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Abstract: Background: With the development of an aging sociality, aging-related diseases, such as
Alzheimer’s disease, cardiovascular disease, and diabetes, are dramatically increasing. To find small
molecules from natural products that can prevent the aging of human beings and the occurrence
of these diseases, we used the lifespan assay of yeast as a bioassay system to screen an antiaging
substance. Isoquercitrin (IQ), an antiaging substance, was isolated from Apocynum venetum L.,
an herbal tea commonly consumed in Xinjiang, China. Aim of the Study: In the present study,
we utilized molecular-biology technology to clarify the mechanism of action of IQ. Methods: The
replicative lifespans of K6001 yeasts and the chronological lifespans of YOM36 yeasts were used to
screen and confirm the antiaging effect of IQ. Furthermore, the reactive oxygen species (ROS) and
malondialdehyde (MDA) assay, the survival assay of yeast under stresses, real-time polymerase chain
reaction (RT-PCR) and Western blotting analyses, the replicative-lifespan assay of mutants, such as
∆sod1, ∆sod2, ∆gpx, ∆cat, ∆skn7, ∆uth1, ∆atg32, ∆atg2, and ∆rim15 of K6001, autophagy flux analysis,
and a lifespan assay of K6001 yeast after giving a mitophagy inhibitor and activator were performed.
Results: IQ extended the replicative lifespans of the K6001 yeasts and the chronological lifespans of
the YOM36 yeasts. Furthermore, the reactive nitrogen species (RNS) showed no change during the
growth phase but significantly decreased in the stationary phase after treatment with IQ. The survival
rates of the yeasts under oxidative- and thermal-stress conditions improved upon IQ treatment, and
thermal stress was alleviated by the increasing superoxide dismutase (Sod) activity. Additionally,
IQ decreased the ROS and MDA of the yeast while increasing the activity of antioxidant enzymes.
However, it could not prolong the replicative lifespans of ∆sod1, ∆sod2, ∆gpx, ∆cat, ∆skn7, and ∆uth1
of K6001. IQ significantly increased autophagy and mitophagy induction, the presence of free green
fluorescent protein (GFP) in the cytoplasm, and ubiquitination in the mitochondria of the YOM38
yeasts at the protein level. IQ did not prolong the replicative lifespans of ∆atg2 and ∆atg32 of K6001.
Moreover, IQ treatment led to a decrease in Sch9 at the protein level and an increase in the nuclear
translocation of Rim15 and Msn2. Conclusions: These results indicated that the Sch9/Rim15/Msn
signaling pathway, as well as antioxidative stress, anti-thermal stress, and autophagy, were involved
in the antiaging effects of IQ in the yeasts.
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1. Introduction

The global demographics are swiftly changing towards an aging society, as there is
an increasing number of older adults and a decreasing number of young adults available
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to support them [1]. The decline in physical activity and excessive sedentary behavior
among the elderly contribute to the development of various age-related diseases, such as
Alzheimer’s disease, cerebral arteriosclerosis, hypertension, and malignant tumors. This
present situation imposes a serious challenge to public health and socioeconomics [2].
Currently, numerous potential antiaging molecules have shown promising results, but
there is no FDA-approved commercial drug that is capable of delaying aging. As a result,
the need for identifying natural compounds with antiaging effects to prevent and treat
aging and age-related diseases is exceptionally urgent.

The anti-stress ability of cells weakens with aging, which is the main cause of aging
and the development of many age-related diseases [3]. Excessive reactive oxygen species
(ROS) and reactive nitrogen species (RNS) can damage the nerve membrane and cause
oxidative stress and nitrosative stress. Nitrification stress refers to the biochemical reaction
that occurs in conjunction with RNS derived from nitric oxide (NO) and ROS, causing
the hydroxylation of the aromatic rings of amino acid residues, which can lead to cell
damage or apoptosis and various toxic effects in cells [4]. They play important roles in
signaling transduction and inducing the damage of biomacromolecules, such as proteins,
nucleic acids, fatty acids, and lipids [4]. The resistance to oxidative, thermal, and osmotic
stresses is crucial for extending the lifespans of organisms [5]. Recently, some evidence
has reported that traditional Chinese medicine can enhance resistance against oxidative
and thermal stress to promote longevity in Caenorhabditis elegans [6]. Anti-thermal-stress-
related proteins have the ability to promote redox homeostasis by regulating the activity,
expression, and degradation of antioxidant enzymes. This ability establishes connections
between different stress-resistance effects [7]. Thus, we explore the anti-thermal-stress effect
of natural products in this study.

Autophagy plays an important role in aging. There is macro-autophagy, micro-autophagy,
and chaperone-mediated autophagy (CMA). Mitophagy is a type of CMA that selectively
breaks down the aging or damaged mitochondria [8]. Among the autophagy-related (Atg)
proteins, the Atg8 conjugation system is a functional group that plays an important role in
the formation and expansion of autophagosomes [9]. Atg32 acts as a mitophagy receptor
that interacts with Atg8 to recruit mitochondria to the phagophore assembly site (PAS),
the location where autophagosomes are formed [10]. Another important group of proteins
in autophagy is the Atg2–Atg18 complex, which is also part of the core Atg proteins and
recycles Atg9 from the PAS when autophagy occurs [11]. Therefore, the regulation of
autophagy may be an efficient means of antiaging.

The oxidative-stress pathway involves multiple signaling pathways, including the
Nrf2-ARE, NF-κB, MAPK, PI3K/AKT, keap1-Nrf2, HIF-1α, AMPK, mTOR, JAK/STAT,
TGF-β, and Wnt/β catenin pathways [12]. These pathways collectively regulate biological
processes, such as cell growth, reproduction, differentiation, and survival. The mTOR
signaling pathway plays a key role in the regulation of protein synthesis, autophagy,
and the lifespan of the organism [13]. Rim15, one of the protein kinases, which is lo-
cated downstream of the TORC1 signaling pathway, is required for cellular protection
and chronological-lifespan extension [14]. Sch9 is one key protein to control stress and
autophagy via the modification of the Rim15 and Msn2/4 transcription factors [15,16].
The interplay among Sch9, Rim15, and other regulatory factors, such as Msn2/4, affects
autophagy and lifespan regulation in response to stress conditions. Understanding these
mechanisms can provide insights into the processes of aging and age-related diseases for
the development of antiaging drugs.

