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Abstract: X-box binding protein 1 (XBP1) is a unique basic-region leucine zipper (bZIP) transcription
factor. Over recent years, the powerful biological functions of XBP1 in oxidative stress have been
gradually revealed. When the redox balance remains undisturbed, oxidative stress plays a role in
physiological adaptations and signal transduction. However, during the aging process, increased
cellular senescence and reduced levels of endogenous antioxidants cause an oxidative imbalance
in the cardiorenal system. Recent studies from our laboratory and others have indicated that these
age-related cardiorenal diseases caused by oxidative stress are guided and controlled by a versatile
network composed of diversified XBP1 pathways. In this review, we describe the mechanisms
that link XBP1 and oxidative stress in a range of cardiorenal disorders, including mitochondrial
instability, inflammation, and alterations in neurohumoral drive. Furthermore, we propose that
differing degrees of XBP1 activation may cause beneficial or harmful effects in the cardiorenal system.
Gaining a comprehensive understanding of how XBP1 exerts influence on the aging cardiorenal
system by regulating oxidative stress will enhance our ability to provide new directions and strategies
for cardiovascular and renal safety outcomes.
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1. Introduction

As research efforts have intensified, a complex hemodynamic and neurohumoral
connection between the heart and the kidneys has become highly evident [1,2]. Even in the
absence of damage, the glomerular filtration rate (GFR) is known to decrease by approxi-
mately 8 mL/min/1.73 m2 per decade after the age of 40 years [3]. Furthermore, research
has shown that the incidence of acute kidney injury (AKI) is higher in older adults [4]. The
progression of kidney damage leads to an expansion of blood volume, along with an upreg-
ulation of the sympathetic nervous system (SNS) and the renin–angiotensin–aldosterone
system (RAAS); these changes exert numerous maladaptive systemic effects on the heart,
vasculature, and kidneys [5–8]. Compared to young hearts, aged hearts are more suscepti-
ble to both acute and chronic damage [9]. Aged hearts have little protection against such
injury [10]; thus, heart failure is a typical disease related to the elderly [11]. Consequent
venous congestion, inadequate renal blood flow, and poor renal perfusion result in renal
dysfunction attributed to a decline in renal blood flow and glomerular filtration rate (GFR),
along with reduced urinary output [12–14]. In addition, these changes elevate the activity
of SNS and the release of renin from the juxtamedullary apparatus, thus resulting in sodium
retention and enhanced vascular congestion, further exacerbating heart failure [8,14]. In
a previous study, Claudio et al. defined five types of cardiorenal syndromes based on
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pathophysiology, time frame, and the presence or absence of cardiac and renal dysfunction.
Types 1 and 2 are caused by acute heart injury and chronic heart failure, respectively, while
types 3 and 4 are caused by AKI and chronic kidney disease (CKD), respectively. Type 5 is
caused by other systemic diseases such as sepsis and diabetes [15].

Although a variety of factors can cause senescence-related cardiorenal interactions,
a strong body of evidence indicates that oxidative stress plays a central role [14,16] via
age-induced metabolic, hemodynamic, neurohormonal, and inflammatory mechanisms,
and atherosclerotic degeneration [17–19]. Aging is highly correlated to the process of mito-
chondrial dysfunction and causes the accumulation of oxidative stress in cardiomyocytes
and nephrocytes [17,20,21]. Furthermore, oxidative stress participates in the generation of
biomarkers that can be used to detect cardiorenal aging and functional deterioration, in-
cluding brain natriuretic peptide (BNP)/N-terminal (NT)-pro hormone BNP (NT-proBNP),
interleukin-1β (IL-1β), nicotinamide adenine dinucleotide phosphate (NADPH) oxidases
(NOX), NLR family pyrin domain containing 3 (NLRP3) and neutrophil gelatinase associ-
ated lipocalin (NGAL) [7,22]. In addition to stimulating SNS and RAAS, oxidative stress
weakens cardiorenal function by attenuating the restoration of mitochondrial health, allevi-
ating mitochondrial biogenesis, enhancing proinflammatory and profibrotic pathways, and
damaging the integrity and viability of cells and organs [6–8] (Figure 1).
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ing ER chaperones that are closely related to physiological and pathological activities such 
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Figure 1. Oxidative stress is a prominent initiator of mitochondrial dysfunction, metabolic disorder,
direct damage, inflammation and the activation of renin–angiotensin–aldosterone system (RAAS) in
the aging cardiorenal system and plays a key role in the occurrence of cardiorenal syndrome. Adobe
Illustrator (version 2021 25.0) was used for the production of this figure.

