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Abstract: There is growing evidence that oxidative stress plays a role in melasma and disrupts
primary cilia formation. Additionally, primary cilia have been suggested to have an inhibitory role in
melanogenesis. This study examined the potential link between oxidative stress, skin hyperpigmen-
tation, and primary cilia. We compared the expression levels of the nuclear factor E2-related factor 2
(NRF2), intraflagellar transport 88 (IFT88), and glioma-associated oncogene homologs (GLIs) in skin
samples from patients with melasma, both in affected and unaffected areas. We also explored the roles
of NRF2, IFT88, and GLIs in ciliogenesis and pigmentation using cultured adult human keratinocytes,
with or without melanocytes. Our findings revealed decreased levels of NRF2, heme oxygenase-1,
IFT88, and GLIs in lesional skin from melasma patients. The knockdown of NRF2 resulted in reduced
expressions of IFT88 and GLI1, along with fewer ciliated cells. Furthermore, NRF2, IFT88, or GLI1
knockdown led to increased expressions in protease-activated receptor-2 (PAR2), K10, involucrin,
tyrosinase, and/or melanin. These effects were reversed by the smoothened agonist 1.1. Calcium
also upregulated these proteins, but not NRF2. The upregulation of involucrin and PAR2 after NRF2
knockdown was mitigated with a calcium chelator. In summary, our study suggests that oxidative
stress in NRF2-downregulated melasma keratinocytes impedes ciliogenesis and related molecular
processes. This inhibition stimulates keratinocyte differentiation, resulting in melanin synthesis and
melanosome transfer, ultimately leading to skin hyperpigmentation.

Keywords: oxidative stress; primary cilia; hedgehog signaling; keratinocyte differentiation; skin
hyperpigmentation

1. Introduction

Melasma, a common facial skin pigmentation disorder, poses ongoing challenges in
unravelling its complex pathogenesis. While genetic background and female sex hormones
are recognized contributors, chronic exposure to ultraviolet (UV) radiation is considered a
key trigger [1]. UV exposure generates reactive oxygen species (ROS), resulting in oxidative
stress when the body’s antioxidant defenses are overpowered [2]. Studies have pointed to
the role of oxidative stress in melasma development [3–6].

The impact of oxidative stress on ciliogenesis disruption has been explored in several
reports [7,8], yet there has been no skin-specific investigations. The role of primary cilia
in the negative regulation of melanogenesis was investigated in a study using cultured
melanocytes [9]. The factors leading to ciliogenesis inhibition and the precise mechanisms
governing the interplay between primary cilia and skin pigmentation remain elusive. How-
ever, the evidence implicating oxidative stress in ciliogenesis disruption and the inhibitory
role of primary cilia in melanogenesis suggest a compelling link between oxidative stress,
ciliogenesis inhibition, and enhanced melanogenesis.

Primary cilia, antenna-like organelles projecting from the apical surfaces of most eu-
karyotic cells, serve as sensory organelles that receive and transduce environmental signals
into coordinated cellular responses, influencing various cellular processes [10]. Structural

Antioxidants 2023, 12, 1969. https://doi.org/10.3390/antiox12111969 https://www.mdpi.com/journal/antioxidants

https://doi.org/10.3390/antiox12111969
https://doi.org/10.3390/antiox12111969
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://orcid.org/0000-0001-7913-456X
https://orcid.org/0000-0001-7720-7833
https://doi.org/10.3390/antiox12111969
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com/article/10.3390/antiox12111969?type=check_update&version=1


Antioxidants 2023, 12, 1969 2 of 14

alterations in cilia, such as shortening and/or loss, can compromise their signaling capabil-
ities, resulting in defects that contribute to developmental issues, degenerative diseases,
and cancer progression. The core of the primary cilium contains an axoneme composed
of a ring of nine microtubule doublets that extend from the basal body at the base of the
cilium, derived from the mother centriole [11]. Among the numerous genes involved in cil-
iogenesis and ciliary functions [12], intraflagellar transport (IFT), a bi-directional transport
system, plays a critical role in elongating the cilium axoneme during ciliary assembly [13].
The hedgehog (Hh) pathway represents a central main mechanism for cilium-based sig-
naling [14,15], requiring key proteins such as patched (PTCH), smoothened (SMO), and
glioma-associated oncogene homologs (GLIs). The PTCH homolog, a transmembrane
receptor for the secreted Sonic hedgehog (Shh) protein, triggers SMO homologs to release
the suppressor of the fused homolog–zinc finger protein-GLI complex, enabling the GLIs’
nuclear translocation and activation of Hh target gene transcription [16–18].