Yeast models, particularly the K6001 strain and its mutants, are commonly used in
antiaging research because of their advantageous characteristics, which are small genomes,
short generation times, and low costs [17]. All these properties made yeast a suitable system
for the high-throughput drug screening from natural products in our research. The K6001
yeast strain is particularly useful for replicative-lifespan assays. When cultured in glucose
medium, only mother cells can divide into daughter cells, whereas daughter cells cannot
reproduce the next generation [18]. This replicative aging phenomenon mimics certain
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aspects of the cellular aging observed in higher organisms and allows for the evaluation of
the lifespan extension or aging-related effects in yeast. YOM36 yeast is a prototrophic strain
derived from the standard strain BY4742. The construction of YOM36 yeast was initially
aimed at addressing the impact of non-essential amino acids on the yeast chronological
lifespan [19].

Apocynum venetum L. is one of the traditional herbal medicines, and the leaves of
this plant are used as tea in China. It is well known that it reduces blood pressure and
blood lipids, provides sedation, and has antiaging properties [20]. Isoquercitrin (IQ) from
A. venetum L. is a naturally occurring substance with antioxidant, anti-proliferative, anti-
inflammatory, autophagy-induction, anticancer, and anti-obesity effects [21–23]. IQ belongs
to the flavonoid-type molecule possessing four phenolic hydroxyl groups at positions C-5,
C-7, C-3′, and C-4′, as well as a glucosylation at C-3. It alleviates ethanol-induced liver
toxicity, oxidative stress, and inflammatory responses through the Nrf2/ARE antioxidant
signaling pathway [24]. Moreover, IQ regulates the nuclear factor-κB (NF-κB) transcrip-
tional regulatory system to regulate the expression of nitric oxide synthase 2 (NOS2) [25].
However, the antiaging effect of IQ is rarely mentioned, and the action mechanism of
the antiaging effect exerted by IQ remains unclear. On the basis of previous research, the
stress-resistance and autophagy-induction abilities of IQ were chosen to elaborate the
mechanism underlying its antiaging effect in yeasts. Here, we report that IQ exerts an
antiaging effect on yeasts via improving stress resistance and inducing mitophagy through
the Sch9/Rim15/Msn signaling pathway.

2. Materials and Methods
2.1. General

Analytically pure reagents (chloroform, isopropanol, and ethanol from Sinopharm
Chemical Reagent Co., Ltd., Shanghai, China) were used in this study. The following
compounds and reagents were purchased from the indicated companies: resveratrol (RES)
(J&K Scientific Ltd., Beijing, China); rapamycin (Solarbio, Beijing, China); wortmannin
(Beyotime Biotechnology, Shanghai, China); CSK3-IN-3 (HY-153089, MedChemExpress,
Shanghai, China); Mdivi-1 (HY-15886, MedChemExpress, Shanghai, China); dimethyl
sulfoxide (DMSO) (Sigma, Saint Louis, MO, USA); Hoechst 33,342 (Macklin, Shanghai,
China); and 4′,6-diamidino-2-phenylindole (DAPI) dihydrochloride (Macklin, Shanghai,
China). DMSO was employed as both a solvent for dissolving compounds and as the
negative control group in the yeast activity evaluation system.

2.2. Isolation and Purification of Isoquercitrin

The process of preparing the IQ from A. venetum L. was described in a previous
study [23], and the chemical structure of IQ is shown in Figure 1a.

2.3. Yeast Strains, Culture Medium, and Lifespan Assay

In this study, the K6001 yeasts derived from W303 and the YOM36 yeasts derived
from BY4742 were used in the lifespan assay. The ∆sod1, ∆sod2, ∆uth1, ∆skn7, ∆gpx, ∆cat,
∆atg2, ∆atg32, and ∆rim15 yeast strains with the K6001 background, BY4741 yeast strain,
YOM38 yeast strain containing pRS316-GFP-ATG8 plasmid, and BY4741 yeast strains
containing sfGFP-Sch9-5HA::LEU2, Rim15-GFP::his3MX, and Msn2-GFP::kanMX plasmids
were applied in the mechanism-of-action analysis. The genotypes of the yeast strains are
listed in Supplementary Table S1, as described in a previous study [26].

The lifespan assay was conducted according to previous research [26]. In the present
study, the replicative lifespan of K6001 yeast was applied to screen the antiaging effect of
IQ at 0.3, 1, 3, 10, 30, and 100 µM, and the chronological lifespan of YOM36 yeast was used
to confirm the antiaging effect of IQ at 1, 10, and 30 µM. The replicative-lifespan assay of
the ∆gpx, ∆cat, ∆sod1, ∆sod2, ∆uth1, ∆skn7, ∆atg2, ∆atg32, and ∆rim15 yeast strains with the
K6001 background was similar to that of the K6001. The details of the lifespan assay are
shown in Supplementary Information Materials and Methods 2.1.
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Figure 1. The chemical structure and antiaging effects of isoquercitrin (IQ) on yeasts. (a) The chem-
ical structure of IQ. (b) Effect of IQ on the replicative lifespan of K6001 yeasts. Resveratrol (RES) at 
10 μM was used as the positive control. (c) Effect of IQ on the chronological lifespan of YOM36 
yeasts. Rapamycin at 1 μM was used as the positive control. *, **, and *** represent significant dif-
ferences compared to the control group at p < 0.05, p < 0.01, and p < 0.001, respectively. 
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Figure 1. The chemical structure and antiaging effects of isoquercitrin (IQ) on yeasts. (a) The chemical
structure of IQ. (b) Effect of IQ on the replicative lifespan of K6001 yeasts. Resveratrol (RES) at 10 µM
was used as the positive control. (c) Effect of IQ on the chronological lifespan of YOM36 yeasts.
Rapamycin at 1 µM was used as the positive control. *, **, and *** represent significant differences
compared to the control group at p < 0.05, p < 0.01, and p < 0.001, respectively.

2.4. Growth Curve Determination

First, the YOM36 yeast cells with an initial optical density at 600 nm (OD600) of
0.01 were cultured in 100 mL of synthetic defined (SD) medium, containing IQ (0, 1, 10, and
30 µM) or rapamycin (1 µM). At 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 5.5, 6.5, 7.5, 8.5, 9.5, and 10.5 days,
the OD600 values of the yeasts were measured by using the Eppendorf Biophotometer Plus
(Eppendorf Company, Hamburg, Germany).

