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Abstract: Wine lees, an important by-product of the wine industry, pose a major environmental
problem due to the enormous quantities of solid–liquid waste that are discarded annually without
defined applications. In this study, the optimization of a method based on a Box–Behnken design
with surface response has been carried out to obtain extracts with high anthocyanin content and
potent antioxidant activity. Six variables have been considered: %EtOH, temperature, amplitude,
cycle, pH, and ratio. The developed method exhibited important repeatability properties and
intermediate precision, with less than 5% CV being achieved. Furthermore, these novel methods
were successfully applied to diverse wine lees samples sourced from Cabernet Sauvignon and
Syrah varieties (Vitis vinifera), resulting in extracts enriched with significant anthocyanin content
and noteworthy antioxidant activity. Additionally, this study evaluated the influence of grape
variety, fermentation type (alcoholic or malolactic), and sample treatment on anthocyanin content and
antioxidant activity, providing valuable insights for further research and application in various sectors.
The potential applications of these high-quality extracts extend beyond the winemaking industry,
holding promise for fields like medicine, pharmaceuticals, and nutraceuticals, thus promoting a
circular economy and mitigating environmental contamination.

Keywords: wine lees; by-products; ultrasound-assisted extraction; anthocyanins; antioxidant activity;
Box–Behnken design; circular economy

1. Introduction

The winemaking industry plays a crucial role in global agriculture and economy,
particularly in Southern Europe, where Spain stands out as a significant producer, having
contributed 35 million hL of wine in the past year, accounting for 13.8% of the world’s total
production [1]. However, this industry also generates substantial quantities of byproducts
and residues, such as grape pomace, vine shoots, grape seeds, and wine lees, presenting
significant environmental and economic challenges [2].

Numerous studies have examined the potential recovery and valorization of these
residues, exploring avenues such as ethanol production, animal feed utilization, biogas
generation, and oil extraction [3–7]. However, comparatively little attention has been
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directed toward strategies for the valorization of wine lees, making them a particularly
troublesome residue with unresolved issues [2].

Wine lees are the sedimentary deposits that form during aging and clarification
processes, consisting of grape solids, yeast cells, tartrates, and other precipitates [8,9]. Their
organic content and potential to pollute water bodies if improperly managed give rise to
environmental concerns. Furthermore, the disposal of wine lees incurs substantial costs,
underscoring the need for sustainable solutions to address this matter.

Recent research has unveiled the presence of significant concentrations of bioactive
compounds in wine lees, including minerals, yeast cell wall polysaccharides such as β-
glucans and mannoproteins, organic acids, phenolic acids, stilbenes, flavonols, flavanols,
and anthocyanins, among others [10–12].

Anthocyanins represent a category of bioactive compounds from the polyphenols
family that have gained widespread recognition for their health-enhancing properties,
which include antioxidant, antimicrobial, and anti-inflammatory effects. These attributes
have significant implications for the prevention and treatment of various conditions, such as
metabolic syndromes, neurodegenerative disorders, cardiovascular diseases, diabetes, and
even cancer [13–15]. In the context of wine lees, the average content of total polyphenolic
compounds has been reported to range from 190 to 1630 mg/g of wine lees, with an
important influence of the variety. In addition, average anthocyanins content has been
proven to vary from 10 to 31 mg/g in wine lees [16–18]. Remarkably, the presence of
these compounds in wine lees has been associated with important activities, including
antioxidant effects [19] and the modulation of proliferation in sheep peripheral blood
mononuclear cells [20]. Numerous extraction techniques have been described to recover
polyphenols from wine lees, encompassing solid–liquid extraction using organic solvents,
supercritical CO2 extraction, enzymatic hydrolysis, microwave-assisted extraction, and
membrane technology [21–24].

Ultrasound-assisted extraction (UAE) has emerged as a highly regarded and efficient
method for extracting polyphenols from diverse food products and by-products [25,26].
This technique involves subjecting the sample to ultrasonic waves, generating cavitation
bubbles near the cell surface, which results in shock waves that contribute to the disruption
of cell wall. This allows for a higher contact area between bioactive compounds and the
extractant, promoting mass transfer and improving the extraction efficiency [27]. One of
the prominent advantages of UAE lies in its ability to substantially reduce both extraction
time and solvent consumption, rendering it an environmentally conscious alternative to
conventional extraction methods [28]. Furthermore, UAE has been shown to yield higher
amounts of polyphenols compared to traditional techniques, ensuring the preservation of
the structural integrity of bioactive compounds.

An additional benefit of UAE is its non-thermal nature, making it suitable for the
extraction of thermally sensitive compounds, effectively preventing potential degrada-
tion during the process. This aspect further contributes to the retention of the beneficial
properties of polyphenols [29,30]. Given these promising attributes, the use of UAE holds
considerable potential to augment the nutraceutical and functional characteristics of food
products sustainably.

This research aims to establish a UAE-based method for obtaining extracts enriched
in anthocyanins, showcasing significant antioxidant activities from wine lees. By achiev-
ing this objective, the study endeavors to transform this troublesome waste material into
a highly valuable resource with versatile applications across various sectors, including
nutraceuticals, medicine, cosmetics, and the agri-food industry. The successful implemen-
tation of this method aligns with the principles of the circular economy, as it effectively
repurposes a substantial volume of waste that would otherwise be discarded annually
without clear utilization prospects. Moreover, it addresses the environmental concerns
associated with the treatment and management of such waste, thereby mitigating potential
pollution impacts, especially by using an environmentally friendly technique such as UAE.
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2. Materials and Methods
2.1. Samples

The wine lees utilized for the method optimization belonged to the Syrah variety
(Vitis vinifera) and were procured after undergoing malolactic fermentation (designated as
Sy_Ly). These lees were provided by the Forlong Winery located in Jerez de la Frontera,
Spain. The removal of water from the lees was accomplished using a VirTis BenchTop Pro
Freeze Dryer (SP Industries, Warminster, PA, USA), followed by a grinding of the dried lees
with an electric MKM6003 coffee grinder (BSH Electrodomésticos España S.A., Zaragoza,
Spain). The resulting powder was stored at −20 ◦C until subjected to analysis.

After optimizing the method, its validation was performed by its application to real
samples. This involved applying the developed method to the sample utilized during the
optimization process, as well as to another sample from the Syrah variety after malolactic
fermentation subjected to drying at 40 ◦C (designated as Sy_Dr), instead of lyophilization.
This particular sample was also obtained from the Forlong Winery. Furthermore, the
method was applied to four additional wine lees samples from the Cabernet Sauvignon
variety (Vitis vinifera) and provided by the Federal University of Bahia (Salvador, Brazil).
Among these samples, two were acquired after malolactic fermentation (one subjected
to lyophilization and the other to dry at 40 ◦C), while the other two were obtained after
alcoholic fermentation (again, one lyophilized and the other dried at 40 ◦C). Detailed
information regarding these samples and their corresponding codes can be found in Table 1.

