubMed]
479. Mooradian, D.L.; Hutsell, T.C.; Keefer, L.K. Nitric oxide (NO) donor molecules: Effect of NO release rate on vascular smooth

muscle cell proliferation in vitro. J. Cardiovasc. Pharmacol. 1995, 25, 674–678. [CrossRef] [PubMed]
480. Radomski, M.W.; Palmer, R.M.; Moncada, S. Modulation of platelet aggregation by an L-arginine-nitric oxide pathway. Trends

Pharmacol. Sci. 1991, 12, 87–88. [CrossRef] [PubMed]
481. Wang, K.; Zhou, Z.; Zhang, M.; Fan, L.; Forudi, F.; Zhou, X.; Qu, W.; Lincoff, A.M.; Schmidt, A.M.; Topol, E.J.; et al. Peroxisome

proliferator-activated receptor gamma down-regulates receptor for advanced glycation end products and inhibits smooth muscle
cell proliferation in a diabetic and nondiabetic rat carotid artery injury model. J. Pharmacol. Exp. Ther. 2006, 317, 37–43. [CrossRef]

482. Libby, P. Inflammation in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 2045–2051. [CrossRef] [PubMed]
483. Chistiakov, D.A.; Melnichenko, A.A.; Myasoedova, V.A.; Grechko, A.V.; Orekhov, A.N. Mechanisms of foam cell formation in

atherosclerosis. J. Mol. Med. 2017, 95, 1153–1165. [CrossRef] [PubMed]
484. Poznyak, A.V.; Nikiforov, N.G.; Markin, A.M.; Kashirskikh, D.A.; Myasoedova, V.A.; Gerasimova, E.V.; Orekhov, A.N. Overview

of OxLDL and Its Impact on Cardiovascular Health: Focus on Atherosclerosis. Front. Pharmacol. 2021, 11, 613780. [CrossRef]
485. Scheen, A.J. De l’athérosclérose à l’athérothrombose: D’une pathologie chronique silencieuse à un accident aigu critique [From

atherosclerosis to atherothrombosis: From a silent chronic pathology to an acute critical event]. Rev. Med. Liege 2018, 73, 224–228.
486. Bentzon, J.F.; Otsuka, F.; Virmani, R.; Falk, E. Mechanisms of plaque formation and rupture. Circ. Res. 2014, 114, 1852–1866.

[CrossRef]
487. Otsuka, F.; Yasuda, S.; Noguchi, T.; Ishibashi-Ueda, H. Pathology of coronary atherosclerosis and thrombosis. Cardiovasc. Diagn.

Ther. 2016, 6, 396–408. [CrossRef] [PubMed]
488. Hafiane, A. Vulnerable Plaque, Characteristics, Detection, and Potential Therapies. J. Cardiovasc. Dev Dis. 2019, 6, 26. [CrossRef]

[PubMed]
489. Arbustini, E.; Bello, B.D.; Morbini, P.; Burke, A.P.; Bocciarelli, M.; Specchia, G.; Virmani, R. Plaque erosion is a major substrate for

coronary thrombosis in acute myocardial infarction. Heart 1999, 82, 269–272. [CrossRef] [PubMed]
490. Virmani, R.; Burke, A.P.; Farb, A.; Kolodgie, F.D. Pathology of the vulnerable plaque. J. Am. Coll. Cardiol. 2006, 47 (Suppl. S8),

C13–C18. [CrossRef] [PubMed]
491. Badimon, L.; Vilahur, G. Thrombosis formation on atherosclerotic lesions and plaque rupture. J. Intern. Med. 2014, 276, 618–632.

[CrossRef] [PubMed]
492. Kunju, S.U.; Badarudeen, S.; Schwarz, E.R. Impact of obesity in patients with congestive heart failure. Rev. Cardiovasc. Med. 2009,

10, 142–151. [CrossRef] [PubMed]
493. Cermenati, G.; Mitro, N.; Audano, M.; Melcangi, R.C.; Crestani, M.; De Fabiani, E.; Caruso, D. Lipids in the nervous system: From

biochemistry and molecular biology to patho-physiology. Biochim. Biophys. Acta 2015, 1851, 51–60. [CrossRef]
494. Penke, B.; Paragi, G.; Gera, J.; Berkecz, R.; Kovács, Z.; Crul, T.; Vígh, L. The Role of Lipids and Membranes in the Pathogenesis of

Alzheimer’s Disease: A Comprehensive View. Curr. Alzheimer Res. 2018, 15, 1191–1212. [CrossRef]
495. Hooijmans, C.R.; Kiliaan, A.J. Fatty acids, lipid metabolism and Alzheimer pathology. Eur. J. Pharmacol. 2008, 585, 176–196.