2.5. Determination of Yeast Survival Ability under H2O2 Stimulation

First, BY4741 yeasts were cultured in yeast extract peptone dextrose (YPD) for 24 h
with shaking. On day 2, the yeasts were treated with compounds at an initial OD600 value
of 0.1. After 24 h, the yeast suspension was diluted to an OD600 value of 2. About 5 µL
of yeast broth was dropped on YPD agar plates containing 11 mM H2O2; one optimum
concentration of H2O2 was applied, referring to our previous research [27]. The growth of
the yeast cells was photographed after incubating at 28 ◦C for 2 days. In the quantitative
assay, a total of 200 yeasts from each group were spread on YPD agar plates with or without
5.5 mM H2O2. One optimum concentration of H2O2 was used, based on our previous
study [27], and the plates were cultured at 28 ◦C for 48 h. The colony-forming units (CFUs)
formed on each plate were counted to evaluate the antioxidative-stress activity, and the
survival rate was defined as the ratio of the number of CFUs surviving with H2O2 at
5.5 mM divided by the number of CFUs formed without H2O2.
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2.6. Thermal-Stress-Resistance Assay

The anti-thermal-stress assay was conducted according to another report [28]. First,
we conducted an initial experiment. In brief, the YOM36 yeast was cultured in YPD for 12 h
(180 rpm, 28 ◦C). The yeast culture broth was diluted into five different concentrations by
10 times the gradient dilution. About 5 µL of cultured yeast with different concentrations
was dropped on the YPD agar plates. For the quantitative anti-thermal-stress assay, a total
of 200 yeasts were spread on each YPD agar plate. The plates were incubated at 28 ◦C
for 24–48 h with or without preheating at 55 ◦C or 60 ◦C for a certain time period. After
determining the optimal thermal-stress condition, the YOM36 yeasts were treated with IQ
at 0, 1, 10, and 30 µM or RES at 10 µM with an initial OD600 value of 0.1. After incubation
for 24 h, the yeasts were handled following the method described above for the qualitative
or quantitative analysis of the anti-thermal stress. The anti-thermal-stress assay of the
K6001 and ∆sod1, ∆sod2, and ∆rim15 yeasts with the K6001 background was the same as
that of YOM36.

2.7. Measurement of ROS, RNS, and MDA Levels of Yeasts

For the ROS assay, BY4741 yeasts were cultured in YPD liquid medium for 24 h with
shaking. On the next day, the BY4741 yeasts were cultured in YPD containing compounds
with an initial OD600 value of 0.1. After 23 h, about 1 mL of yeast suspension was harvested
and treated with 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) with a final concen-
tration of 10 µM and then incubated with shaking for 60 min at 28 ◦C under dark conditions.
Finally, the yeasts were washed three times with phosphate-buffered solution (PBS), and
the DCF (2′,7′-dichlorofluorescein) fluorescence intensity of the yeasts was measured with
excitation and emission wavelengths of 488 and 525 nm, respectively, by using a Spark
microplate reader (Tecan Trading Co., Ltd., Männedorf, Switzerland).

For the RNS measurement, YOM36 yeasts were gathered and ground with a grinder
(Jingxin Industrial Development Co., Ltd., Shanghai, China) at 70 Hz for 1 min after adding
grinding beads. The amounts of yeasts in the rapamycin-treated group were too low to
extract protein at day 1, so the RNS measurement of the rapamycin-treated group was
skipped at this time point. Then, the cell lysates were centrifuged (4 ◦C, 12,000 rpm, 10 min)
to obtain the supernatant as protein samples to evaluate the RNS level following the
instructions of the RNS assay kit (Bestbio Biotechnology Company, Nanjing, China). The
details of the assay are shown in Supplementary Information Materials and Methods 2.3.

For the malondialdehyde (MDA) assay, BY4741 yeasts were cultured in YPD containing
compounds with an initial OD600 value of 0.1 for 24 h. The yeasts were gathered, washed
with PBS three times, and ground with a grinder at 70 Hz for 1 min. Then, the cell lysates
were centrifuged to obtain the supernatant to evaluate the MDA by using the MDA assay
kit (Nanjing Jiancheng Institute, Nanjing, China). The details of the assay are shown in
Supplementary Information Materials and Methods 2.3.

For the ROS and MDA assays under thermal-stress conditions, the YOM36 yeasts that
were incubated with IQ or RES for 24 h were first heated at 60 ◦C for 30 min. Then, the
corresponding assay was conducted following the method described above.

2.8. Antioxidant Enzyme Activity Determination

The BY4741 yeasts were cultured and incubated with compounds as described for the
MDA assay. The yeasts were washed with PBS three times and ground with a grinder at
70 Hz for 1 min. Then, the protein sample was obtained after centrifugation (12,000 rpm,
10 min) at 4 ◦C. According to a previous study [26], the protein sample was diluted to
an appropriate concentration to measure the superoxide dismutase (Sod), catalase (Cat),
and glutathione peroxidase (Gpx) activities by using Sod (Nanjing Jiancheng Institute,
Nanjing, China), Cat, and Gpx (Beyotime Limited Company, Shanghai, China) assay kits,
respectively. For the Sod assay under thermal-stress conditions, the YOM36 yeasts that
were incubated with IQ or RES for 24 h were first heated at 60 ◦C for 30 min. The details of
the assay are shown in Supplementary Information Materials and Methods 2.3.
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2.9. Real-Time Polymerase Chain Reaction (RT-PCR) Analysis

The cDNA samples of yeast were prepared as described in a previous study [26]. The
details of the assay are shown in Supplementary Information Materials and Methods 2.4.
The primers of MSN2, MSN4, and TUB1 are shown in Supplementary Table S2. The
thermal-recycling parameters for the RT-PCR were as follows: MSN2 and MSN4, 95 ◦C for
2 min, followed by 40 cycles, 95 ◦C for 15 s, 55 ◦C for 20 s, and 70 ◦C for 20 s. All results
were standardized to TUB1 levels, and the relative mRNA transcript levels were analyzed
using the 2−∆∆Ct formula.

2.10. Observation of Autophagy and Mitophagy in Yeasts

The autophagy assay was conducted according to a previous study [26]. In short,
YOM38 yeasts were cultured in YPD with shaking under dark conditions. After 24 h,
the yeasts were diverted to an SD medium and treated with IQ (0, 1, 10, and 30 µM)
with or without wortmannin (200 nM) for 22 h. Resveratrol (300 µM) was used as the
positive control. After 22 h, the appropriate number of yeasts were collected, stained with
DAPI (final concentration 1 µg/mL) for 8 min in the dark, and washed three times with
PBS. Yeasts were finally suspended in 30% glycerin solution and photographed with a
confocal fluorescence microscope (Olympus FV1000BX-51, Tokyo, Japan). To measure the
mitophagy, the yeasts were firstly stained with 300 nM MitoTracker Red CMXRos (Beyotime,
Shanghai, China) at 37 ◦C under dark conditions for 60 min before staining with DAPI
(final concentration 1 µg/mL). The percentage of yeasts with free green fluorescent protein
(GFP) and the colocalization of free GFP and MitoTracker Red were obtained to evaluate
the ability of IQ to induce autophagy or mitophagy. Furthermore, we detected whether
the mitophagy inhibitor Mdivi-1 and activator GSK3-IN-3 affected the replicative lifespan
of the K6001 yeast. The replicative-lifespan assay of K6001 referenced Supplementary
Information Materials and Methods 2.1.