Table 1. Wine lees samples employed in this research and their characteristics.

Variety Origin Fermentation Treatment Code

Syrah Spain Malolactic Lyophilized Sy_MF_Ly
Malolactic Dried at 40 ◦C Sy_MF_Dr

Cabernet
Sauvignon Brazil

Malolactic Lyophilized CS_MF_Ly
Malolactic Dried at 40 ◦C CS_MF_Dr
Alcoholic Lyophilized CS_AF_Ly
Alcoholic Dried at 40 ◦C CS_AF_Dr

2.2. Chemicals and Reagents

The solvents utilized in the extraction process consisted of Milli Q water, acquired
from a Millipore water purification system (Bedford, MA, USA), and absolute ethanol
(EtOH) of HPLC purity (Scharlau, Sentmenat, Spain). To adjust the pH levels of the
extraction solvents, 1 M HCl and 0.5 M NaOH solutions from Panreac (Barcelona, Spain)
were employed.

For the chromatographic separation and subsequent quantification of polyphenols
and anthocyanins, acetonitrile and formic acid (Panreac, Barcelona, Spain), acetic acid
(Merck KGaA, Darmstadt, Germany), and methanol (MeOH) (Fisher Scientific, Lough-
borough, UK), all at a HPLC-grade level, were used. The reference standards employed
for the quantification of polyphenols and anthocyanins were quercetin 3-O-glucoside and
cyanidin chloride, respectively, both with a purity of 95% from Sigma-Aldrich Chem-
ical Co. (St. Louis, MO, USA). In order to determine the antioxidant activity of the
extracted compounds, 6–hydroxyl-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox)
from Sigma-Aldrich (Steinheim, Germany) was employed as a standard, and 2,2-diphenyl-
1-picrylhydrazyl (DPPH) (Sigma-Aldrich, St. Louis, MO, USA) was used as the reagent to
evaluate radical scavenging.

2.3. Ultrasound-Assisted Extraction (UAE)
2.3.1. Ultrasound System

The extraction process from wine lees was conducted using a UP200S ultrasonic device
manufactured by Hielscher Ultrasonics GmbH (Teltow, Germany), which was coupled to a
water bath (J. P. Selecta, Abrera, Spain).
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The procedure involved weighing the appropriate amount of the sample and then
combining it with 25 mL of solvent, with the EtOH percentage and pH adjusted as needed.
Subsequently, the extraction vessel was equipped with a probe, ensuring it did not come
into contact with the flask walls. Ultrasound waves were then applied for 15 min, using
the specified amplitude and cycle values. The selection of solvent volume and extrac-
tion time was based on previous experiments conducted on comparable matrices and
compounds [27,29,31]. After the completion of the extraction process, the resulting mixture
was subjected to centrifugation at 6810× g for 5 min and at a temperature of 4 ◦C, utilizing
a centrifuge manufactured by J. P. Selecta (Abrera, Spain). The supernatant obtained from
centrifugation was separated and then adjusted to a final volume of 25 mL to standardize
the volume for all extractions. Before analysis, the resulting mixture was filtered through
nylon syringe filters with a pore size of 0.22 µm to ensure proper filtration.

2.3.2. Optimization Procedure

The investigation into the effect of the UAE variables was conducted using a Box–
Behnken Design–Response Surface Methodology (BBD–RSM). This specific methodology
employs a quadratic design with a three-level incomplete factorial approach. Each in-
dependent variable is set at three levels: −1 (lowest level), 0 (intermediate level), and
1 (highest level). This design generates extensive data sets suitable for analysis [32], with
the exclusion of axial points to achieve a spherically distributed design. As a result, fewer
experiments are required compared to commonly used orthogonal designs [33], as ex-
treme experimental values are omitted. This advantage ensures the maintenance of mild
conditions, thereby preventing any degradation of thermolabile bioactive compounds or
excessive power demands.

For this study, six independent variables associated with UAE were carefully chosen
for evaluation and optimization: %EtOH (25-50-75%), extraction temperature (10-35-60 ◦C),
amplitude (30-50-70% of the maximum amplitude (70 W)), cycle (0.2-0.6-1.0 s–1), pH (2-5-8),
and ratio (0.25-0.50-0.75 g/20 mL solvent). The choice of variables and their respective
ranges were based on the group’s prior experience and in the available literature about
wine lees [19,34,35]. The BBD–RSM involved a total of 54 experiments (as shown in Table 2)
that were carried out randomly.

Table 2. Box–Behnken design to optimize the extraction procedure of total anthocyanins and antioxi-
dant activity from wine lees extracts using UAE.

Experiment % EtOH Temperature
(◦C)

Amplitude Cycle pH Ratio
Total Anthocyanins (mg/100 g dw) Antioxidant Activity (mg Trolox

eq./g dw)
Observed Adjusted Error (%) Observed Adjusted Error (%)

1 50 35 50 0.2 2 0.25 149.34 147.42 1.29 7.89 7.93 0.57
2 50 35 50 1 2 0.25 145.85 144.58 0.87 7.80 7.84 0.46
3 50 35 50 0.2 8 0.25 142.17 141.81 0.25 7.87 7.81 0.72
4 50 35 50 1 8 0.25 144.73 143.47 0.87 7.92 7.77 1.94
5 50 35 50 0.2 2 0.75 139.71 141.92 1.58 7.94 8.03 1.22
6 50 35 50 1 2 0.75 140.79 140.20 0.42 7.93 8.04 1.44
7 50 35 50 0.2 8 0.75 141.15 143.37 1.57 7.93 7.83 1.20
8 50 35 50 1 8 0.75 145.18 146.16 0.68 7.88 7.89 0.20
9 50 10 30 0.6 2 0.5 90.48 89.94 0.60 4.59 4.21 8.39
10 50 60 30 0.6 2 0.5 120.31 123.08 2.30 4.85 4.86 0.22
11 50 10 70 0.6 2 0.5 91.34 91.94 0.66 3.98 3.93 1.34
12 50 60 70 0.6 2 0.5 127.49 126.41 0.84 5.26 5.14 2.36
13 50 10 30 0.6 8 0.5 89.10 91.25 2.41 3.83 4.02 4.96
14 50 60 30 0.6 8 0.5 127.24 125.57 1.31 4.74 4.73 0.17
15 50 10 70 0.6 8 0.5 91.49 89.79 1.86 3.74 3.79 1.46
16 50 60 70 0.6 8 0.5 125.99 125.46 0.42 4.74 5.06 6.77
17 25 35 30 0.2 5 0.5 126.34 127.93 1.26 4.90 5.08 3.60
18 75 35 30 0.2 5 0.5 141.99 141.59 0.28 6.54 6.49 0.88
19 25 35 30 1 5 0.5 133.43 131.45 1.49 4.91 5.06 3.12
20 75 35 30 1 5 0.5 142.43 143.52 0.76 6.61 6.45 2.40
21 25 35 70 0.2 5 0.5 132.66 132.94 0.21 4.93 5.12 3.88
22 75 35 70 0.2 5 0.5 143.34 143.96 0.43 6.65 6.47 2.73
23 25 35 70 1 5 0.5 129.20 130.96 1.37 5.05 5.13 1.67
24 75 35 70 1 5 0.5 143.35 140.40 2.06 6.66 6.45 3.14
25 50 10 50 0.2 5 0.25 95.54 92.88 2.78 4.24 4.18 1.47
26 50 60 50 0.2 5 0.25 126.00 128.12 1.68 5.15 5.24 1.69
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Table 2. Cont.