[CrossRef]
496. Berg, D.; Youdim, M.B.; Riederer, P. Redox imbalance. Cell Tissue Res. 2004, 318, 201–213. [CrossRef] [PubMed]
497. McQuillen, P.S.; Ferriero, D.M. Selective vulnerability in the developing central nervous system. Pediatr. Neurol. 2004, 30, 227–235.

[CrossRef] [PubMed]
498. von Arnim, C.A.; Gola, U.; Biesalski, H.K. More than the sum of its parts? Nutrition in Alzheimer’s disease. Nutrition 2010, 26,

694–700. [CrossRef] [PubMed]
499. Mandel, S.; Grünblatt, E.; Riederer, P.; Gerlach, M.; Levites, Y.; Youdim, M.B. Neuroprotective strategies in PDinson’s disease: An

update on progress. CNS Drugs 2003, 17, 729–762. [CrossRef] [PubMed]
500. Stack, E.C.; Matson, W.R.; Ferrante, R.J. Evidence of oxidant damage in Huntington’s disease: Translational strategies using

antioxidants. Ann. N. Y. Acad. Sci. 2008, 1147, 79–92. [CrossRef] [PubMed]
501. Yu, Y.C.; Kuo, C.L.; Cheng, W.L.; Liu, C.S.; Hsieh, M. Decreased antioxidant enzyme activity and increased mitochondrial DNA

damage in cellular models of Machado-Joseph disease. J. Neurosci. Res. 2009, 87, 1884–1891. [CrossRef] [PubMed]

https://doi.org/10.1136/bmj.l5003
https://doi.org/10.1056/NEJM199901143400207
https://doi.org/10.1155/2012/918267
https://doi.org/10.1900/RDS.2013.10.133
https://doi.org/10.1155/2017/3691349
https://doi.org/10.1046/j.1463-1326.2000.00024.x
https://doi.org/10.1016/j.ijcard.2014.04.117
https://www.ncbi.nlm.nih.gov/pubmed/24794552
https://doi.org/10.1097/00005344-199504000-00023
https://www.ncbi.nlm.nih.gov/pubmed/7596138
https://doi.org/10.1016/0165-6147(91)90510-Y
https://www.ncbi.nlm.nih.gov/pubmed/1647064
https://doi.org/10.1124/jpet.105.095125
https://doi.org/10.1161/ATVBAHA.108.179705
https://www.ncbi.nlm.nih.gov/pubmed/22895665
https://doi.org/10.1007/s00109-017-1575-8
https://www.ncbi.nlm.nih.gov/pubmed/28785870
https://doi.org/10.3389/fphar.2020.613780
https://doi.org/10.1161/CIRCRESAHA.114.302721
https://doi.org/10.21037/cdt.2016.06.01
https://www.ncbi.nlm.nih.gov/pubmed/27500096
https://doi.org/10.3390/jcdd6030026
https://www.ncbi.nlm.nih.gov/pubmed/31357630
https://doi.org/10.1136/hrt.82.3.269
https://www.ncbi.nlm.nih.gov/pubmed/10455073
https://doi.org/10.1016/j.jacc.2005.10.065
https://www.ncbi.nlm.nih.gov/pubmed/16631505
https://doi.org/10.1111/joim.12296
https://www.ncbi.nlm.nih.gov/pubmed/25156650
https://doi.org/10.3909/ricm0480
https://www.ncbi.nlm.nih.gov/pubmed/19898292
https://doi.org/10.1016/j.bbalip.2014.08.011
https://doi.org/10.2174/1567205015666180911151716
https://doi.org/10.1016/j.ejphar.2007.11.081
https://doi.org/10.1007/s00441-004-0976-5
https://www.ncbi.nlm.nih.gov/pubmed/15365815
https://doi.org/10.1016/j.pediatrneurol.2003.10.001
https://www.ncbi.nlm.nih.gov/pubmed/15087099
https://doi.org/10.1016/j.nut.2009.11.009
https://www.ncbi.nlm.nih.gov/pubmed/20381316
https://doi.org/10.2165/00023210-200317100-00004
https://www.ncbi.nlm.nih.gov/pubmed/12873156
https://doi.org/10.1196/annals.1427.008
https://www.ncbi.nlm.nih.gov/pubmed/19076433
https://doi.org/10.1002/jnr.22011
https://www.ncbi.nlm.nih.gov/pubmed/19185026