To detect whether Rim15 is involved in the induced autophagy of IQ, the K6001 and
∆rim15 of the K6001 yeasts were cultured in galactose liquid medium for 24 h with shaking.
On day 2, the K6001 or ∆rim15 of the K6001 yeasts with an initial OD600 value of 0.1 were
co-incubated with IQ at 10 µM or RES at 300 µM. After 22 h of cultivation, the yeasts
were gathered and stained with an autophagy detection kit (Enzo Life Sciences, Inc., New
York, NY, USA) according to the instructions. The green dye was diluted at a ratio of
4:1000. The yeasts were stained with the green dye under dark conditions at 37 ◦C for
1 h. Then, the yeasts were washed with PBS and stained with DAPI (final concentration:
1 µg/mL) for 8 min under dark conditions before we observed them with a confocal
fluorescence microscope.

2.11. Observation of the Nuclear Translocation of GFP-Rim15 and GFP-Msn2 in Yeasts

In brief, an appropriate amount of BY4741 yeasts containing Rim15-GFP::his3MX and
Msn2-GFP::kanMX plasmids were cultured in YPD with shaking under dark conditions.
After 10 h, the BY4741 yeasts containing the Msn2-GFP::kanMX plasmid were treated with
IQ at 0, 1, 10, and 30 µM or rapamycin at 1 µM for another 2 h. For BY4741 yeasts containing
the Rim15-GFP::his3MX plasmid, the cultivation duration was 3 days before 6 h of treatment
with the compounds. After incubating for a corresponding time, the BY4741 yeasts were
harvested and stained with Hoechst 33,342 (final concentration 1 µg/mL) for 8 min under
dark conditions and were then washed three times with PBS. The yeasts were finally
suspended in a 30% glycerin solution and photographed with a fluorescence microscope.

2.12. Western Blot Analysis

For the free GFP and ubiquitin, the YOM38 yeasts were treated with IQ (0, 1, 10,
and 30 µM) with or without wortmannin (200 nM) for 22 h. Resveratrol (300 µM) was
used as the positive control. The harvested yeasts were ground with a grinder at 70 Hz
for 1 min and centrifuged (12,000 rpm, 10 min) to obtain the protein samples for the
Western blot analysis. Mitochondrial protein was obtained followed the description in a
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previous study [26]. First, the lysate was centrifuged two times (5000 rpm, 15 min). The
mitochondrial pellet was obtained after centrifuging the supernatants (12,000 rpm, 30 min).
Then, the precipitate was lysed with RAPI lysis buffer (CoWin Biotech, Beijing, China)
containing a 1% protease inhibitor cocktail (CoWin Biotech, Beijing, China) for 15 min.
Supernatants were obtained as protein samples to evaluate the ubiquitin expression in
the mitochondria after centrifugation (12,000 rpm, 15 min). The polyvinylidene fluoride
(PVDF) membranes were incubated with primary antibodies against GFP (#598, Medical
& Biological Laboratories, Nagoya, Japan), β-actin (#db6010, Diagbio Biotech, Hangzhou,
China), ubiquitin (#3933, Cell Signalling Technology, Boston, MA, USA), and mitochondrial
outer membrane protein porin 1 (VDAC1) (#ab110326, Abcam Trading Company Ltd.,
Cambridge, UK). The secondary antibodies horseradish peroxidase-linked goat anti-rabbit
(#CW0103, CoWin Biotech, Beijing, China) for the primary antibodies of GFP and ubiquitin
and horseradish peroxidase-linked goat anti-mouse IgGs (#CW0102, CoWin Biotech, Beijing,
China) for the primary antibodies of β-actin and VDAC1 were used in this study. Protein
bands were obtained via exposure via a Bio-Rad chemiluminescence imager (Bio-Rad
Laboratories, Hercules, CA, USA). ImageJ software (Version 1.42q National Institute of
Health, Rockville, MD, USA) was used to digitalize the bands.

For the sfGFP-Sch9-5HA, the BY4741 yeast containing the sfGFP-Sch9-5HA::LEU2
plasmid was cultured in YPD with shaking under dark conditions. After 12 h, the cells were
treated with Rap (1 µM) or IQ (1, 10, and 30 µM) for 2 h. The harvested yeasts were finally
suspended in 500 µL of RAPI lysis buffer containing a 1% protease inhibitor cocktail. The
protein samples for the Western blotting were obtained following the method mentioned
above. The primary antibodies against HA (#16B12, BioLegend, San Diego, CA, USA)
and β-actin (#db6010, Diagbio Biotech, Hangzhou, China) and the secondary antibody
horseradish peroxidase-linked goat anti-mouse IgGs (#CW0102, CoWin Biotech, Beijing,
China) were used in this study.

2.13. Statistical Analysis

Experiments were repeated three times, and the data are presented as means ± SEMs.
Significant differences among the groups in all experiments were evaluated via one-way
ANOVA, followed by Tukey’s Multiple Comparison Test, on GraphPad Prism software
(Version 9.0.0 (121), GraphPad Prism, San Diego, CA, USA). The chronological-lifespan
assay of the yeast was analyzed via the log-rank (Mantel–Cox) test. Statistical significance
was represented as p < 0.05.

3. Results
3.1. IQ Extends the Lifespans of Yeasts

K6001 is a yeast strain with the W303 background, with the characteristic that only the
mother cell with a specific expression of HO::CDC6 can generate offspring on glucose agar
plates [18]. In this study, the antiaging effect of IQ at 0, 0.3, 1, 3, 10, 30, and 100 µM was eval-
uated via the K6001 replicative-lifespan bioassay system (Supplementary Figure S1). In the
replicative-lifespan assay, the average lifetimes of the effective-concentration groups were
as follows: 8.05 ± 0.47 generations in the negative control group; 11.63 ± 0.55 (p < 0.001)
in the RES-treated group at 10 µM; and 9.88 ± 0.73 (p < 0.05), 10.55 ± 0.57 (p < 0.01), and
11.93 ± 0.60 (p < 0.001) generations in the IQ-treated groups at 1, 10, and 30 µM (Figure 1b).
The chronological lifespan of YOM36 after treatment with IQ was then determined to
confirm the antiaging potential. In the chronological-lifespan assay, the median survival
of the IQ-treated group at 30 µM was 11 days, which was obviously longer than that of
the control group (9 days) (Figure 1c). The IQ prolonged the replicative lifespan of K6001,
as well as the chronological lifespan of YOM36. These results generally indicated the
significant antiaging effects of IQ on yeasts.
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3.2. The Effect of IQ on RNS of Yeasts during Chronological Aging