This study aimed to explore the potential link among oxidative stress, primary cilia,
and skin hyperpigmentation in melasma. While it is important to acknowledge that
approximately 10% of melasma cases occur in men, making gender-based comparisons
challenging, the study primarily focused on understanding the inter-individual variations
in melasma pathogenesis [1]. To do so, we compared the expression levels of nuclear factor
E2-related factor 2 (NRF2) and the number of primary cilia, along with the related molecule
expression, including IFT88, GLIs, and PTCH homologs, between lesional and non-lesional
skin specimens from the same melasma patients. Furthermore, we investigated the roles of
NRF2, IFT88, and GLI1 in ciliogenesis and melanogenesis using primary cultured adult
human keratinocytes and keratinocyte–melanocyte cocultures.

2. Materials and Methods
2.1. Patients

This study population comprised 16 female patients diagnosed with melasma, aged
29–62 years (mean age: 51.7 years). Ethical approval was obtained from the Institutional
Review Board of the Dongguk University Ilsan Hospital, and the study adhered to the
principles outlined in the Declaration of Helsinki. Written informed consent was acquired
from each patient. Paired sets of hyperpigmented and adjacent normally pigmented skin
specimens were retrieved through biopsy for direct comparisons. The specimens were
subjected to real-time polymerase chain reaction (PCR) and immunohistochemistry.

2.2. Normal Human Epidermal Cell Culture

Human epidermal keratinocytes and melanocytes were sourced from Gibco (Thermo
Fisher Scientific, Waltham, MA, USA). The keratinocytes were suspended in an EpiLife
medium (Thermo Fisher Scientific) supplemented with bovine pituitary extract (BPE, 0.2%),
recombinant human insulin-like growth factor-1 (rhIGF-1, 0.01 ug/mL), hydrocortisone
(0.18 ug/mL), human epidermal growth factor (0.2 ng/mL), and bovine transferrin (BT,
5 ug/mL) (Thermo Fisher Scientific). The melanocytes were suspended in Medium 254
(Thermo Fisher Scientific) supplemented with BPE (0.2%), fetal bovine serum (0.5%), rhIGF-
1 (0.01 ug/mL), hydrocortisone (0.18 ug/mL), basic fibroblast growth factor (3 ng/mL), BT
(5 ug/mL), heparin (3 ug/mL), and phorbol 12-myristate 13-acetate (10 ng/m) (Thermo
Fisher Scientific). For the experiments, keratinocytes and melanocytes from passages
3–6 and 10–20 were utilized. For the coculture of keratinocytes and melanocytes, ker-
atinocytes were seeded at 2 × 105 cells/well to six-well plates. Four hours later, 1 × 105

melanocytes/well in 2 mL of EpiLife media were added to the keratinocytes. After 24 h, the
EpiLife medium was replaced with the supplement-free medium, and GANT61 (5–10 µM;
Sigma Aldrich, St. Louis, MO, USA) or CaCl2 (1 mM) treatment was administered by
adding these agents to the cell culture for 48 h.
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2.3. H2O2 Treatment or UVB Radiation

Primary cultured normal human keratinocytes were seeded at 1.5 × 105 cells/well
to six-well plates and incubated for 24 h. The cells in each six-well plate were subjected
to different concentrations (50, 100, 200, and 500 mM) and durations (4, 24, and 48 h) of
H2O2 or irradiated with 200 mJ of UVB either once or once daily for 3 consecutive days,
employing a WL 20 W lamp emitting 305–314 nm with a peak of 311 nm (Royal Philips,
Amsterdam, The Netherlands). Cell harvesting for NRF2 expression level evaluation was
immediately conducted after the corresponding durations of H2O2 treatment or 2, 4, and
24 h after the final irradiation. The EpiLife medium was replaced with a supplement-free
EpiLife medium or phosphate-buffered saline (PBS) during the H2O2 treatment or the
irradiation, respectively.