Antioxidants 2023, 12, 2091 43 of 46

502. Gabbita, S.P.; Lovell, M.A.; Markesbery, W.R. Increased nuclear DNA oxidation in the brain in Alzheimer’s disease. J. Neurochem.
1998, 71, 2034–2040. [CrossRef]

503. Wong, M.W.; Braidy, N.; Poljak, A.; Pickford, R.; Thambisetty, M.; Sachdev, P.S. Dysregulation of lipids in Alzheimer’s disease
and their role as potential biomarkers. Alzheimers Dement. 2017, 13, 810–827. [CrossRef]

504. Sonnino, S.; Prinetti, A. Membrane domains and the “lipid raft” concept. Curr. Med. Chem. 2013, 20, 4–21.
505. Díaz, M.; Fabelo, N.; Martín, V.; Ferrer, I.; Gómez, T.; Marín, R. Biophysical alterations in lipid rafts from human cerebral cortex

associate with increased BACE1/AβPP interaction in early stages of Alzheimer’s disease. J. Alzheimers Dis. 2015, 43, 1185–1198.
[CrossRef]

506. Grassi, S.; Giussani, P.; Mauri, L.; Prioni, S.; Sonnino, S.; Prinetti, A. Lipid rafts and neurodegeneration: Structural and functional
roles in physiologic aging and neurodegenerative diseases. J. Lipid Res. 2020, 61, 636–654. [CrossRef]

507. Marin, R.; Fabelo, N.; Fernández-Echevarría, C.; Canerina-Amaro, A.; Rodríguez-Barreto, D.; Quinto-Alemany, D.; Mesa-Herrera,
F.; Díaz, M. Lipid Raft Alterations in Aged-Associated Neuropathologies. Curr. Alzheimer Res. 2016, 13, 973–984. [CrossRef]

508. Frisardi, V.; Solfrizzi, V.; Seripa, D.; Capurso, C.; Santamato, A.; Sancarlo, D.; Vendemiale, G.; Pilotto, A.; Panza, F. Metabolic-
cognitive syndrome: A cross-talk between metabolic syndrome and Alzheimer’s disease. Ageing Res. Rev. 2010, 9, 399–417.
[CrossRef] [PubMed]

509. Luchsinger, J.A.; Gustafson, D.R. Adiposity, type 2 diabetes, and Alzheimer’s disease. J. Alzheimers Dis. 2009, 16, 693–704.
[CrossRef] [PubMed]

510. Tan, Z.S.; Beiser, A.S.; Fox, C.S.; Au, R.; Himali, J.J.; Debette, S.; DeCarli, C.; Vasan, R.S.; Wolf, P.A.; Seshadri, S. Association of
metabolic dysregulation with volumetric brain magnetic resonance imaging and cognitive markers of subclinical brain aging in
middle-aged adults: The Framingham Offspring Study. Diabetes Care 2011, 34, 1766–1770. [CrossRef]

511. Debette, S.; Beiser, A.; Hoffmann, U.; DeCarli, C.; O’Donnell, C.J.; Massaro, J.M.; Au, R.; Himali, J.J.; Wolf, P.A.; Fox, C.S.; et al.
Visceral fat is associated with lower brain volume in healthy middle-aged adults. Ann. Neurol. 2010, 68, 136–144. [CrossRef]
[PubMed]

512. Yates, K.F.; Sweat, V.; Yau, P.L.; Turchiano, M.M.; Convit, A. Impact of metabolic syndrome on cognition and brain: A selected
review of the literature. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 2060–2067. [CrossRef]

513. Burns, J.M.; Honea, R.A.; Vidoni, E.D.; Hutfles, L.J.; Brooks, W.M.; Swerdlow, R.H. Insulin is differentially related to cognitive
decline and atrophy in Alzheimer’s disease and aging. Biochim. Biophys. Acta 2012, 1822, 333–339. [CrossRef]