Experiment % EtOH Temperature
(◦C)

Amplitude Cycle pH Ratio
Total Anthocyanins (mg/100 g dw) Antioxidant Activity (mg Trolox

eq./g dw)
Observed Adjusted Error (%) Observed Adjusted Error (%)

27 50 10 50 1 5 0.25 96.16 94.16 2.09 3.99 3.99 0.09
28 50 60 50 1 5 0.25 121.87 125.67 3.12 5.04 5.29 4.87
29 50 10 50 0.2 5 0.75 94.63 89.89 5.02 4.65 4.46 4.08
30 50 60 50 0.2 5 0.75 126.12 127.18 0.83 5.03 5.08 0.94
31 50 10 50 1 5 0.75 93.45 92.28 1.25 4.52 4.38 3.27
32 50 60 50 1 5 0.75 122.25 125.85 2.95 5.23 5.24 0.08
33 25 10 50 0.6 2 0.5 71.05 72.90 2.61 3.11 3.13 0.81
34 75 10 50 0.6 2 0.5 84.10 88.27 4.96 4.04 4.51 11.59
35 25 60 50 0.6 2 0.5 116.96 111.99 4.25 4.35 4.03 7.26
36 75 60 50 0.6 2 0.5 118.00 116.78 1.03 5.38 5.47 1.63
37 25 10 50 0.6 8 0.5 70.86 71.01 0.21 3.16 3.01 4.78
38 75 10 50 0.6 8 0.5 85.41 89.31 4.57 4.05 4.30 6.18
39 25 60 50 0.6 8 0.5 114.39 111.29 2.71 4.37 3.97 9.25
40 75 60 50 0.6 8 0.5 119.80 119.02 0.65 5.28 5.32 0.88
41 25 35 30 0.6 5 0.25 126.53 128.54 1.59 5.14 5.13 0.25
42 75 35 30 0.6 5 0.25 142.73 141.00 1.21 6.52 6.49 0.49
43 25 35 70 0.6 5 0.25 132.83 134.81 1.49 5.14 5.20 1.07
44 75 35 70 0.6 5 0.25 143.33 144.63 0.91 6.68 6.51 2.60
45 25 35 30 0.6 5 0.75 130.67 130.74 0.05 5.03 5.23 4.03
46 75 35 30 0.6 5 0.75 147.36 144.01 2.27 6.74 6.65 1.25
47 25 35 70 0.6 5 0.75 128.62 128.99 0.28 5.26 5.26 0.10
48 75 35 70 0.6 5 0.75 140.27 139.62 0.46 6.59 6.63 0.52
49 50 35 50 0.6 5 0.5 146.56 144.70 1.27 7.87 7.89 0.19
50 50 35 50 0.6 5 0.5 143.27 144.70 1.00 7.92 7.89 0.36
51 50 35 50 0.6 5 0.5 146.86 144.70 1.47 7.90 7.89 0.15
52 50 35 50 0.6 5 0.5 147.27 144.70 1.74 7.84 7.89 0.61
53 50 35 50 0.6 5 0.5 143.67 144.70 0.72 7.89 7.89 0.01
54 50 35 50 0.6 5 0.5 140.58 144.70 2.93 7.91 7.89 0.22

Two response variables were chosen to assess the impact of the extraction-related
variables and optimize the conditions to maximize their respective concentrations: total
anthocyanins concentration and antioxidant activity. It is important to emphasize that this
research aims to obtain extracts enriched in bioactive compounds, whose health-related
properties have been widely described, but which, in this study, have also been measured
by means of antioxidant activity, in order to ensure their possible application in multiple
fields. The methodologies employed to obtain the quantification of these response variables
will be described below.

A mathematical model that fits a second-order polynomial function (Equation (1)) was
generated for each response variable and data, resulting from the analysis:

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 + β12X1X2 + β13X1X3+
β14X1X4 + β15X1X5 + β16X1X6 + β23X2X3 + β24X2X4 + β25X2X5 + β26X2X6 + β34X3X4+
β35X3X5 + β36X3X6 + β45X4X5 + β46X4X6 + β56X5X6 + β11X1

2 + β22X2
2 + β33X3

2 + β44X1
4+

β55X5
2 + β66X6

2

(1)

where Y is the corresponding response (total anthocyanins concentration or antioxidant
activity), and β0 corresponds to the ordinate, whereas X1 (% EtOH in the solvent), X2
(extraction temperature), X3 (amplitude), X4 (cycle), X5 (pH), and X6 (ratio) are indepen-
dent variables. Lastly, βi corresponds to the linear coefficients, βij to the cross-product
coefficients, and βii to the quadratic coefficients. To determine the influence of each se-
lected independent variable and its interaction with the response variables, a second-order
mathematical model was established. Additionally, surface graphs were generated to
visualize the relationship between the variables and the response. The optimal levels
of the influential variables were identified using the software application Statgraphic
Centurion (version XVII) from Statgraphics Technologies, Inc. (The Plains, VA, USA).
Moreover, an analysis of variance (ANOVA) was conducted to assess the significance of
the effects of the variables and their interactions with the response variables. The appli-
cation of this software facilitated the comprehensive analysis and interpretation of the
experimental data and allowed for the determination of optimal extraction conditions for
maximum efficiency.
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2.4. Total Anthocyanins Concentration
2.4.1. Identification of Anthocyanins by UHPLC-PDA-QToF-MS

For the identification of anthocyanins in wine lees, an ultra-high-performance liquid
chromatography equipment coupled to a photodiode array detector and a quadrupole-
time-of-flight mass Spectrometer (UHPLC–PDA-QToF–MS) model Xevo G2 from Waters
Corp. (Milford, MA, USA) was employed. The UHPLC system consisted of a 100 × 2.1 mm
reverse-phase C18 analytical column (Acquity UPLC BEH C18, Waters) with a particle
size of 1.7 µm. The mobile phase A contained a mixture of water and formic acid at a
concentration of 2%, while phase B consisted of pure MeOH. The flow rate during the
analysis was set at 0.4 mL/min.

The following gradient was applied for injection (%B): 5%, 0 min; 20%, 3.30 min; 30%,
3.86 min; 40%, 5.05 min; 55%, 5.35 min; 60%, 5.64 min; 95%, 5.94 min; and 95%, 7.50 min.
Each analysis required a total time of 12 min, including 4 min for re-equilibration.