In addition to its important signaling transduction role, excessive RNS can damage
intracellular components, thereby promoting nitrosative stress [4]. The change in RNS at
different growth phases during chronological aging was measured to explore whether IQ
prolongs the chronological lifespans of yeasts through antioxidative stress. As Figure 2a
shows, the yeasts were in log-phase growth within 2 days in the IQ-treated and control
groups; however, for the rapamycin-treated group, the corresponding time period was
within 3.5 days. The growth rate of yeast slowed down from 2 days until entering the
stationary phase at 5 days in the IQ-treated and control groups. The amounts of yeasts in the
rapamycin-treated group were too low to extract protein at day 1, so the RNS measurement
of the rapamycin-treated group was skipped at this time point.
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As shown in Figure 2b–d, the level of RNS in the growth phase was not affected after
treatment with IQ compared with that of the control group. However, in the rapamycin-
treated group, the RNS level was obviously increased at 2 d and 3.5 days. The IQ sig-
nificantly reduced the RNS levels compared with the control group at 1 (p < 0.001), 10
(p < 0.001), and 30 µM (p < 0.001) at 5 days (Figure 2e). As a result of the inhibitory effect of
rapamycin on the growth of yeasts, at the same time point, the influence on the RNS levels
was different between the rapamycin and IQ due to the different growth phases (Figure 2e).
These data indicated that the IQ decreased RNS in the early stationary phase during the
chronological aging to extend the chronological lifespans of the yeasts.

3.3. IQ Increases the Antioxidative-Stress Activity of Yeasts

Oxidative stress is a key factor leading to aging and neurodegenerative diseases, and
multiple natural products have significantly prolonged the lifespans of model organisms
via antioxidative stress [6,26,27]. Therefore, the survival rate of the BY4741 yeast under
H2O2 stimulation was examined to clarify whether antioxidative stress is involved in the
antiaging mechanism of IQ. The results of the qualitative assay are shown in Figure 3a. The
BY4741 yeasts that were treated with IQ at 10 and 30 µM grew better on a glucose agar plate
containing 11 mM of H2O2 compared with the negative control. Moreover, the survival rate
of the yeast under H2O2 stimulation after treatment with IQ was quantitatively confirmed
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on the glucose agar plate with or without 5.5 mM of H2O2. The survival rates of each
group were as follows: 52.0 ± 5.6% for the negative control; 80.8 ± 1.5% (p < 0.001) for
the RES-treated group at 10 µM; 56.1 ± 4.8%, 90.8 ± 2.9% (p < 0.001), and 96.8 ± 0.8%
(p < 0.001) in the IQ-treated groups at 1, 10, and 30 µM, respectively (Figure 3b). These
results implied that the beneficial effects of IQ on the yeast lifespan were preliminarily
attributed to its antioxidative-stress activity.
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Figure 3. Effect of IQ on the survival of yeasts under oxidative stress, and evaluation of ROS, MDA
levels and antioxidant enzyme activity in yeasts. (a) The colony formation of BY4741 yeasts upon
IQ treatment under H2O2 stimulation at 11 mM. (b) The survival rate of BY4741 after IQ treatment
under oxidative stress induced by 5.5 mM H2O2. (c,d) Effects of IQ on reactive oxygen species (ROS)
and malondialdehyde (MDA) in yeasts under physiological status. (e–h) Changes in antioxidant
enzyme activity in BY4741 yeast after incubation with IQ for 24 h. *, **, and *** indicate significant
differences from the control group at p < 0.05, p < 0.01, and p < 0.001, respectively.

Low concentrations of ROS can maintain normal cell function, but abnormally high
concentrations beyond the elimination limit of the antioxidant system in vivo may cause
damage to growth factors, transcription factors, proteins, nucleic acids, and lipids [4].
MDA is the end product of membrane lipid peroxidation caused by ROS [29]. Therefore,
the ROS and MDA levels were investigated to determine the extent of the intracellular
oxidation after IQ treatment. Figure 3c shows that IQ significantly decreased the ROS levels
from 1016.2 ± 62.6 to 769.9 ± 16.3, 545.2 ± 57.2, (p < 0.01), and 500.3 ± 105.1 (p < 0.01)
at 1, 10, and 30 µM, respectively. The positive-control RES at 10 µM decreased the ROS
from 1016.2 ± 62.6 to 603.7 ± 52.1 (p < 0.05). Figure 3d implies that the MDA decreased
from 0.62 ± 0.03 to 0.50 ± 0.03 (p < 0.05), 0.52 ± 0.02 (p < 0.05), 0.50 ± 0.04 (p < 0.05), and
0.49 ± 0.02 (p < 0.01) after treatment with RES at 10 µM and IQ at 1, 10, and 30 µM, respec-
tively. Therefore, IQ could effectively reduce the ROS and MDA levels of the BY4741 yeast,
which further demonstrated that antioxidative stress played a key role in the antiaging
effect of IQ.

Sod, Cat, and Gpx constitute an enzymatic antioxidant system and play a vital role
in the balance of oxidation and antioxidative stress [30]. Therefore, the activities of these
antioxidant enzymes under physiological conditions were assessed to clarify the molecular
mechanism of the antioxidative-stress effect exerted by IQ. Figure 3e,f indicate that the total
Sod activity was obviously enhanced after treatment with IQ at 1 (p < 0.05), 10 (p < 0.05),
and 30 µM (p < 0.001), whereas the Sod1 enzyme activity was improved after treatment
with IQ at 1 (p < 0.05), 10 (p < 0.001), and 30 µM (p < 0.001), respectively. Meanwhile,
increased Cat enzyme activity was observed in the IQ-treated group at 1 (p < 0.05), 10
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(p < 0.01), and 30 µM (p < 0.01), whereas the Gpx enzyme activity was evidently enhanced
upon IQ treatment at 10 (p < 0.05) and 30 µM (p < 0.05) (Figure 3g,h). These data indicated
that the IQ countered oxidative stress by increasing the activities of Sod, Cat, and Gpx,
thereby completing the antiaging effect.