514. Knopman, D.; Boland, L.; Mosley, T.; Howard, G.; Liao, D.; Szklo, M.; McGovern, P.; Folsom, A.; Atherosclerosis Risk in
Communities (ARIC) Study Investigators. Cardiovascular risk factors and cognitive decline in middle-aged adults. Neurology
2001, 56, 42–48. [CrossRef]

515. Akomolafe, A.; Beiser, A.; Meigs, J.B.; Au, R.; Green, R.C.; Farrer, L.A.; Wolf, P.A.; Seshadri, S. Diabetes mellitus and risk of
developing Alzheimer disease: Results from the Framingham Study. Arch. Neurol. 2006, 63, 1551–1555. [CrossRef] [PubMed]

516. Kivipelto, M.; Ngandu, T.; Fratiglioni, L.; Viitanen, M.; Kåreholt, I.; Winblad, B.; Helkala, E.-L.; Tuomilehto, J.; Soininen, H.;
Nissinen, A. Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Arch. Neurol. 2005, 62,
1556–1560. [CrossRef]

517. Gorelick, P.B.; Scuteri, A.; Black, S.E.; DeCarli, C.; Greenberg, S.M.; Iadecola, C.; Launer, L.J.; Laurent, S.; Lopez, O.L.; Nyenhuis,
D.; et al. Vascular contributions to cognitive impairment and dementia: A statement for healthcare professionals from the
american heart association/american stroke association. Stroke 2011, 42, 2672–2713. [CrossRef]

518. Grammas, P. Neurovascular dysfunction, inflammation and endothelial activation: Implications for the pathogenesis of
Alzheimer’s disease. J. Neuroinflamm. 2011, 8, 26. [CrossRef]

519. Marchesi, V.T. Alzheimer’s disease and CADASIL are heritable, adult-onset dementias that both involve damaged small blood
vessels. Cell. Mol. Life Sci. 2014, 71, 949–955. [CrossRef] [PubMed]

520. Parikh, N.S.; Merkler, A.E.; Iadecola, C. Inflammation, Autoimmunity, Infection, and Stroke: Epidemiology and Lessons From
Therapeutic Intervention. Stroke 2020, 51, 711–718. [CrossRef] [PubMed]

521. Hart, R.G.; Pearce, L.A.; Bakheet, M.F.; Benavente, O.R.; Conwit, R.A.; McClure, L.A.; Talbert, R.L.; Anderson, D.C. Predictors
of stroke recurrence in patients with recent lacunar stroke and response to interventions according to risk status: Secondary
prevention of small subcortical strokes trial. J. Stroke Cerebrovasc. Dis. 2014, 23, 618–624. [CrossRef] [PubMed]

522. PD, Y.K.; Yi, H.J.; Lee, Y.J.; Cho, H.; Chun, H.J.; Oh, S.J. The relationship between metabolic syndrome (MetS) and spontaneous
intracerebral hemorrhage (ICH). Neurol. Sci. 2013, 34, 1523–1528. [CrossRef]

523. Li, X.; Li, X.; Fang, F.; Fu, X.; Lin, H.; Gao, Q. Is Metabolic Syndrome Associated with the Risk of Recurrent Stroke: A Meta-Analysis
of Cohort Studies. J. Stroke Cerebrovasc. Dis. 2017, 26, 2700–2705. [CrossRef]

524. Peters, S.A.; Huxley, R.R.; Woodward, M. Diabetes as a risk factor for stroke in women compared with men: A systematic
review and meta-analysis of 64 cohorts, including 775,385 individuals and 12,539 strokes. Lancet 2014, 383, 1973–1980. [CrossRef]
[PubMed]

525. Qiu, W.Q.; Folstein, M.F. Insulin, insulin-degrading enzyme and amyloid-beta peptide in Alzheimer’s disease: Review and
hypothesis. Neurobiol. Aging 2006, 27, 190–198. [CrossRef]