2.4. Knockdown of IFT88, GLI1, and NRF2

Melanocytes and keratinocytes were seeded at 1.5 × 105 cells/well to six-well plates
and incubated for 24 h. The cells were transfected with 25 nM CRISPR-CAS9 sgRNA
targeting human IFT88, GLI1, NRF2, or negative control sgRNA (Integrated DNA Tech-
nologies, San Diego, CA, USA) using the CRISPRMAX transfection reagent (Thermo Fisher
Scientific). The cells were used for experiments 48 h after transfection. For the coculture
of keratinocytes and melanocytes, 24 h later, 1 × 105 melanocytes/well in 2 mL of EpiLife
medium were added to transfected keratinocytes and incubated for another 24 h. Treatment
with the SMO agonist (SAG; 1 µM; Sigma Aldrich) or Shh protein (100 nM; R&D Systems,
Minneapolis, MN, USA) involved adding these substances to the transfected cells for 24 h
after replacing the EpiLife medium with a supplement-free EpiLife medium. All collected
cells were used for Western blot analysis, immunohistochemistry, confocal microscopy,
tyrosinase activity assay, and melanin content assay.

2.5. Real-Time PCR Analysis

cDNA was synthesized from total RNA using a cDNA Synthesis Kit for RT-PCR
(Promega, Fitchburg, WI, USA). The mRNA levels relative to GAPDH were measured using
qPCR with a Light Cycler Real-Time PCR (Roche, Mannheim, Germany). The primer se-
quences used were as follows: IFT88 (NM 001353565) 5′-ATTGCCAATAGTTGTGGAGACTT-
3′ (forward) and 5′-CTCGCTGTCTCACCAGGACT-3′ (reverse); PTCH1 (NM 001083605)
5′-TGGATGTCATGGCTTATCCAG-3′ (forward) and 5′-CATTAACTGGAACATGGTCTGC-
3′ (reverse); GLI1 (NM_001160045) 5′-ATCAACTCGCGATGCACA-3′ (forward) and 5′-
ATTCATCTGGGCTGGGAAT-3′ (reverse); GLI2 (NM_001374354) 5′-ACGGCACTGGATG-
ACACAC-3′ (forward) and 5′-AGTGCTGGACACCTGGTTG-3′ (reverse); GLI3 (NM_000168)
5′-ACATGGAATATCTTCATGCTATGG-3′ (forward) and 5′-GGTGATATGGACAGTGTAC-
GTTTT-3′ (reverse); and GAPDH (NM_001357943) 5′-TCCACTGGCGTCTTCACC-3′ (for-
ward) and 5′-GCAGAGATGATGACCCTTT-3′ (reverse).

2.6. Western Blot Analysis

Equal amounts of extracted proteins (20 µg) were resolved via 8–12.5% sodium do-
decyl sulfate-polyacrylamide gel electrophoresis and then transferred to nitrocellulose
membranes. The membranes were probed with antibodies against various proteins, includ-
ing IFT88 (rabbit polyclonal; Proteintech, Chicago, IL, USA), tyrosinase, PMEL17, GLI1,
K14, K10, PAR2, heme oxygenase-1 (HO-1) (mouse monoclonal; Santa Cruz Biotechnology,
Dallas, TX, USA), involucrin, PTCH1, GLI2 (goat; Santa Cruz Biotechnology), Shh (rabbit
polyclonal; Cell Signaling Technology, Beverly, MA, USA), and NRF2 (rabbit polyclonal; Ab-
cam, Cambridge, UK). The membranes were further incubated with anti-rabbit, anti-mouse,
or anti-goat horseradish peroxidase-conjugated antibodies (Santa Cruz Biotechnology)
and then treated with an enhanced chemiluminescence solution (Thermo, Rockford, IL,
USA). Signals were captured using an image reader (LAS-3000; Fuji Photo Film, Tokyo,
Japan). The membranes were re-probed with a mouse monoclonal anti-β-actin antibody
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(Sigma Aldrich) and processed as described above. The protein bands were analyzed
via densitometry.