Electrospray ionization was employed in positive ionization mode. The desolvation
gas temperature was set at 500 ◦C with a flow rate of 700 L/h, and the capillary cone was
set at 700 V. The cone gas flow was 10 L/h, the source temperature was maintained at
150 ◦C, and a cone voltage of 20 V was applied. Additionally, the trap collision energy was
set at 4 eV.

For anthocyanin identification, a full-scan mode was utilized in a mass range of
100–1200 m/z. This comprehensive analytical approach allowed for the accurate and ef-
ficient detection of the anthocyanins present in wine lees samples. A total of 11 anthocyanins
were identified in the wine lees extracts [M+]: Petunidin 3-O-glucoside (m/z 479.1190), peoni-
din 3-O-glucoside (m/z 498.1288), malvidin 3-O-glucoside (m/z 528.1035), cyanidin 3-(6′′-
acetylglucoside) (m/z 491.1190), petunidin 3-(6′′-acetylglucoside) (m/z 521.4295), peonidin
3-(6′′-acetylglucoside) (m/z 505.1346), malvidin 3-(6′′-acetylglucoside) (m/z 535.5465), mal-
vidin 3-(6′′-p-caffeyglucoside) (m/z 655.6539), cyanidin 3-O-(6′′-O-p-coumaroyl-glucoside)
(m/z 595.5165), petunidin 3-(6′′-p-coumaroyl-glucoside) (m/z 787.2054), and peonidin 3-(6′′-
p-coumaroyl-glucoside) (m/z 769.2347). The identified anthocyanins are in agreement with
those described by Duarte et al. [18] and Romero-Díez et al. [36] in wine lees samples.

2.4.2. Separations and Quantification of Anthocyanins by UHPLC–UV–vis

The separation and quantification of the identified anthocyanins in wine-lees samples
were performed using an Elite UHPLC LaChrom System from Hitachi (Tokyo, Japan). This
system included an L-2200U autosampler, an L2300 column oven set at 50 ◦C, two L-2160U
pumps, and a UV–Vis detector L-2420U, which was set to 520 nm for identification purposes.
A reversed-phase C18 column (Phenomenex, Kinetex, CoreShell Technology, Torrance, CA,
USA) with dimensions of 2.1 × 50 mm and 2.6 µm particle size was utilized. The mobile
phase A consisted of water with 5% formic acid, while phase B was pure MeOH, both
filtered through a 0.22 µm filter (RephiLe Bioscience, Ltd., Shanghai, China) and degassed
using an ultrasonic bath (Elma S300, Elmasonic, Singen, Germany) before use. The flow
rate was set at 0.7 mL/min.

Prior to analysis, the extracts underwent filtration through a 0.22 µm nylon syringe
filter (Membrane Solutions, Dallas, TX, USA). The injection volume for UHPLC separation
was set at 15 µL, and a gradient was applied for separation (%B): 2% at 0.00 min; 15% at
3.30 min; 35% at 4.80 min; 100% at 6.00 min.

The selection of this UHPLC method was due to its efficiency in separating the eleven
major anthocyanins identified in the samples in less than 7 min. This time-saving feature
is particularly beneficial for quality control laboratories that require a large number of
analyses to be performed daily.

For quantification, cyanidin chloride was chosen as the reference standard, and a
calibration curve (y = 300568.88x − 28462.43) with a coefficient of regression (R2) of 0.9999
was constructed. The limits of detection (LOD) and quantification (LOQ) were determined
to be 0.198 mg L−1 and 0.662 mg L−1, respectively. The normal distribution of residuals
was assessed using the Shapiro–Wilk test, yielding a W value of 0.8514 (very close to 1)
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and a p-value of 0.803 (above 0.05), confirming the hypothesis H0. The assumption of
similar absorbance levels for different anthocyanins, considering their individual molecular
weights, allowed for the use of this calibration curve to prepare a calibration curve for
each identified anthocyanin. To ensure accuracy and reproducibility, all analyses were
conducted in duplicate. A list of retention times for each anthocyanin and its corresponding
calibration curves can be found in Table 3.

Table 3. Anthocyanins quantified by UHPLC–UV–vis in wine lees extracts, retention times (min),
calibration curves, and coefficients of regression.

Compound Rt (min) Calibration Curve R2

Petunidin 3-O-glucoside 3.565 y = 177800x − 3574.06 0.999
Peonidin 3-O-glucoside 3.899 y = 183944x − 3574.06 0.999
Malvidin 3-O-glucoside 4.402 y = 172752x − 3574.06 0.999

Cyanidin 3-(6′′-acetylglucoside) 5.928 y = 173455x − 3574.06 0.999
Petunidin 3-(6′′-acetylglucoside) 6.107 y = 163467x − 3574.06 0.999
Peonidin 3-(6′′-acetylglucoside) 6.231 y = 168647x − 3574.06 0.999
Malvidin 3-(6′′-acetylglucoside) 6.420 y = 159190x − 3574.06 0.999

Malvidin 3-(6′′-p-caffeyglucoside) 6.542 y = 130025x − 3574.06 0.999
Cyanidin 3-(6′′-O-p-coumaroyl-glucoside) 6.680 y = 143137x − 3574.06 0.999
Petunidin 3-(6′′-O-p-coumaroyl-glucoside) 6.749 y = 136266x − 3574.06 0.999
Peonidin 3-(6′′-O-p-coumaroyl-glucoside) 7.308 y = 133281x − 3574.06 0.999

The determination of total anthocyanins was achieved by calculating the sum of the
quantities of the eleven identified anthocyanins. This cumulative value of total antho-
cyanins was then expressed in mg per 100 g of a dry-weighted sample. This cumulative
value of total anthocyanins served as the response variable during the optimization process.

2.5. Antioxidant Activity

As was previously mentioned, the antioxidant activity of the wine lees extracts has
also been considered the response variable. Antioxidant activity was assessed using DPPH
assays, following the method described by Brand-Williams et al. [37], with some modifica-
tions as suggested by Miliauskas et al. [38]. Trolox was employed as the standard, and a
six-point linear regression model was constructed ranging from 0 to 1.4 mM, with triplicate
measurements at each concentration. The obtained regression equation (y = 88.94x + 0.75)
exhibited a high regression coefficient of R2 = 0.9959. The antioxidant activity was expressed
as mg of trolox equivalents (TE) per gram of the dry-weighted sample (mg TE/g dw).
This measurement provides an indication of the antioxidant capacity of the wine lees
extracts, which is important for assessing their potential health benefits and functional
properties—objectives of this research.

2.6. Repeatability and Intermediate Precision Study

The optimized method’s suitability and accuracy were assessed through repeatability
and intermediate precision tests. For the repeatability evaluation, nine experiments were
conducted on the same day, aiming to determine the method’s precision when applied
multiple times within a short time frame. On the other hand, to determine the intermediate
precision of the method, nine additional extractions were performed on two consecutive
days, totaling 27 extractions, all under the optimized conditions.