526. Levine, D.A.; Galecki, A.T.; Langa, K.M.; Unverzagt, F.W.; Kabeto, M.U.; Giordani, B.; Wadley, V.G. Trajectory of Cognitive
Decline After Incident Stroke. JAMA 2015, 314, 41–51. [CrossRef]

https://doi.org/10.1046/j.1471-4159.1998.71052034.x
https://doi.org/10.1016/j.jalz.2017.01.008
https://doi.org/10.3233/JAD-141146
https://doi.org/10.1194/jlr.TR119000427
https://doi.org/10.2174/1567205013666160314150017
https://doi.org/10.1016/j.arr.2010.04.007
https://www.ncbi.nlm.nih.gov/pubmed/20444434
https://doi.org/10.3233/JAD-2009-1022
https://www.ncbi.nlm.nih.gov/pubmed/19387106
https://doi.org/10.2337/dc11-0308
https://doi.org/10.1002/ana.22062
https://www.ncbi.nlm.nih.gov/pubmed/20695006
https://doi.org/10.1161/ATVBAHA.112.252759
https://doi.org/10.1016/j.bbadis.2011.06.011
https://doi.org/10.1212/WNL.56.1.42
https://doi.org/10.1001/archneur.63.11.1551
https://www.ncbi.nlm.nih.gov/pubmed/17101823
https://doi.org/10.1001/archneur.62.10.1556
https://doi.org/10.1161/STR.0b013e3182299496
https://doi.org/10.1186/1742-2094-8-26
https://doi.org/10.1007/s00018-013-1542-7
https://www.ncbi.nlm.nih.gov/pubmed/24378989
https://doi.org/10.1161/STROKEAHA.119.024157
https://www.ncbi.nlm.nih.gov/pubmed/32078460
https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.05.021
https://www.ncbi.nlm.nih.gov/pubmed/23800503
https://doi.org/10.1007/s10072-012-1272-x
https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.03.014
https://doi.org/10.1016/S0140-6736(14)60040-4
https://www.ncbi.nlm.nih.gov/pubmed/24613026
https://doi.org/10.1016/j.neurobiolaging.2005.01.004
https://doi.org/10.1001/jama.2015.6968


Antioxidants 2023, 12, 2091 44 of 46

527. Thiel, A.; Cechetto, D.F.; Heiss, W.D.; Hachinski, V.; Whitehead, S.N. Amyloid burden, neuroinflammation, and links to cognitive
decline after ischemic stroke. Stroke 2014, 45, 2825–2829. [CrossRef] [PubMed]

528. Pendlebury, S.T.; Rothwell, P.M. Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: A
systematic review and meta-analysis. Lancet Neurol. 2009, 8, 1006–1018. [CrossRef] [PubMed]

529. Sposato, L.A.; Kapral, M.K.; Fang, J.; Gill, S.S.; Hackam, D.G.; Cipriano, L.E.; Hachinski, V. Declining Incidence of Stroke and
Dementia: Coincidence or Prevention Opportunity? JAMA Neurol. 2015, 72, 1529–1531. [CrossRef] [PubMed]

530. Cerasuolo, J.O.; Cipriano, L.E.; Sposato, L.A.; Kapral, M.K.; Fang, J.; Gill, S.S.; Hackam, D.G.; Hachinski, V. Population-based
stroke and dementia incidence trends: Age and sex variations. Alzheimers Dement. 2017, 13, 1081–1088. [CrossRef] [PubMed]

531. Castro, D.M.; Dillon, C.; Machnicki, G.; Allegri, R.F. The economic cost of Alzheimer’s disease: Family or public health burden?
Dement. Neuropsychol. 2010, 4, 262–267. [CrossRef] [PubMed]

532. Tóth, P.; Gavurová, B.; Barták, M. Alzheimer’s Disease Mortality according to Socioeconomic Factors: Country Study. Int. J.
Alzheimers Dis. 2018, 2018, 8137464. [CrossRef]

533. Alzheimer’s Association. Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2018, 14, 367–429.
534. Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M.

Alzheimer’s disease. Lancet 2021, 397, 1577–1590. [CrossRef] [PubMed]
535. Selkoe, D.J. Alzheimer’s disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. J. Alzheimers Dis.

2001, 3, 75–80. [CrossRef] [PubMed]
536. Mattson, M.P. Pathways towards and away from Alzheimer’s disease. Nature 2004, 430, 631–639. [CrossRef] [PubMed]
537. Spangenberg, E.E.; Green, K.N. Inflammation in Alzheimer’s disease: Lessons learned from microglia-depletion models. Brain

Behav. Immun. 2017, 61, 1–11. [CrossRef] [PubMed]
538. LaFerla, F.M.; Green, K.N.; Oddo, S. Intracellular amyloid-beta in Alzheimer’s disease. Nat. Rev. Neurosci. 2007, 8, 499–509.