2.7. Immunohistochemistry and Confocal Microscopy

For the immunofluorescence staining of the biopsied skin specimens, the sections were
pre-incubated with 3% bovine serum albumin after deparaffinization and rehydration. The
sections were stained as follows: anti-NRF2 antibody (1:200 dilution), followed by Alexa-
Fluor-labeled goat anti-rabbit IgG (1:200, 488; Molecular Probes, Eugene, OR, USA), anti-
HO-1 antibodies (1:100) followed by Alexa-Fluor-labeled goat anti-mouse IgG (1:200, 594;
Molecular Probes), or anti-involucrin antibodies (1:200) followed by Alexa-Fluor-labeled
donkey anti-goat IgG (1:200, 594; Molecular Probes). For the staining of the cultured cells,
the cells were fixed in 2% paraformaldehyde. The fixed cells were sequentially double-
stained as follows: anti-NRF2 antibody followed by Alexa-Fluor-labeled goat anti-rabbit
IgG and anti-ARL13 antibodies (1:200, mouse monoclonal: Santa Cruz Biotechnology),
followed by Alexa-Fluor-labeled goat anti-mouse IgG and anti-acetylated-tubulin (1:500,
mouse monoclonal; Sigma-Aldrich), followed by Alexa-Fluor-labeled goat anti-mouse IgG
and anti-ARL13B antibodies (1:200, rabbit polyclonal; Proteintech), followed by Alexa-
Fluor-labeled goat anti-rabbit IgG. The nuclei were counterstained with Hoechst 33258
(Sigma Aldrich). Fluorescence images were obtained and evaluated using an image analysis
system (Dp Manager 2.1; Olympus Optical Co., Tokyo, Japan) and Wright Cell Imaging
Facility ImageJ software version 1.54d (https://imagej.net/ij/download.html, accessed
on 26 March 2023). Confocal microscopy images were obtained using EZ-C1 3.8 software
(Nikon, Tokyo, Japan) and evaluated using NIS-Elements AR 3.2 (Nikon).

2.8. ROS Assay

ROS were detected using the Total ROS Detection Kit (Enzo Life, Frmingdale, NY, USA)
according to the manufacturer’s instructions. Keratinocytes were seeded at 1.5 × 105 cells/well
to six-well plates and incubated for 24 h. An EpiLife medium was replaced with phosphate-
buffered saline (PBS) during the irradiation. After irradiation with 200 mJ of UVB, the
keratinocytes were incubated with a ROS detection solution for 1 h at 37 ◦C in the dark,
according to the time schedule. The ROS levels were immediately measured using a
fluorescence/multimode microplate reader (Spark; TECAN, Männedorf, Switzerland).

2.9. Tyrosinase Activity Assay

Tyrosinase activity was assayed in keratinocyte–melanocyte cocultures based on DOPA
oxidase activity, using a modified version of the described method [19,20]. For coculture of
keratinocytes and melanocytes, 1.5 × 105 keratinocytes/well were transfected with indi-
cated genes for 24 h and 1 × 105 melanocytes/well were added to transfected keratinocytes
and incubated for another 48 h. The cells were suspended and lysed in a phosphate buffer
containing 1% Triton X-100. Cell-free extracts were obtained by centrifuging cell lysates at
10,000× g for 10 min. The protein concentrations of the supernatants were measured with
Bradford assays and adjusted using the lysis buffer. We placed 90 µL of each lysate in a
well of a 96-well plate and added 10 µL of L-DOPA. After incubation at 37 ◦C, absorbance
was measured every 10 min for at least 1 h at 475 nm using a fluorescence/multimode
microplate reader (Spark).

2.10. Melanin Content Assay

The melanin content of the keratinocyte–melanocyte cocultures was determined with
minor modifications to the described method [21,22]. For the coculture of keratinocytes and
melanocytes, 1.5 × 105 keratinocytes/well were transfected with indicated genes for 24 h
and 1 × 105 melanocytes/well were added to the transfected keratinocytes and incubated
for another 48 h. Briefly, after being washed with PBS, cell pellets were dissolved and
solubilized with 1 N of NaOH at 80 ◦C for 2 h. After centrifugation at 12,000× g for 10 min,
the absorbance of the supernatants was measured at a wavelength of 475 nm. To determine

https://imagej.net/ij/download.html
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the actual melanin formation from the same number of cells, the total melanin content of
each pellet was divided by the number of melanocytes.

2.11. Statistical Analysis

Statistical analyses were performed using GraphPad Prism 5 (GraphPad Software, La
Jolla, CA, USA). The significance threshold was set at p < 0.05, with specific significance
levels denoted as * p < 0.05, ** p < 0.01, and *** p < 0.001. Statistical comparisons between
pairs of groups were performed using a two-tailed Student’s unpaired t-test (parametrical
data). A one-way analysis of variance was used to compare multiple groups and parameters.
Mean ± standard deviation (SD) values were calculated for the in vitro experimental data.
For the human sample data, differences between the non-lesions and lesions were assessed
using the Mann–Whitney U test and were expressed as the mean ± standard error of
the mean.