3.4. IQ Confers Thermotolerance on Yeasts via SOD

Natural products that increase the cell resistance to thermal stresses have been shown
to decelerate the aging process and extend longevity in yeast [28]. Therefore, we investi-
gated the effect of IQ on the susceptibility of YOM36 yeasts to thermal stress. Compared
with the yeasts that were not heated, the survival ability of the yeasts that experienced
thermal stress at 60 ◦C for 30 min was obviously declined (Figure 4a). Therefore, heating at
60 ◦C for 30 min was chosen as the condition for the formal thermal-stress examination.
The YOM36 yeasts at 1 × 105 times dilution grew better after IQ treatment at 1, 10, and
30 µM for 24 h followed by heating at 60 ◦C for 30 min compared with the control group
(Figure 4b). As Figure 4c shows, different from the qualitative assay, heating at 60 ◦C for
25 min led to a 50% survival rate, and this was selected as the condition for the formal
experiment in the quantitative assay. Figure 4d implies that IQ at 10 and 30 µM made the
yeasts more resistant to thermal stress and increased the survival rates of the yeasts from
51.7 ± 2.3% to 76.7 ± 2.9% (p < 0.05) and 97.0 ± 5.7% (p < 0.01), respectively.
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Figure 4. IQ enhances the Sod activity to synergistically counteract thermal stress in yeasts. (a) Pho-
tograph of YOM36 yeasts with or without thermal stimuli after culturing at 28 ◦C for 24 h. (b) The
growth of YOM36 yeasts with IQ treatment after heating at 60 ◦C for 30 min and culturing at 28 ◦C
for 48 h. (c) The survival rate of YOM36 yeasts under different thermal-stress conditions. (d) The
quantitative anti-thermal-stress experimental results after IQ treatment followed by heating at 60 ◦C
for 25 min. * p < 0.05 and ** p < 0.01 represent significant differences compared to the control
group. (e,f) The ROS and MDA in YOM36 yeasts after treatment with IQ under room-temperature
and thermal-stress conditions. * p < 0.05 and ** p < 0.01 represent significant differences compared
with the control group under room-temperature conditions. ### p < 0.001 represents significant
difference between the negative control group. (g,h) The T-Sod and CuZn-Sod activities in YOM36
yeasts after treatment with IQ under room-temperature and thermal-stress conditions. * p < 0.05,
** p < 0.01, and *** p < 0.001 represent significant differences compared with the control group under
room-temperature conditions. $ p < 0.05, $$ p < 0.01, and $$$ p < 0.001 represent significant differences
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compared with the control group under thermal-stress conditions. # p < 0.05 and ### p < 0.001
represent significant differences between the negative control group. (i) The growth of K6001 yeasts
and its ∆sod1 and ∆sod2 mutants after IQ treatment with or without heating at 55 ◦C for 30 min.

Multiple-stress resistance is necessary for lifespan extension, and antioxidants can
protect C. elegans against thermal stress [6]. The ROS, MDA, and Sod levels after thermal
stimulation were measured to clarify whether there is crosstalk between the antioxidative-
stress and anti-thermal-stress effects exerted by IQ. As Figure 4e,f display, IQ could ef-
fectively reduce the ROS at 1 (p < 0.05), 10 (p < 0.01), and 30 µM (p < 0.01) and the MDA
levels at 1, 10, and 30 µM (p < 0.05) under room-temperature conditions. The ROS and
MDA levels were significantly improved after heating at 60 ◦C for 30 min (p < 0.001).
Unexpectedly, the IQ failed to decrease the ROS and MDA levels under thermal-stress
conditions (Figure 4e,f). Furthermore, the T-Sod and CuZn-Sod activities after IQ treatment
under thermal stress were explored. Heating at 60 ◦C for 30 min resulted in a decrease
in the Sod enzyme activities, and IQ could increase the T-Sod and CuZn-Sod activities
under room-temperature or thermal-stress conditions (Figure 4g,h). These results indicated
that IQ exerted anti-thermal-stress effects, and it enhanced Sod enzyme activities under
thermal stress.

Under thermal stress, the expression levels of SOD1 and SOD2 were significantly
upregulated, exerting a heat-tolerance effect [31]. Anti-thermal-stress assays of K6001,
∆sod1, and ∆sod2 with the K6001 background after IQ treatment were conducted to explore
whether SOD1 and SOD2 participate in the anti-heat-stress effect of IQ. Figure 4i implies
that heating at 55 ◦C for 30 min reduced the survival ability of the K6001 yeasts in the
control group compared with 28 ◦C. IQ treatment improved the heat tolerance of K6001
yeasts under heat stress. Interestingly, IQ failed to increase the survival abilities of ∆sod1
and ∆sod2 at 55 ◦C compared with the wild type. These results confirmed that SOD1 and
SOD2 were involved in the anti-thermal-stress effects of the IQ.

3.5. SOD1, SOD2, CAT, GPx, SKN7, and UTH1 Are Involved in the Antiaging Effect of IQ

To further confirm the relationship between the antioxidant stress effect of IQ and its
antiaging function, the ∆sod1, ∆sod2, ∆cat, ∆gpx, ∆skn7, and ∆uth1 of K6001 yeasts were
employed in the replicative-lifespan assay. As Figure 5a–f display, the average generation of
∆uth1 was longer than that of the K6001 wild type, whereas the average lifespans of ∆sod1,
∆sod2, ∆cat, ∆gpx, and ∆skn7 were similar to that of the K6001 wild strain. Furthermore,
IQ failed to prolong the average lifetimes of ∆sod1, ∆sod2, ∆cat, ∆gpx, ∆skn7, and ∆uth1
compared with the negative control. These results further confirmed that the SOD1, SOD2,
CAT, GPx, SKN7, and UTH1 genes were involved in the lifetime prolongation effect of
the IQ. The average replicative lifespans of the K6001 yeast and its mutants are shown in
Supplementary Table S3.