The statistical parameters selected to evaluate the suitability and accuracy of the
developed method were the coefficients of variation (CV).

2.7. Data Analysis

The BBD–RSM design was conducted using the Statgraphic Centurion software (ver-
sion XVII) from Statgraphics Technologies, Inc. (The Plains, VA, USA). The data obtained
were compared and grouped based on the least significant difference (LSD) method, re-
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sponse surface regression techniques, analysis of variance (ANOVA) and the Fisher test.
The significance level was set at 95%, corresponding to a p-value ≤ 0.05.

RStudio software version 4.2.2 (RStudio Team 2022, Boston, MA, USA) was employed
for non-supervised Hierarchical Cluster Analysis (HCA) using the stats package.

3. Results and Discussion
3.1. BBD–RSM Method Optimization

In this study, the influence of various UAE variables and their optimization for total
anthocyanins concentrations and the antioxidant activity of the extracts were investigated
using BBD–RSM. Six extraction-related variables were carefully selected for evaluation, in-
cluding the %EtOH, temperature, amplitude, cycle, pH, and ratio. The experimental design
comprised 54 randomly performed extraction experiments based on the chosen variables.
Subsequently, the obtained extracts were treated and analyzed for the two selected response
variables (total anthocyanins concentrations and antioxidant activity of the extracts).

3.1.1. Total Anthocyanin Concentration

The determination of total anthocyanin concentration obtained from UAE extrac-
tion was selected as a response variable. To ascertain the concentration of individual
anthocyanins, an HPLC analysis was conducted on the extracts (Section 2.4), and the val-
ues were aggregated to compute the overall concentration of total anthocyanin content
(mg/100 g dw) for each of the 54 experiments.

The BBD–RSM methodology was applied to analyze this response variable, and its
correlation with the predicted values revealed an average deviation of 1.55%, ranging from
0.05% to 5.02%. Moreover, the developed model demonstrated an R2 value of 0.99. The
Durbin–Watson p-value in the ANOVA table (2.40) exceeded 0.05, indicating an absence
of significant disparities between the predicted and observed values. Consequently, the
model was deemed adequate for predicting the total anthocyanin concentration in wine
lees extracts.

In order to identify influential variables affecting the extraction of total anthocyanins
from wine lees, a t-test with a confidence level of 95% was conducted. The results (Table 4)
revealed that the following variables significantly influenced the total anthocyanin ex-
traction: %EtOH in the solvent (p-value: 0.000), extraction temperature (p-value: 0.000),
quadratic interaction of %EtOH in solvent (p-value: 0.000), quadratic interaction of ex-
traction temperature (p-value: 0.000), and interaction of %EtOH and extraction temper-
ature (p-value: 0.0252). These results were visually depicted in a pareto chart for en-
hanced comprehension (Figure 1A). It is worth noting that the %EtOH and extraction
temperature variables exhibited a positive effect on total anthocyanin extraction, i.e.,
higher values within the studied ranges led to increased total anthocyanin content in the
analyzed extracts.

Table 4. Results from the BBD–RSM analysis for total anthocyanin concentration and antioxidant
activity of wine-lees extracts obtained by UAE.

Variables
Total Anthocyanins (mg/100 g dw) DPPH (mg Trolox eq./g dw)

Sum of
Squares F-Value p-Value Sum of

Squares F-Value p-Value

%EtOH 800.07 80.68 0.000 11.19 212.82 0.000
Temperature 7100.50 716.06 0.000 5.53 105.14 0.000

Cycle 0.00 0.00 0.985 0.00 0.03 0.874
Amplitude 5.32 0.54 0.470 0.00 0.06 0.805

pH 0.18 0.02 0.893 0.11 2.05 0.164
Ratio 11.87 1.20 0.284 0.08 1.44 0.240
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Table 4. Cont.

Variables
Total Anthocyanins (mg/100 g dw) DPPH (mg Trolox eq./g dw)

Sum of
Squares F-Value p-Value Sum of

Squares F-Value p-Value

%EtOH·%EtOH 913.50 92.12 0.000 12.03 228.64 0.000
%EtOH·Temperature 55.92 5.64 0.025 0.00 0.03 0.855

%EtOH·Cycle 1.26 0.13 0.724 0.00 0.01 0.939
%EtOH·Amplitude 6.97 0.70 0.410 0.00 0.06 0.804

%EtOH·pH 4.31 0.43 0.516 0.00 0.06 0.807
%EtOH·Ratio 0.34 0.03 0.855 0.00 0.03 0.855

Temperature·Temperature 13263.30 1337.56 0.000 85.12 1618.37 0.000
Temperature·Cycle 6.92 0.70 0.411 0.03 0.53 0.475

Temperature·Amplitude 0.90 0.09 0.766 0.15 2.93 0.099
Temperature·pH 1.42 0.14 0.708 0.00 0.06 0.804

Temperature·Ratio 2.12 0.21 0.648 0.09 1.80 0.191
Cycle·Cycle 1.49 0.15 0.702 0.38 7.31 0.012

Cycle·Amplitude 15.07 1.52 0.229 0.00 0.01 0.939
Cycle·pH 10.13 1.02 0.322 0.00 0.02 0.879

Cycle·Ratio 1.27 0.13 0.724 0.01 0.20 0.659
Amplitude·Amplitude 8.99 0.91 0.350 7.13 135.54 0.000

Amplitude·pH 5.95 0.60 0.446 0.00 0.03 0.867
Amplitude·Ratio 32.16 3.24 0.083 0.00 0.02 0.903

pH·pH 33.21 3.35 0.079 0.85 16.12 0.000
pH·Ratio 24.92 2.51 0.125 0.00 0.06 0.807

Ratio·Ratio 1.12 0.11 0.739 0.08 1.48 0.234
Total error 257.82 123.25

A second-order polynomial equation (Equation (2)) was employed to determine the
total anthocyanin concentration (Y) under optimal conditions, established based on the
coefficients obtained through the BBD–RSM analysis:

Y = −12.373 + 1.911·X1 + 4.882·X2 + 4.844·X3 + 0.207·X4 + 0.376·X5−
6.023·X6 − 0.015·X1

2 − 0.004·X1·X2 − 0.04·X1·X3 − 0.001·X1·X4 + 0.010·X1·X5+

0.032·X1·X6 − 0.057·X2
2 − 0.093·X2·X3 + 0.001·X2·X4 + 0.004·X2·X5 + 0.082·X2·X6+

2.376·X3
2 − 0.171·X3·X4 + 0.937·X3·X5 + 2.812·X3·X6 + 0.002·X4

2 − 0.014·X4·X5−
0.401·X4·X6 − 0.199·X5

2 + 2.353·X5·X6 + 5.282·X6
2

(2)

The optimal conditions for the maximum recovery of total anthocyanin concentration
from wine lees were 0.20 g of a sample extracted with 25 mL of solvent at 60% EtOH in
water with a pH of 4.40 at 60 ◦C and using an amplitude and cycle of 70% and 0.2 s–1,
respectively. The percentage of EtOH in the solvent aligns with the approaches employed
by other researchers in the extraction of anthocyanins from wine lees. For instance, Costa-
Pérez et al. [10] employed an acidified mixture of 50% MeOH in water for their extraction
process. Similarly, Tagkouli et al. [23] also used a 50% mixture of EtOH in water for their
extraction, albeit at a higher extraction temperature of 85 ◦C, which would require higher
energetic consumption.