[CrossRef] [PubMed]
539. Verdile, G.; Fuller, S.; Atwood, C.S.; Laws, S.M.; Gandy, S.E.; Martins, R.N. The role of beta amyloid in Alzheimer’s disease: Still a

cause of everything or the only one who got caught? Pharmacol. Res. 2004, 50, 397–409. [CrossRef] [PubMed]
540. Gasparini, L.; Gouras, G.K.; Wang, R.; Gross, R.S.; Beal, M.F.; Greengard, P.; Xu, H. Stimulation of beta-amyloid precursor protein

trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen-activated protein kinase signaling. J. Neurosci.
2001, 21, 2561–2570. [CrossRef] [PubMed]

541. McGeer, P.L.; McGeer, E.G. The amyloid cascade-inflammatory hypothesis of Alzheimer disease: Implications for therapy. Acta
Neuropathol. 2013, 126, 479–497. [CrossRef] [PubMed]

542. McCaulley, M.E.; Grush, K.A. Seeking a New Paradigm for Alzheimer’s Disease: Considering the Roles of Inflammation,
Blood-Brain Barrier Dysfunction, and Prion Disease. Int. J. Alzheimers Dis. 2017, 2017, 2438901. [CrossRef]

543. Le Page, A.; Dupuis, G.; Frost, E.H.; Larbi, A.; Pawelec, G.; Witkowski, J.M.; Fulop, T. Role of the peripheral innate immune
system in the development of Alzheimer’s disease. Exp. Gerontol. 2018, 107, 59–66. [CrossRef]

544. Dansokho, C.; Heneka, M.T. Neuroinflammatory responses in Alzheimer’s disease. J. Neural Transm. 2018, 125, 771–779.
[CrossRef]

545. Tan, M.S.; Yu, J.T.; Jiang, T.; Zhu, X.C.; Tan, L. The NLRP3 inflammasome in Alzheimer’s disease. Mol. Neurobiol. 2013, 48, 875–882.
[CrossRef]

546. Zhou, K.; Shi, L.; Wang, Y.; Chen, S.; Zhang, J. Recent Advances of the NLRP3 Inflammasome in Central Nervous System
Disorders. J. Immunol. Res. 2016, 2016, 9238290. [CrossRef] [PubMed]

547. Sadigh-Eteghad, S.; Sabermarouf, B.; Majdi, A.; Talebi, M.; Farhoudi, M.; Mahmoudi, J. Amyloid-beta: A crucial factor in
Alzheimer’s disease. Med. Princ. Pract. 2015, 24, 1–10. [CrossRef]

548. Erickson, M.A.; Banks, W.A. Blood-brain barrier dysfunction as a cause and consequence of Alzheimer’s disease. J. Cereb. Blood
Flow Metab. 2013, 33, 1500–1513. [CrossRef]

549. McArthur, S.; Loiola, R.A.; Maggioli, E.; Errede, M.; Virgintino, D.; Solito, E. The restorative role of annexin A1 at the blood-brain
barrier. Fluids Barriers CNS 2016, 13, 17. [CrossRef] [PubMed]

550. Kinder, L.S.; Carnethon, M.R.; Palaniappan, L.P.; King, A.C.; Fortmann, S.P. Depression and the metabolic syndrome in young
adults: Findings from the Third National Health and Nutrition Examination Survey. Psychosom. Med. 2004, 66, 316–322. [CrossRef]
[PubMed]

551. Skilton, M.R.; Moulin, P.; Terra, J.L.; Bonnet, F. Associations between anxiety, depression, and the metabolic syndrome. Biol.
Psychiatry 2007, 62, 1251–1257. [CrossRef]

552. Ghanei Gheshlagh, R.; Parizad, N.; Sayehmiri, K. The Relationship Between Depression and Metabolic Syndrome: Systematic
Review and Meta-Analysis Study. Iran Red. Crescent. Med. J. 2016, 18, e26523. [CrossRef]

553. Dowlati, Y.; Herrmann, N.; Swardfager, W.; Liu, H.; Sham, L.; Reim, E.K.; Lanctôt, K.L. A meta-analysis of cytokines in major
depression. Biol. Psychiatry 2010, 67, 446–457. [CrossRef]