3. Results
3.1. NRF2 Downregulation in the Lesional Epidermis of Patients with Melasma

Oxidative stress has been proposed as a contributing factor in the pathogenesis of
melasma [4–6]. Consequently, the presence of oxidative stress in melasma was explored by
assessing the expressions of NRF2 and one of its targets, HO-1, in keratinocytes. Notably,
one of the primary instigators of ROS production and oxidative stress is UV radiation [23,24].
A single exposure to UVB resulted in increased intracellular ROS levels (Figure 1A) and ele-
vated NRF2 protein expression (Figures 1B and S1). However, after three consecutive days
of UVB exposure, the NRF2 expression levels declined (Figure 1B). Elevated ROS levels can
trigger NRF2 upregulation. As such, we investigated the expressions of NRF2 and HO-1
proteins in primary cultured keratinocytes following treatment with H2O2. Their levels
exhibited time- and dose-dependent increases, up to 48 h and 100 µM (Figure 1C). Addition-
ally, NRF2 knockdown in primary cultured keratinocytes led to reduced HO-1 expression
(Figures 1D and S1). Immunofluorescence staining was conducted using anti-NRF2 and
anti-HO-1 antibodies in 16 patients, and seven of them had results, suggesting that the
relative expression levels of NRF2 (Figure 1E) and HO-1 (Figure 1F) were diminished in
the lesional epidermis compared with the non-lesional epidermis.

3.2. IFT88 and Hh Signaling Molecules Involved in Ciliogenesis Were Reduced by NRF2 Downregulation

The downregulation of NRF2 in melasma skin lesions (Figure 1E) is associated with
the expected occurrence of oxidative stress. Given that oxidative stress can disrupt ciliogen-
esis [7,8], the impact of NRF2 downregulation on primary cilia was examined, after confirm-
ing the role of IFT in keratinocyte and melanocyte ciliogenesis [13]. Knocking down IFT88
in keratinocytes led to the downregulation of PTCH, GLI1, and GLI2 (Figures 2A and S2).
Additionally, confocal microscopy demonstrated that IFT88 knockdown reduced primary
cilia that were positive for acetylated α-tubulin or both ARL13b and acetylated α-tubulin in
cultured keratinocytes and melanocytes (Figure 2B). NRF2 knockdown resulted in reduced
expressions of IFT88 and GLI1 in cultured keratinocytes (Figures 2C and S2). However,
IFT88 knockdown did not affect the expression levels of NRF2 (Figures 2D and S2). Real-
time PCR performed on samples from seven patients with NRF2 downregulation showed
that the relative ratios of IFT88, GLI1, GLI2, and PTCH mRNAs in lesional to non-lesional
skin specimens decreased to almost half or less, whereas those of GLI3 increased (Figure 2E).
Furthermore, immunofluorescence staining indicated that NRF2 knockdown reduced the
numbers of ARL13b-positive primary cilia in cultured keratinocytes and melanocytes
(Figure 2F).
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Figure 1. NRF2 downregulation in the lesional epidermis of patients with melasma. (A) Reactive
oxygen species concentrations at various time points in primary cultured keratinocytes following UVB
irradiation. (B) Western blot analyses showing NRF2 protein level ratios after single and repeated
UVB radiation. (C) Western blot analyses illustrating NRF2 and HO-1 protein level ratios over time
in primary cultured normal human keratinocytes treated with different concentrations of H2O2.
(D) Western blot analyses presenting HO-1 protein level ratios in cultured human keratinocytes with
or without NRF2 knockdown. β-actin served as the internal control for the Western blot analysis. The
data are presented as means ± SD from four or eight independent experiments. (E,F) Representative
immunofluorescence staining using anti-NRF2 (E) and anti-HO-1 antibodies (F) in the lesional (L)
and non-lesional (N) epidermis of patients with melasma. The nuclei were counterstained with
Hoechst 33258 (scale bar = 0.05 mm), and the intensities were quantified using ImageJ software 1.54d.
* p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 2. Downregulation of NRF2 led to reduced expressions of IFT88 and Hh signaling molecules
involved in ciliogenesis. (A) Western blot analyses depicting the ratios of PTCH, GLI1, and GLI2 levels
in cultured keratinocytes subjected to IFT88 knockdown. (B) Confocal microscopy images illustrating
primary cilia stained with anti-acetylated α-tubulin (Ac α-tubulin) and/or ARL13b antibodies in
cultured human keratinocytes and melanocytes, with or without IFT88 knockdown (bar = 0.05
mm). The ciliated cell ratios were calculated by counting the number of ciliated cells among 30 cells.
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(C,D) Western blot analyses showing the ratios of NRF2, IFT88, and/or GLI1 levels in cultured
keratinocytes with knockdowns of NRF2 (C) or IFT88 (D). (E) Real-time PCR results displaying the
ratios of IFT88, PTCH1, and GLI1-3 mRNA levels in lesional compared to non-lesional skin specimens
(seven sets) from melasma patients with downregulated NRF2. (F) Representative immunofluores-
cence staining for primary cilia using anti-NRF2 and anti-ARL13b antibodies in primary cultured
human keratinocytes and melanocytes with or without NRF2 knockdown (scale bar = 0.05 mm).
β-actin and GAPDH served as internal controls for the Western blot analysis and real-time PCR,
respectively. The data are presented as means ± SD from four independent experiments. * p < 0.05,
** p < 0.01.