3.1.2. Antioxidant Activity

As previously mentioned, one of the primary objectives of this research is to obtain
enriched extracts from wine lees with potential applications in various fields, such
as nutraceuticals, medicine, or the pharmaceutical industry. Hence, the presence of
desirable properties, such as antioxidant activity, is of great interest. To evaluate the
antioxidant activity of the 54 obtained extracts from the experimental design, the DPPH
methodology was utilized, and the measured antioxidant activity was employed as
a response variable. This antioxidant activity was then correlated with the predicted
values obtained from the model (Table 1). The analysis revealed an average difference of
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2.33% with variations ranging from 0.01% to 11.59%. The developed method exhibited an
R2 value of 0.98, and the Durbin–Watson p-value (2.82) in the ANOVA table was found to
be greater than 0.05. This indicated that there were no significant discrepancies between
the predicted and observed values, confirming the model’s adequacy for predicting the
antioxidant activity of the wine lees extracts.

A t-test was performed at a confidence level of 95% to assess the influence of the
selected variables on the antioxidant activity of the extracts. Among the variables stud-
ied, %EtOH in the solvent (p-value: 0.000), extraction temperature (p-value: 0.000), the
quadratic interaction of %EtOH in solvent (p-value: 0.000), the quadratic interaction of
extraction temperature (p-value: 0.000), the quadratic interaction of amplitude (p-value:
0.000), the quadratic interaction of cycle (p-value: 0.011), and the quadratic interaction
of pH (p-value: 0.004) were found to be influential in the antioxidant activity of the
extracts, as shown in Table 4. The results were further illustrated using a pareto chart
graph (Figure 1B), where it can be observed that the influence of the %EtOH and tem-
perature were positive, as in the case of the anthocyanins. To determine the antioxidant
activity (Y) under optimal conditions, as established based on the coefficients obtained
through the BBD–RSM analysis, the second-order polynomial equation (Equation (3))
was utilized. This equation is useful for predicting the antioxidant activity of the wine
lees extracts under the identified optimal conditions, facilitating their application in
various industries and fields where antioxidant properties are highly valuable:

Y = −8.965 + 0.201·X1 + 0.332·X2 + 1.038·X3 + 0.200·X4 − 0.340·X5+

2.187·X6 − 0.002·X1
2 + 2.4·10−5·X1·X2 − 0.001·X1·X3 − 2.8·10−5·X1·X4 − 2.7·10−4·X1·X5

+0.002·X1·X6 − 0.005·X2
2 + 0.006·X2·X3 + 2.7·10−4·X2·X4 + 1.9·10−4·X2·X5−

0.017·X2·X6 − 1.208·X3
2 + 7.8·10−4·X3·X4 + 0.010·X3·X5 + 0.256·X3·X6 − 0.002·X4

2+

2.3·10−4·X4·X5 − 0.002·X4·X6 + 0.032·X5
2 − 0.027·X5·X6 − 1.393·X6

2

(3)

The optimal conditions to achieve the maximum antioxidant activity from wine lees
were 0.57 g of the sample in 25 mL of solvent with 60% of EtOH at pH 2, extracted at
37 ◦C with an amplitude of 50% and 0.6 s–1 of the cycle. The exhaustive comparison
of extraction conditions with existing literature was a challenge because the main ob-
jective of most studies was the extraction of bioactive compounds, with its associated
properties being a supplementary consideration and not the main goal of optimization.
Nevertheless, the notable decrease in the optimal pH value was a significant finding
for the researchers. This observation could be highly related to the pH dependence
of antioxidant activity. Numerous authors have stated that antioxidant activity is in-
fluenced by pH through several mechanisms: (1) electrochemical oxidation and the
involvement of H+ ions; (2) correlation between the torsion angle of one ring with the
rest of the molecules and scavenging activity due to increased conjugation afforded by
planarity; (3) the oxidation stability of the compound; and (4) the transformation of the
compound [39,40].

As observed, certain similarities were found among the influential variables affecting
the total anthocyanins concentration and antioxidant activities in the analyzed extracts.
However, significant dissimilarities, especially in the optimal values of these variables,
were also identified. Therefore, a multi-response model was evaluated to develop a single
model that could maximize the two response variables simultaneously. The desirability
obtained was significantly higher than expected, proving the possibility of using a unique
model that allows for obtaining the highest anthocyanin content with antioxidant activity
from wine lees. The optimal conditions of this method were 0.25 g of the sample extracted
with 25 mL of solvent (50% EtOH and pH 2) at 40 ◦C using an amplitude of 53% and a
cycle of 0.30 s–1.
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3.2. Optimal Extraction Time of the Method

Finally, a kinetic study was carried out in order to evaluate the optimal extraction time
of the combined model developed and to assess the influence of the extraction times on the
concentration of total anthocyanins obtained and the antioxidant activity of the extracts.

For this purpose, the following extraction times were considered: 2, 5, 10, 15, 20, and
30 min. The extractions were performed in triplicate, following the optimal conditions of
the combined method. After the extraction process, the extracts were treated as previously
described and analyzed using the established methodologies to quantify the concentrations
of total anthocyanins, as well as to measure the antioxidant activity.

The average total anthocyanin concentration was calculated for each extraction time
and represented in Figure 2A. The concentrations of anthocyanins increased steadily,
reaching their maximum at the 15 min mark. However, beyond this point, the concentration
started to decrease, likely due to the thermodegradation of the anthocyanin compounds [41].
Statistical analysis was conducted using ANOVA with a confidence level of 95%, resulting
in a p-value below 0.05, which confirmed the significant influence of the extraction time on
anthocyanin concentrations. Although there were no statistically significant differences
between the 10 min and 15 min extraction times, the 10 min duration was selected as the
optimal extraction for anthocyanin recovery. This choice was likely based on practical
considerations and low energy consumption.

Interestingly, the extraction time did not appear to be a significant factor influencing
the antioxidant activity of the extracts. This observation was further confirmed through
ANOVA analysis at a 95% confidence level, revealing no statistically significant differences
between the various extraction times. Consequently, a 10 min extraction time was selected
as the optimal duration for maximizing the anthocyanins concentration extracted and
the antioxidant activity of the wine lees extracts. This abbreviated extraction time is
advantageous for practical applications, as it allows for a rapid and efficient extraction
process to obtain significant antioxidant activity levels.