3.6. Effects of IQ on Autophagy and Mitophagy in YOM38 Yeasts

To date, about 40 Atg proteins have been identified in Saccharomyces cerevisiae. Atg8
is involved in the elongation and closure of autophagosome membranes and acts as an
autophagosome marker [9]. YOM38 yeasts containing the pRS316-GFP-ATG8 plasmid
were applied in the autophagy-induction assay to monitor the autophagy flux, as de-
scribed in a previous study [26]. Mitophagy is a selective type of autophagy, degrading
the damaged mitochondria to maintain cell homeostasis and delay cell senescence and
death [8]. MitoTracker Red CMXRos was applied to mark the mitochondria and monitor the
mitophagy. Wortmannin is a specific PI3K inhibitor that inhibits the Atg protein core com-
plex and autophagy-specific class III PI3K complex to prevent phagosome formation [32].
Figure 6a–c display that IQ significantly improved the percentage of YOM38 yeasts with
free GFP at 1 (p < 0.05), 10 (p < 0.05), and 30 µM (p < 0.01), and the ratio of yeasts with the
colocalization of free GFP and MitoTracker Red was obviously increased after treatment
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with IQ at 10 and 30 µM (p < 0.05). Moreover, the induction effect could be inhibited by
wortmannin at 200 nM.
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results of YOM38 yeasts containing free green fluorescent protein (GFP) in (a). (c) The statistical
results of YOM38 yeasts with the colocalization of free GFP (green) and MitoTracker Red CMXRos
(red) in (a). (d) Western blot analysis of GFP-Atg8 and free GFP in YOM38 yeast after treatment with
IQ at 1, 10, and 30 µM with or without wortmannin for 22 h. (e) The digital results of free GFP in (d).
(f) The changes in ubiquitin in the mitochondria after treatment with IQ with or without wortmannin.
(g,h) The replicative lifespans of ∆atg2 and ∆atg32 of K6001 yeasts. (i) The replicative lifespans of
K6001 yeasts after treatment of mitophagy activator GSK3-IN-3 or inhibitor Mdivi-1. The average
lifespans of K6001 and mutants are displayed in Supplementary Table S3. * p < 0.05, ** p < 0.01, and
*** p < 0.001 represent significant differences compared with the control group without wortmannin.
$ p < 0.05 represents significant difference compared with the control group with wortmannin.
# p < 0.05, ## p < 0.01, and ### p < 0.001 indicate significant differences between the groups with or
without wortmannin inhibition.

The ubiquitin proteasome system is crucial for controlling the degradation of or-
ganelles and proteins. Ubiquitin binds to damaged mitochondria and labels them as the
substrates for mitophagy [33]. The expression levels of free GFP and ubiquitin at the
protein level were analyzed via Western blot to further confirm the autophagy-induction
effect of IQ. Figure 6d–f and Supplementary Figures S2 and S3 indicate that the IQ sig-
nificantly increased the expression of free GFP at 1 (p < 0.01), 10 (p < 0.001), and 30 µM
(p < 0.001). The increase in free GFP in the yeasts that were co-incubated with IQ at 10
and 30 µM was decreased by wortmannin (p < 0.01). Meanwhile, IQ could enhance the
expression of ubiquitin, and the increase in ubiquitin via IQ decreased after treatment with
wortmannin. Atg2 and Atg32 are critical to mediate the degradation of mitochondria via
mitophagy [10]. Therefore, a replicative-lifespan assay of the ∆atg2 and ∆atg32 strains with
the K6001 background was further conducted. As indicated in Figure 6g,h, the average
generations of these two mutants failed to be extended after the IQ treatment, confirming
that the ATG2 and ATG32 genes were involved in the mitophagy-induction effect of IQ.
Furthermore, we used mitophagy inhibitor Mdivi-1 and activator GSK3-IN-3 to check the
effect of mitophagy on the lifespan of the K6001 yeast. As expected, Mdivi-1 did not affect
the replicative lifespan, and GSK3-IN-3 significantly increased the replicative lifespan of
the K6001 yeast at doses of 1, 3, and 10 µM (Figure 6i and Supplementary Table S3, p < 0.05,
p < 0.001, and p < 0.01, respectively). These data indicated that IQ could significantly induce
autophagy and mitophagy to produce the antiaging effect in yeasts.

3.7. IQ Inhibits the Expression of Sch9 and Promotes GFP-Rim15 and GFP-Msn2 Transfer into the
Nucleus in Yeasts

The downregulation of nutrient signaling through the TORC1/Sch9 pathway sig-
nificantly extends the chronological lifespan of yeast [13]. Downregulated TORC1/Sch9
signaling leads to the nuclear translocation of Rim15, and the increased nuclear accumu-
lation of Rim15 can prolong the lifetime. Rim15 triggers the anti-stress response for ROS
degradation through downstream transcription factors, including Msn2/4 [14]. Msn2/4
can induce cellular protection by enhancing general stress resistance and autophagy [15,16].
The effects of IQ on the expression level and subcellular localization of the TORC1 signaling
pathway-related proteins were further explored to clarify its antiaging effect.

The results of the Western blot analysis indicated that IQ effectively inhibited the Sch9
at the protein level after 2 h of treatment at 1, 10, and 30 µM (p < 0.001); this result was
better than rapamycin at 1 µM (Figure 7a,b and Supplementary Figure S4). This result
revealed that IQ extended the lifespans of the yeasts by inhibiting the expression of Sch9
at the protein level. As Figure 7c indicates, the antiaging effect of IQ was significantly
weakened in the ∆rim15 of K6001, indicating that Rim15 played a key role in the lifespan
extension effect of IQ. The average lifespans of K6001 and ∆rim15 of K6001 are displayed
in Supplementary Table S3. Subsequently, the intracellular localization of the GFP-Rim15
fusion protein after IQ treatment was examined. Figure 7d,e show that IQ significantly en-
hanced the nuclear transfer of GFP-Rim15 at 1 (p < 0.01), 10 (p < 0.001), and 30 µM (p < 0.05).
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These data indicated that Rim15 is involved in the antiaging effect of IQ. Moreover, IQ
could effectively improve the gene expression of MSN2 at 10 µM (p < 0.01) and 30 µM
(p < 0.01), as well as that of MSN4 at 10 µM (p < 0.01), after 24 h (Supplementary Figure S5).
BY4741 yeasts containing the GFP-Msn2 plasmid were employed to observe the subcellular
localization of Msn2. IQ obviously promoted the nuclear translocation of GFP-Msn2 at
10 µM (p < 0.001) and 30 µM (p < 0.01), as rapamycin did at 1 µM (p < 0.001) (Figure 7f,g).
These results suggested that IQ promoted the nuclear transfer of GFP-Msn2 in the yeast,
triggering the transduction of stress-resistance signaling.
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Figure 7. Effect of IQ on the expressions of Sch9 and nuclear translocation of GFP-Rim15 and
GFP-Msn2. (a) The changes in Sch9 after treatment with IQ for 2 h. (b) The digital results of (a).
(c) The replicative lifespans of ∆rim15 of K6001 after IQ treatment. (d) The fluorescence images of the
colocalization of GFP-Rim15 and nuclear staining with Hoechst 33,342. (e) The statistical results of
(d). (f) The fluorescence signals of the colocalization of GFP-Msn2 and nuclear staining with Hoechst
33,342. (g) The statistical results of (f). *, **, and *** indicate significant differences from the control
group at p < 0.05, p < 0.01, and p < 0.001, respectively. # indicates significant differences from the
control group in ∆rim15 of K6001 at p < 0.05.

IQ inhibited the expression of Sch9 at the protein level and increased the nuclear
translocation of GFP-Rim15 and GFP-Msn2, thereby exerting anti-stress and autophagy-
induction effects to prolong the lifespans of the yeasts.