3.3. Melanin Pigmentation Was Enhanced by NRF2 Knockdown via IFT88 and GLI1

NRF2, downregulated in melasma lesional skin (Figure 1E), played a role in ciliogen-
esis regulation through IFT88 and Hh signaling molecules (Figure 2C–F). Consequently,
the impact of NRF2, IFT88, and GLI1 in hyperpigmentation was assessed, both in the
presence or absence of Hh signaling activation using the smoothened agonist 1.1 (SAG) or
Shh protein. NRF2 knockdown resulted in increased expressions of tyrosinase, the preme-
lanosomal protein (PMEL17), and protease-activated receptor-2 (PAR2) in keratinocytes
cocultured with normal melanocytes (Figure 3A). Furthermore, NRF2 knockdown in these
cocultures led to elevated tyrosinase activity and melanin contents (Figures 3A and S3).
The levels of tyrosinase and PAR2, which were increased due to NRF2 knockdown, were
restored by SAG treatment. However, the SAG did not restore downregulated NRF2
(Figures 3B and S3). IFT88 knockdown in keratinocytes also upregulated tyrosinase. The
SAG (Figures 3C and S3) and Shh protein (Figures 3D and S3) restored the tyrosinase levels
following IFT88 knockdown without affecting the IFT88 expression levels. GLI1 down-
regulation, achieved either through GLI1 knockdown (Figures 3E and S3) or via treatment
with GANT61, a GLI1 inhibitor (Figures 3F and S3), resulted in increased tyrosinase pro-
tein levels. The SAG reversed GLI1 downregulation but also downregulated tyrosinase
(Figure 3E).