Indeed, the chosen short extraction time offers significant advantages compared to the
typically employed durations in studies focused on extracting bioactive compounds from
wine lees. For instance, Costa-Pérez et al. [10], Tapia Quirós et al. [42], or Dujmic et al. [34]
utilized extraction times of 60, 30, and 25 min, respectively, for the extraction of polyphenols
from wine lees using UAE. By contrast, the 2 min extraction time selected in this study
represents a considerable reduction in the overall extraction process while still achieving
comparable results. Moreover, this short extraction time aligns with the approach adopted
by De Luca et al. [19] who achieved the successful extraction of polyphenols in just 15 min.
In conclusion, the developed methodology provides a rapid and reliable means of obtain-
ing anthocyanin-rich extracts from wine lees while maintaining their beneficial bioactive
properties, including antioxidant activity.

3.3. Optimal Conditions

At this stage, one extraction method was optimized to obtain the highest anthocyanin
concentrations with significant antioxidant activity from wine lees extraction using USE.
In order to evaluate this methodology, six extractions were performed using 0.25 g of
the sample extracted with 25 mL of the solvent (50% EtOH and pH 2) at 40 ◦C, using an
amplitude of 53% and a cycle of 0.30 s–1 for 10 min.

The extracts obtained were analyzed, and the eleven anthocyanins previously iden-
tified were quantified; the sum of the concentrations was calculated, obtaining the total
anthocyanin concentration. This resulted in extracts with a total anthocyanin concentration
of 148.03 ± 1.71 mg/100 g dw.
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Figure 2. (A) Total anthocyanin concentrations (mg/100 g dw) and (B) antioxidant activity (mg
Trolox eq./g dw) of the extracts according to the different extraction times (n = 3). Different letters
indicate significant differences at a 95% confidence.

Comparison with existing literature reveals that the developed method yielded signifi-
cantly higher anthocyanin concentrations compared to other reported extraction methods.
For example, Costa-Pérez et al. [10] evaluated the anthocyanin concentration in var. Monas-
trell wine lees, using for this, 100 mg of a sample that was mixed with 1 mL of an acidified
mixture of 50% MeOH in water, sonicated for 60 min, kept overnight, and sonicated again
for 60 min. In this case, the anthocyanin concentration achieved was 32.70 mg/100 g of
the sample. As can be observed, the concentrations obtained were significantly lower than
those achieved with the developed method and under softer conditions. Sancho-Galán
et al. [43] also optimized a method for the extraction of anthocyanins from var. Tempranillo
using UAE. The conditions obtained were in agreement with many of those obtained in the
developed method; 0.5 g of the sample were extracted with 11 mL of solvent (49% MeOH,
pH 6.9) at 10 ◦C and using an amplitude and cycle of 51% and 0.7 s–1, respectively. While
the percentage of alcoholic solvent and the amplitude used were similar to the developed
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method, the required temperature was significantly lower. However, the total anthocyanin
concentration achieved in their study remained in the range of 90 mg/L, lower than that
obtained in this research. In conclusion, the developed extraction method demonstrated su-
perior efficiency in achieving higher anthocyanin concentrations from wine lees compared
to previously reported methods in the literature. This was accomplished under milder
extraction conditions, making it a promising approach for extracting anthocyanins from
wine lees.

On the other hand, the antioxidant activity of the extracts obtained was also evaluated
using DPPH methodology. The average activity obtained was 7.87 ± 0.32 mg TE/g dw.

In comparison with existing literature, it is challenging to find direct matches for
antioxidant activity optimization research, as most studies focus on the extraction of
bioactive compounds, with antioxidant properties being a consequence rather than the
main objective. However, some studies have evaluated the antioxidant activity of extracts
from wine lees. For instance, Romero-Díez et al. [36] evaluated the antioxidant activity
of the extracts obtained from different Vitis vinifera varieties of wine lees from Portugal,
achieving 4952 µmol/g sample as an antioxidant activity. Sato et al. [44] explored the
antioxidant activity of the wine lees used as feed for ruminates. For that, 0.5 g of wine lees
was incubated with 40 mL of a buffer solution at 39 ◦C for 48 h, obtaining an antioxidant
activity of the extracts of 13.2 µmol/g sample. Lastly, Ciliberti et al. [20] also evaluated the
use of wine less as an immune modulator. For that, wine lees samples were extracted with
a MAE methodology, which required an ethanol solution (50%) at different temperatures
(50–200 ◦C), for 15 min. The extracts exhibited antioxidant activities that ranged from
12.36 to 467.4 µmol/g sample. Overall, despite the challenges in finding direct comparisons,
the antioxidant activities observed in the extracts from the second optimized method are
consistent with those reported in the literature for similar studies on wine lees.

3.4. Repeatability and Intermediate Precision

In the subsequent phase, the repeatability and intermediate precision of the optimized
method were evaluated to ensure the accuracy and precision of the developed technique
for obtaining anthocyanin-enriched extracts from wine lees with significant antioxidant
activities. Repeatability was assessed by conducting nine extractions on the same day,
under the established optimal conditions. Similarly, for the evaluation of intermediate
precision, nine extractions were performed on each of two consecutive days, resulting in a
total of 27 extractions (n = 9 + 9 + 9).

The total concentration of anthocyanins in the extracts was determined using the previ-
ously established procedures, and the average total anthocyanin concentration (mg/100 g dw),
along with its corresponding standard deviation, were calculated. Additionally, the
antioxidant activity of the extracts was measured, and the average activity (mg Trolox
equivalents/g dw) and standard deviation were computed accordingly. The specific nu-
merical values obtained from the repeatability and intermediate precision evaluations can
be found in Table 5.

Regarding the total anthocyanins, the relative standard deviation (RSD) resulting
from the repeatability and intermediate precision tests were found to be 0.73% and 0.92%,
respectively. Similarly, for the antioxidant activity, the RSD values obtained were 2.35% and
3.29% for the repeatability and intermediate precision tests, respectively. It is important to
note that all RSD values obtained were below 5%. This outcome confirms the high precision
level of the optimized methods employed in this study. The low RSD values indicate that
the developed technique is reliable and can consistently produce anthocyanins-enriched
extracts from wine with significant antioxidant activities. These findings demonstrate the
robustness and accuracy of the method, making it suitable for practical applications in the
extraction and quantification of anthocyanins from wine lees.
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Table 5. Repeatability and intermediate precision results for the total anthocyanin concentra-
tion (mg/100 g dw) and antioxidant activity of the extracts (mg TE/g dw) obtained under
optimal conditions.

Anthocyanins (mg/100 g dw) Antioxidant Activity (mg TE/g dw)

Repeatability

Average 150.25 8.06
SD * 1.10 0.19

RSD ** 0.73 2.35

Intermediate Precision

Average 148.88 7.88
SD * 1.37 0.26

RSD ** 0.92 3.29
Repeatability (n = 9); Intermediate precision (n = 27); * Standard deviation; ** Relative standard deviation.