554. Black, C.N.; Bot, M.; Scheffer, P.G.; Cuijpers, P.; Penninx, B.W. Is depression associated with increased oxidative stress? A
systematic review and meta-analysis. Psychoneuroendocrinology 2015, 51, 164–175. [CrossRef]

555. Stetler, C.; Miller, G.E. Depression and hypothalamic-pituitary-adrenal activation: A quantitative summary of four decades of
research. Psychosom. Med. 2011, 73, 114–126. [CrossRef]

https://doi.org/10.1161/STROKEAHA.114.004285
https://www.ncbi.nlm.nih.gov/pubmed/25005439
https://doi.org/10.1016/S1474-4422(09)70236-4
https://www.ncbi.nlm.nih.gov/pubmed/19782001
https://doi.org/10.1001/jamaneurol.2015.2816
https://www.ncbi.nlm.nih.gov/pubmed/26658969
https://doi.org/10.1016/j.jalz.2017.02.010
https://www.ncbi.nlm.nih.gov/pubmed/28363085
https://doi.org/10.1590/S1980-57642010DN40400003
https://www.ncbi.nlm.nih.gov/pubmed/29213697
https://doi.org/10.1155/2018/8137464
https://doi.org/10.1016/S0140-6736(20)32205-4
https://www.ncbi.nlm.nih.gov/pubmed/33667416
https://doi.org/10.3233/JAD-2001-3111
https://www.ncbi.nlm.nih.gov/pubmed/12214075
https://doi.org/10.1038/nature02621
https://www.ncbi.nlm.nih.gov/pubmed/15295589
https://doi.org/10.1016/j.bbi.2016.07.003
https://www.ncbi.nlm.nih.gov/pubmed/27395435
https://doi.org/10.1038/nrn2168
https://www.ncbi.nlm.nih.gov/pubmed/17551515
https://doi.org/10.1016/j.phrs.2003.12.028
https://www.ncbi.nlm.nih.gov/pubmed/15304237
https://doi.org/10.1523/JNEUROSCI.21-08-02561.2001
https://www.ncbi.nlm.nih.gov/pubmed/11306609
https://doi.org/10.1007/s00401-013-1177-7
https://www.ncbi.nlm.nih.gov/pubmed/24052108
https://doi.org/10.1155/2017/2438901
https://doi.org/10.1016/j.exger.2017.12.019
https://doi.org/10.1007/s00702-017-1831-7
https://doi.org/10.1007/s12035-013-8475-x
https://doi.org/10.1155/2016/9238290
https://www.ncbi.nlm.nih.gov/pubmed/27652274
https://doi.org/10.1159/000369101
https://doi.org/10.1038/jcbfm.2013.135
https://doi.org/10.1186/s12987-016-0043-0
https://www.ncbi.nlm.nih.gov/pubmed/27655189
https://doi.org/10.1097/01.psy.0000124755.91880.f4
https://www.ncbi.nlm.nih.gov/pubmed/15184689
https://doi.org/10.1016/j.biopsych.2007.01.012
https://doi.org/10.5812/ircmj.26523
https://doi.org/10.1016/j.biopsych.2009.09.033
https://doi.org/10.1016/j.psyneuen.2014.09.025
https://doi.org/10.1097/PSY.0b013e31820ad12b


Antioxidants 2023, 12, 2091 45 of 46

556. Fisher, A.J.; Newman, M.G. Heart rate and autonomic response to stress after experimental induction of worry versus relaxation
in healthy, high-worry, and generalized anxiety disorder individuals. Biol. Psychol. 2013, 93, 65–74. [CrossRef] [PubMed]

557. Penninx, B.W.; Milaneschi, Y.; Lamers, F.; Vogelzangs, N. Understanding the somatic consequences of depression: Biological
mechanisms and the role of depression symptom profile. BMC Med. 2013, 11, 129. [CrossRef] [PubMed]

558. Barnes, D.E.; Alexopoulos, G.S.; Lopez, O.L.; Williamson, J.D.; Yaffe, K. Depressive symptoms, vascular disease, and mild
cognitive impairment: Findings from the Cardiovascular Health Study. Arch. Gen. Psychiatry 2006, 63, 273–279. [CrossRef]
[PubMed]

559. Leonard, B.E.; Myint, A. The psychoneuroimmunology of depression. Hum. Psychopharmacol. 2009, 24, 165–175. [CrossRef]
[PubMed]