3.4. NRF2, IFT88, and GLI1 Knockdown Promoted Keratinocyte Differentiation and Consequent
Hyperpigmentation

Our findings suggested that NRF2 regulates ciliogenesis and melanin pigmentation
through IFT88 and GLI1. The primary cilia and Hh signaling pathway play crucial roles in
epidermal homeostasis, including keratinocyte proliferation and differentiation [25–28],
ultimately affecting skin pigmentation [29]. We delved into the roles of NRF2, IFT88, and
GLI1 in keratinocyte proliferation and differentiation and their connections to pigmentation
changes. NRF2 knockdown resulted in increased expressions of K10 and involucrin, which
could be restored with SAG treatment (Figure 4A). However, K14 expression remained
unaffected (Figures 4A and S4). The knockdown of IFT88 (Figures 4B and S4) or GLI1
(Figures 4C and S4) led to the upregulation of K10 and involucrin proteins without affecting
K14. These changes could be reversed with SAG treatment. Immunofluorescence staining
unveiled a higher involucrin expression in the lesional epidermis of the seven melasma
patients with NRF2 downregulation (Figures 4D and S4). Keratinocytes cultured under
high calcium levels displayed enhanced expressions of K10, involucrin, tyrosinase, and
PAR2 (Figures 4E and S4). Notably, high calcium levels had no impact on the expressions
of NRF2, IFT88, or GLI1 in keratinocytes (Figure 4E). The increased involucrin and PAR2
protein levels after NRF2 knockdown were restored with Bapta-AM, a calcium chelator,
without affecting the NRF2 expression levels (Figures 4F and S4).
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Figure 3. Enhancement of melanin pigmentation via NRF2 knockdown involving IFT88 and GLI1.
(A) Western blot analyses depicting varying levels of tyrosinase, PMEL, and PAR2, and assays
showing tyrosinase activity and melanin contents in cultured keratinocytes with NRF2 knockdown.
(B–E) Western blot analyses revealing different ratios of NRF2, IFT88, GLI1, and/or tyrosinase levels
in cultured keratinocytes with NRF2 knockdown in the absence and presence of SAG (B), IFT88
knockdown in the absence and presence of SAG (C), IFT88 knockdown in the absence and presence of
Shh 200 (D), and GLI1 knockdown in the absence and presence of SAG (E). (F) Western blot analyses
presenting different ratios of PTCH1, GLI1, GLI2, and tyrosinase levels in cultured keratinocyte–
melanocyte cocultures treated with or without GANT61. β-actin served as an internal control. The
data represent the means ± SD from four independent experiments. * p < 0.05, ** p < 0.01 vs. control
sgRNA, # p < 0.05 vs. without SAG treatment.
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tyrosinase levels in keratinocyte–melanocyte cocultures and the ratios of PAR2, K10, involucrin,
NRF2, IFT88, and/or GLI1 levels in cultured keratinocytes, including those treated with calcium
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4. Discussion

NRF2 is a central regulator of cellular antioxidant defenses. Under conditions of
oxidative stress, NRF2 relocates to the cell nucleus and activates the expressions of a
wide array of target genes, including HO-1 [30]. The diminished levels of HO-1 proteins
following NRF2 knockdown (Figure 1C) confirmed HO-1 as a primary target of NRF2
within keratinocytes. UV radiation, a known source of ROS [2], elevated ROS levels and
NRF2 protein expression in keratinocytes after a single UVB exposure (Figure 1A,B). In
response to H2O2-induced oxidative stress, the relative expressions of NRF2 and HO-1
in keratinocytes were increased (Figure 1C), reflecting an antioxidant response aimed at
combating oxidative stress. However, repeated UVB irradiation downregulated NRF2
(Figure 1B), suggesting that oxidative stress was hardly overcome under repeated UVB
irradiation. Given that chronic UV exposure is a significant contributor to melasma de-
velopment [1], it is reasonable to expect NRF2 and HO-1 downregulation in the lesional
epidermis of melasma patients (Figure 1E,F). Nevertheless, melasma development is also
associated with factors unrelated to UV exposure [1]. In addition to UV radiation, ROS
can be generated by endogenous processes such as cellular metabolism and exogenous
factors other than UV radiation [31]. While the role of UV-independent melasma triggers
in oxidative stress requires further investigation, the results from the H2O2 treatment sug-
gested that decreased cellular antioxidant capacity may cause oxidative stress in melasma,
regardless of its association with UV.

The downregulation of Hh signaling molecules, including PTCH, GLI1, and GLI2
(Figure 2A), and a decrease in the number of ciliated cells (Figure 2B) following IFT88
knockdown, verified the role of IFT88 in ciliogenesis in keratinocytes and melanocytes.
The reduced expression levels of IFT88 and GLI1 (Figure 2C) and number of ciliated cells
(Figure 2F) following NRF2 knockdown, with no reciprocal impacts on NRF2 expression
following IFT88 knockdown (Figure 2D), suggested that NRF2 can regulate ciliogenesis
via IFT88 and GLI1. The downregulation of IFT88 and GLI1 in the lesional skin of patients
with melasma with NRF2 downregulation (Figure 2E) substantiates the role of oxidative
stress in ciliogenesis in melasma. NRF2 has been established as a pivotal regulator of
ciliogenesis [32,33], with various genes related to ciliogenesis and the Hh signaling pathway
identified as NRF2 target genes [32].