3.8. IQ Exerts Autophagy-Induction and Thermal-Stress-Resistance Effects via Rim15

Rim15 is required for the induction of autophagy that occurs upon the inhibition
of Sch9 [16]. Compared with the K6001 yeast, the rate of autophagosome formation in
the negative control and RES- and IQ-treatment groups significantly decreased in the
∆rim15 of the K6001 yeasts at p < 0.05, p < 0.01, and p < 0.05 (Figure 8a,b). Rim15 is also
involved in stress-resistance signals to appropriately induce a transcriptional program
that increases survival in G0. The regulon downstream of RIM15 comprises classical anti-
stress genes, such as MSN2 and MSN4 [15]. A qualitative anti-thermal-stress assay on
∆rim15 of the K6001 yeasts was conducted to investigate whether RIM15 is involved in
the anti-stress effect exerted by IQ. The ∆rim15 of the K6001 yeasts exhibited poor heat
resistance. Compared with the K6001 yeasts, the anti-thermal-stress effect of the yeasts
in the IQ-treated group was significantly weakened in the ∆rim15 of the K6001 yeasts at
1 × 104 and 1 × 105 dilutions (Figure 8c). These results indicated that Rim15 plays an
important role in the autophagy-induction and anti-thermal-stress effects of IQ.
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Figure 8. Rim15 is essential for IQ to exert autophagy-induction and thermal-stress-resistance effects.
(a) The fluorescence images showing the autophagosomes in K6001 and ∆rim15 of K6001 stained
with CYTO-ID green dye. (b) The digital results of (a). (c) The growth of K6001 and ∆rim15 of K6001
yeasts after IQ treatment with heating at 55 ◦C for 30 min and culturing at 28 ◦C for 48 h. * indicates
significant differences from the control group of K6001 yeasts at p < 0.05. # and ## represent significant
differences between the same treatment group of K6001 and ∆rim15 of K6001 yeasts at p < 0.05 and
p < 0.01. $ and $$ indicate significant differences from the control group of ∆rim15 of K6001 yeasts at
p < 0.05 and p < 0.01, respectively.

4. Discussion

IQ from A. venetum L. is a bioactive flavonoid with antioxidative-stress, anti-inflammatory,
autophagy-inducing, and anti-obesity properties [21–23]. In the present study, we utilized
the lifespan assay of yeast to investigate the antiaging effect and mechanism of action of
this compound. The changes in the replicative lifespan and chronological lifespan of the
yeast in Figure 1b,c indicated that IQ had antiaging effects on the yeast. This result is
consistent with our previous studies [26,27]. Recently, it has been indicated that quercetin
can clear senescence cells in organisms to produce the antiaging effect [34]. IQ is quercetin-
3-glucoside and has better biological activity and bioavailability than quercetin [35]. This
gives us inspiration, as IQ also has the same function as quercetin. In the future, we will
screen the small molecules from nature products that only kill aging cells and do not affect
normal cells. In addition, IQ can inhibit α-glucosidase activity to treat hyperglycemia [36],
promote cell apoptosis to inhibit human osteosarcoma cell proliferation [37], and exert an
anti-neuroinflammation effect in LPS-induced neuroinflammatory mice [38]. Moreover,
IQ is one small-molecule compound with low toxicity and high biological activity. These
properties of IQ endow it with the potential to be developed as a promising therapeutic
agent for age-related diseases.

In our previous studies, we usually focused on oxidative stress and autophagy to
analyze the mechanism of action [26,27]. In this study, we shifted our key point to other
stresses, such as nitrosative stress and thermal stress. First, we investigated the changes in
the RNS of YOM36 yeast during the chronological-lifespan assay. The results in Figure 2
suggested that RNS and the chronological lifespan were related to each other, and IQ
extended the chronological lifespan of YOM36 via a reduction in RNS in the early stationary
phase. Interestingly, the RNS levels of the rapamycin-treated group in the growth phase
at 2, 3.5, and 5 days increased compared with those of the control group. This result may
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be why the growth of YOM36 yeast in the growth phase was so slow after the rapamycin
treatment. At this point, our results were not consistent with another study, which reported
that rapamycin can block the cell cycle progression in the early G1 phase, driving cells into
a G0 state [39].

The development of resistance to chronic oxidative and thermal stresses and enhanced
autophagy are essential longevity-extending processes in evolutionarily distant organisms,
including yeasts and Caenorhabditis elegans [5,6,26,27]. Thus, we also investigated the effect
of IQ on the oxidative stress, thermal stress, and autophagy. The changes in the ROS and
MDA, survival rate under thermal stress, activity of antioxidative enzymes, replicative
lifespan of the mutants in Figures 3–5, and enhancement on autophagy in Figure 6 proved
that stress resistance and autophagy play important roles in the antiaging effect of IQ.
Moreover, there is some evidence that the upregulation of SOD gene expression exerts heat-
tolerance effects under thermal stress [31,40]. To understand whether these two enzymes
are involved in the anti-thermal-stress effect of IQ, we measured the Sod enzyme activity
and the survival viabilities of ∆sod1 and ∆sod2 of K6001 yeast under thermal stress. The
results in Figure 4 confirm that SOD1 was involved in the anti-thermal-stress effects of IQ.

The mTOR signaling pathway is closely related to stress resistance and autophagy.
Downregulation of the highly conserved mTOR signal can prolong longevity by increasing
stress resistance and autophagy induction [14]. It is worth exploring whether the mTOR
signaling pathway is involved in the antiaging effects of IQ. The reduction in Sch9 at
the protein level and increase in nuclear translocation of GFP-Rim15 and GFP-Msn2 in
Figure 7 clarified that IQ obviously promoted the nuclear translocation of Rim15 and Msn2
to trigger the transcription of anti-stress or autophagy-induction signals. To understand the
relationship among Rim15, autophagy, and thermal stress, the rim15 of K6001 was applied
to observe the changes in the IQ effects of autophagy and thermal stress. The results in
Figure 8 suggest that Rim15 was a key protein, which controls autophagy and the general
stress response, required for IQ to exert autophagy-induction and thermal-stress-resistance
effects to prolong the lifespans of yeasts.

5. Conclusions

IQ from A. venetum L. exerts obvious antiaging effects on yeasts. It extends their lifes-
pans by improving the stress resistances and inducing mitophagy via the Sch9/Rim15/Msn
signaling pathway (Figure 9). We will evaluate the efficacy and safety of IQ on mammalian
cells and animal models to develop it as a promising candidate that can prevent and treat
aging and age-related disorders.
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