560. Swaab, D.F.; Bao, A.M.; Lucassen, P.J. The stress system in the human brain in depression and neurodegeneration. Ageing Res.
Rev. 2005, 4, 141–194. [CrossRef] [PubMed]

561. Bornstein, S.R.; Schuppenies, A.; Wong, M.L.; Licinio, J. Approaching the shared biology of obesity and depression: The stress
axis as the locus of gene-environment interactions. Mol. Psychiatry 2006, 11, 892–902. [CrossRef] [PubMed]

562. Eddouks, M.; Chattopadhyay, D.; De Feo, V.; Cho, W.C. Medicinal plants in the prevention and treatment of chronic diseases.
Evid. Based Complement. Alternat. Med. 2012, 2012, 458274. [CrossRef]

563. Tabatabaei-Malazy, O.; Larijani, B.; Abdollahi, M. Targeting metabolic disorders by natural products. J. Diabetes Metab. Disord.
2015, 14, 57. [CrossRef]

564. Höhn, A.; Weber, D.; Jung, T.; Ott, C.; Hugo, M.; Kochlik, B.; Kehm, R.; König, J.; Grune, T.; Castro, J.P. Happily (n)ever after:
Aging in the context of oxidative stress, proteostasis loss and cellular senescence. Redox Biol. 2017, 11, 482–501. [CrossRef]

565. Halliwell, B. Free radicals and antioxidants—Quo vadis? Trends Pharmacol. Sci. 2011, 32, 125–130. [CrossRef]
566. Bast, A.; Haenen, G.R. Ten misconceptions about antioxidants. Trends Pharmacol. Sci. 2013, 34, 430–436. [CrossRef] [PubMed]
567. Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015, 97, 55–74.

[CrossRef]
568. Papas, A.M. Diet and antioxidant status. Food Chem. Toxicol. 1999, 37, 999–1007. [CrossRef] [PubMed]
569. Akbarirad, H.; Ardabili, A.G.; Kazemeini, S.M.; Khaneghah, A.M. An overview on some of important sources of natural

antioxidants. Int. Food Res. J. 2016, 23, 928–933.
570. Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 2,

270–278. [CrossRef]
571. Parasuraman, S.; Thing, G.S.; Dhanaraj, S.A. Polyherbal formulation: Concept of ayurveda. Pharmacogn. Rev. 2014, 8, 73–80.

[CrossRef]
572. Saxena MS, J.; Nema, R.; Sigh, D.; Gupta, A. Phytochemsitry of Medical Plants. J. Pharm. Phytochem. 2013, 1, 168–182.
573. Kumar, S. The importance of antioxidant and their role in pharmaceutical science—A review. Asian J. Res. Chem. Pharm. Sci. 2014,

1, 27–44.
574. Rochlani, Y.; Pothineni, N.V.; Kovelamudi, S.; Mehta, J.L. Metabolic syndrome: Pathophysiology, management, and modulation

by natural compounds. Ther. Adv. Cardiovasc. Dis. 2017, 11, 215–225. [CrossRef]
575. Alesci, A.; Miller, A.; Tardugno, R.; Pergolizzi, S. Chemical analysis, biological and therapeutic activities of Olea europaea L.

extracts. Nat. Prod. Res. 2022, 36, 2932–2945. [CrossRef]
576. Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (poly)phenolics in human health:

Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 2013, 18, 1818–1892.
[CrossRef] [PubMed]

577. Jarvis, S.E.; Nguyen, M.; Malik, V.S. Association between adherence to plant-based dietary patterns and obesity risk: A systematic
review of prospective cohort studies. Appl. Physiol. Nutr. Metab. 2022, 47, 1115–1133. [CrossRef] [PubMed]

578. Jiang, X.; Huang, J.; Song, D.; Deng, R.; Wei, J.; Zhang, Z. Increased Consumption of Fruit and Vegetables Is Related to a Reduced
Risk of Cognitive Impairment and Dementia: Meta-Analysis. Front. Aging Neurosci. 2017, 9, 18. [CrossRef] [PubMed]

579. Mazo, N.A.; Echeverria, V.; Cabezas, R.; Avila-Rodríguez, M.; Tarasov, V.V.; Yarla, N.S.; Aliev, G.; Barreto, G.E. Medicinal Plants as
Protective Strategies Against Parkinson’s Disease. Curr. Pharm. Des. 2017, 23, 4180–4188. [CrossRef] [PubMed]
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