Melasma is a skin disorder marked by hyperpigmentation, which indicates that
oxidative-stress-induced inhibition of ciliogenesis contributes to hyperpigmentation. Skin
pigmentation is intricately linked to melanin synthesis, the transfer of melanosomes to
keratinocytes, and melanosome degradation. Increased tyrosinase activity indicated an
upregulation in melanin synthesis with NRF2 knockdown in keratinocyte–melanocyte
cocultures (Figure 3A). However, other factors, such as stimulated melanosome transfer to
keratinocytes and reduced melanosome degradation, may have contributed to the elevation
of melanin contents. The role of PAR2 in the transfer of melanosomes to keratinocytes is
well known [29,34]. The upregulation of tyrosinase, PMEL17, and PAR-2 in keratinocytes
with downregulated NRF2, IFT88, or GLI1 (Figure 3A–E) indicated that the inhibition of
oxidative stress-related ciliogenesis enhanced melanin synthesis and melanosome transfer.
The restoration of the increased levels of tyrosinase or PAR-2 with GLI1, but not NRF2 or
IFT88, with SAG or Shh 200 treatments (Figure 3B–E) suggested that GLI1 is a downstream
molecule for the inhibitory role of primary cilia in hyperpigmentation. The elevation of
tyrosinase expression with GANT61, a GLI1 inhibitor (Figure 3F), supported the results
obtained with GLI1.

However, the mechanism by which primary cilia suppress melanin synthesis and
melanosome transfer remains unclear. Primary cilia and the Hh signaling pathway are
known to contribute to epidermal homeostasis, including keratinocyte proliferation or
differentiation [26–28]. Consequently, markers for keratinocyte differentiation and prolifer-
ation, as well as those of tyrosinase and PAR2, were examined in the presence and absence
of NRF2, IFT88, or GLI1 knockdown. The expression levels of involucrin and K10, but not
of K14, in keratinocytes increased upon the knockdown of IFT88 or GLI1 as well as NRF2
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(Figure 4A–C), suggesting an inhibitory role of primary cilia in keratinocyte differentiation,
but not in keratinocyte proliferation. The restoration of upregulated K10 and involucrin in
cultured keratinocytes with NRF2, IFT88, or GLI1 knockdown with the SAG (Figure 4A–C)
supported the findings that primary cilia are involved in the inhibition of keratinocyte
differentiation. Enhanced keratinocyte differentiation was also detected in the lesional skin
of melasma patients with downregulated IFT88 and GLI1 (Figure 4D). Calcium upregu-
lated involucrin, tyrosinase, and PAR2 (Figure 4E), whereas calcium chelator restored the
upregulation of involucrin and PAR2 with NRF2 knockdown (Figure 4F). However, neither
calcium nor calcium chelators altered the expression of NRF2, IFT88, or GLI1 (Figure 4E,F).
Although more studies are necessary to reach definitive conclusions, the connection from
NRF2 downregulation to IFT88 and GLI1 downregulation may be involved in increasing
melanin synthesis and melanosome transfer by stimulating keratinocyte differentiation
in melasma.

5. Conclusions

Overall, oxidative stress in melasma inhibited ciliogenesis and Hh signaling in lesional
keratinocytes with NRF2 downregulation, which then stimulated keratinocyte differentia-
tion with melanin synthesis and melanosome transfer to the keratinocytes, resulting in skin
hyperpigmentation (Figure 5).
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Figure 5. Schematic view of the role of NRF2-knockdown-induced ciliogenesis inhibition in skin
hyperpigmentation. NRF2 downregulation caused by repeated UV exposure or melasma inhibited
ciliogenesis and Hh signaling molecules, such as IFT88 and GLI1, stimulating keratinocyte differenti-
ation with melanin synthesis and melanosome transfer to the keratinocytes, which resulted in skin
hyperpigmentation.

6. Patents

Patent information is included in the Materials and Methods section of the original
manuscript.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox12111969/s1, Figure S1: Bands from Western blot analyses
for Figure 1B (A) and Figure 1D (B). Figure S2: Bands from Western blot analyses for Figure 2A (A),
Figure 2C (B) and Figure 2D (C). Figure S3: Bands from Western blot analyses for Figure 3A (A),
Figure 3B (B), Figure 3C (C), Figure 3D (D), Figure 3E (E) and Figure 3F (F). Figure S4: Bands from
Western blot analyses for Figure 4A (A), Figure 4B (B), Figure 4C (C), Figure 4E (D) and Figure 4F (E).
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