3.5. Application of the Optimized Method to Real Samples

Once the precision properties of the developed methods were confirmed, the next step
was the application of the developed method to real samples of wine lees. Samples from
Syrah and Cabernet Sauvignon varieties were used for the analysis (Table 1) under optimal
conditions. The total anthocyanins concentrations were measured using the UHPLC-PDA
system, and the antioxidant activities were measured using DPPH methodology.

Significant differences were found in the concentrations of bioactive compounds. The
average total anthocyanin concentrations ranged from 27.72 to 148.03 mg/100 g, with the
highest concentration observed in the Syrah lees with lyophilization treatment (sample used
for method optimization) and the lowest concentration observed in the Cabernet Sauvignon
sample after alcoholic fermentation and drying at 40 ◦C (Table 6). These concentrations
are consistent with literature reports for Syrah and Cabernet Sauvignon wine lees, which
have anthocyanin concentrations in the range of 36.4–390.67 and 0.10–587.00 mg/100 g,
respectively [16,45–48].

Table 6. Concentration of total anthocyanins (mg/100 g dw) and antioxidant activity (DPPH, mg
TE/g dw) of Syrah and Cabernet Sauvignon wine lees.

Sample Code Total Anthocyanins
(mg/100 g dw)

Antioxidant Activity
(mg TE/g dw)

Sy_MF_Ly 148.03 ± 1.71 7.82 ± 0.32
Sy_MF_Dr 112.62 ± 0.81 5.59 ± 0.42
CS_MF_Ly 81.17 ± 0.36 6.63 ± 0.10
CS_MF_Dr 53.50 ± 0.14 5.49 ± 0.78
CS_AF_Ly 81.99 ± 1.00 5.07 ± 0.01
CS_AF_Dr 27.72 ± 0.30 4.60 ± 0.00

A multifactorial ANOVA was conducted with the total anthocyanin concentration data.
The analysis revealed that the variety significantly influenced the total anthocyanin con-
centrations (p-value: 6.791·10–7). Additionally, the type of pretreatment before extraction
(lyophilization or drying at 40 ◦C) also had a significant effect on anthocyanin concentration
(p-value: 3.000·10–6). Furthermore, the fermentation undergone by the samples was influ-
ential for the total anthocyanin amount(p-value: 0.005), which was expected, as previous
studies have shown that a second fermentation (malolactic fermentation) enhances the
accumulation of bioactive compounds [49]. The interaction between the three factors (vari-
ety, fermentation, and treatment) was also found to be influential in the total anthocyanin
concentration in the final extracts (p-value: 0.010)

The antioxidant activity of the real samples was also evaluated, with the highest
antioxidant activity observed in the Syrah wine lees employed for the method development
(7.82 mg/100 g dw) and the lowest activity in the Cabernet Sauvignon sample after alcoholic
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fermentation (4.60 mg/100 g dw) (Table 6). These antioxidant activities are consistent with
those reported in the literature for Syrah and Cabernet Sauvignon varieties, which exhibited
ranges of 0.384–4.69 and 1.09–3.93 mmol TE/g dw, respectively [11,16,45,48].

A multifactorial ANOVA was again conducted, and the variety (p-value: 0.006),
treatment (p-value: 6.254·10–5), and fermentation (p-value: 2.498·10–4) were found to be
significantly influential variables in the antioxidant activity of the extracts. Additionally,
the interaction between these three factors (p-value: 0.004) was also determined to have a
significant impact on the antioxidant activity.

These findings demonstrate that the variety of grapes used, the treatment method
(lyophilization or drying at 40 ◦C), and the fermentation process all play significant roles in
determining the antioxidant activity of the extracted compounds from wine lees. The results
also highlight the suitability and effectiveness of the developed method in quantifying
anthocyanins and assessing antioxidant activity in wine lees extracts, making it a valuable
tool for studying the bioactive properties of these by-products in the winemaking industry.

Finally, a Hierarchical Cluster Analysis (HCA) was conducted with the samples to
observe their distribution using a non-supervised statistical technique. Ward’s method
with squared-Euclidean distance was applied, and the dendrogram was represented in
a phylogenetic tree (Figure 3). As observed, the major distance between the samples
was established based on the variety, with the Syrah variety samples forming a distinct
group separate from the Cabernet Sauvignon samples. Next, the second major distance
was established based on the treatment method, with the lyophilized samples completely
separated from the dried samples. Finally, the fermentation process appeared to be the least
determining factor in the distribution of the samples, although it did cause some grouping
of the samples according to their nature.

1 
 

 
Figure 3. Dendrogram obtained from the HCA of Syrah and Cabernet Sauvignon wine lees samples
(D12×2). The samples are colored according to the three principal clusters.

In conclusion, the influence of the three factors (variety, treatment, and fermentation)
on the bioactive compounds and health-related properties of the extracts was evident. The
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Syrah variety, malolactic fermentation, and lyophilization treatment were found to be the
best conditions for obtaining the highest concentrations of anthocyanins and antioxidant
activities in the extracts. The results from the HCA supported the findings from the ANOVA
analysis, further validating the significance of these factors in determining the bioactive
properties of wine lees extracts.

Overall, this study demonstrated the importance of considering these factors when
extracting and quantifying bioactive compounds from wine lees, and it provides valuable
insights for optimizing extraction processes to obtain anthocyanin-enriched extracts with
significant antioxidant activities from different grape varieties.

4. Conclusions

In this research, an ultrasound-assisted extraction methodology was developed to
obtain bioactive compound-enriched extracts from wine lees. The influence of various USE
variables on the extraction of total anthocyanins and antioxidant activity was evaluated.
Significant factors affecting both anthocyanin extraction and antioxidant activity included
the percentage of ethanol in the solvent, extraction temperature, and amplitude. A multi-
parametric method was developed achieving the highest anthocyanin concentration and
antioxidant activity of the extracts under the same optimal conditions with an important
desirability factor. Optimal conditions were 0.25 g of a wine lees sample extracted with
25 mL of solvent (50% EtOH and pH 2) at 40 ◦C using an amplitude of 53% and a cycle
of 0.30 s–1 for 10 min. In addition, the method underwent precision and accuracy tests,
demonstrating its reliability, with relative standard deviations consistently below 5%.

The developed method was also applied to real samples of wine lees from Syrah and
Cabernet Sauvignon varieties with different treatments. Syrah samples generally exhib-
ited higher concentrations of bioactive compounds and antioxidant activity compared to
Cabernet Sauvignon samples. Malolactic fermentation was found to promote the accumu-
lation of bioactive compounds and enhance their properties. Additionally, lyophilization
emerged as a favorable pretreatment method for achieving both objectives. In conclusion,
the research highlights the significant influence of variety, treatment, and fermentation on
the concentrations and properties of bioactive compounds in wine lees extracts.

The developed method represents an important advancement in circular economy and
environmental contamination reduction, making these residues valuable resources for vari-
ous applications. Overall, this study contributes to the utilization of wine lees as a source
of anthocyanin-enriched extracts with significant antioxidant properties, offering potential
benefits in multiple fields and promoting sustainable practices in the winemaking industry.
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