Cardiorenal abnormalities contribute to the accumulation of misfolded or unfolded
proteins in the endoplasmic reticulum (ER), thereby exerting significant load on the ER
protein-folding mechanism; this can overwhelm the capacity of the ER, a disease state
known as ER stress [23,24]. Cells have evolved an adaptive signal transduction pathway
that transmits signals from the ER to the nucleus, known as the unfolded protein response
(UPR); this pathway attempts to restore ER homeostasis and improve cellular functional
recovery against ER stress [25]. X-box binding protein 1 (XBP1), a member of the cAMP
response element binding protein (CREB)/activating transcription factor (ATF) basic region-
leucine zipper family of transcription factors, is one of the highly conserved effector
molecules of UPR [26]. Upon ER stress, inositol requiring enzyme 1α (IRE1α) splices XBP1
pre-mRNA to XBP1 mRNA, which is then translated into an active transcriptional factor
(XBP1s; the spliced form of XBP1), thus regulating the transcription of UPR genes encoding
ER chaperones that are closely related to physiological and pathological activities such as
cell death, regeneration, and metabolism [25] (Figure 2). XBP1 has been demonstrated to be
expressed ubiquitously, from yeast to humans [27–33]. The complete knockout of XBP1 was
previously shown to result in embryonic lethality [34–37]. We previously investigated the
effects and mechanisms that control homeostasis in the heart and kidneys [8,22,25,26,38–40]
and found that oxidative overload is likely to induce or prevent XBP1 mRNA splicing.
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Furthermore, the efficient activation of XBP1 exerts protective effects on oxidative injury
and helps to sustain the viability of the cardiorenal system and the integrity of cardiorenal
function [6,41,42]. In contrast, aging increases the risk of XBP1 being excessively activated;
this condition is closely associated with mitochondrial dysfunction and the overproduction
of free radicals via a range of mechanisms including calcium imbalance, the initiation of
ER biogenesis, and ER-dependent apoptosis [43–45]. Herein, we review the characteristics
of these biomarkers and pathways in the aging cardiorenal system and the contributions
of XBP1s, thus identifying potential targets to develop much needed novel therapeutic
concepts against cardiorenal syndrome in the elderly.
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Figure 2. Schematic diagram of the XBP1 signaling pathway in endoplasmic reticulum stress (ER
stress). Upon ER stress, IRE1α is auto-phosphorylated and transformed into an active dimer which
splices XBP1u mRNA into XBP1s mRNA, which codes for an active transcription factor, XBP1s.
The translocation of XBP1s to the nucleus promotes the transcription of target genes that regulate
senescence, survival, metabolism, and the immune system. ℗ Refers to phosphoric acid. Adobe
Illustrator (version 2021 25.0) was used for the production of this figure.

2. Mitochondrial Maintenance

Mitochondria generate more than 90% of adenosine triphosphate (ATP); this repre-
sents approximately one-third of the high energy demand of cardiomyocytes; consequently,
the human heart contains the highest concentration of mitochondria in the entire body [46].
Owing to the high energy demands of solute reabsorption, the kidneys, particularly cells in
the proximal tubules and the medullary thick ascending limb, possess an abundance of mi-
tochondria [47,48]. Mitochondria are bioenergetic and biosynthetic signaling organelles that
provide a critical stress-sensing function that helps cells to adapt to their environment [49].
Over the past few decades, researchers have firmly concluded that the mitochondrion is
a central contributor to oxidative stress in the cardiorenal system [22,39,50–52]. XBP1 is
often implicated in many cardiorenal diseases as consequences of failed mitochondrial
maintenance [22,26].

In both healthy kidneys and hearts, physiological levels of mitochondrial reactive
oxygen species (ROS) can activate survival pathways [53]. When the heart experiences
biological stressors, such as myocardial ischemia-reperfusion injury (IRI), there is a marked
reduction of mitochondrial membrane potential (∆Ψm) and ATP stores become exhausted;
these changes are accompanied by acidosis that is secondary to lactate accumulation, and
an increase in the intracellular calcium (Ca2+) concentration. Furthermore, the outer mito-
chondrial membrane (OMM) remains intact and the mitochondrial permeability transition
pore (mPTP) remains closed. With subsequent reperfusion, the reintroduction of oxygen
leads to the rapid normalization of pH and a rapid restoration of ∆Ψm, thus precipitating a
range of adverse sequelae including the production of mitochondrial ROS, the exacerbation
of Ca2+ overload, OMM destruction, and mPTP formation [54].
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It is well established that acute kidney injury (AKI) perturbs the usual vectorial pump-
ing of protons across the inner mitochondrial membrane by enzymatic complexes within
the mitochondrial electron transport chain (ETC) [55]. The subsequent loss of ∆Ψm disrupts
selective permeability. As a consequence, the mitochondria expand [56]. Mitochondrial
biogenesis refers to the cellular process by which new mitochondrial mass and mitochon-
drial DNA (mtDNA) replication are produced [57], enhancing mitochondrial oxidative
phosphorylation (OXPHOS) capacity and the repair of mitochondrial dysfunction after
AKI. Mitochondrial fusion joins two mitochondria at the outer and inner membrane inter-
faces via several membrane GTPases, Mitofusin 1 (MFN1), Mitofusin 2 (MFN2), and Optic
atrophy protein 1(OPA1) [58,59]. Mitochondrial fission is a multistep process that allows a
mitochondrion to split in two separate mitochondrial organelles [60]. The network formed
by mitochondrial fusion–fission is mitochondrial dynamics. Mitochondrial dynamics is
deployed to sequester damage and efficiently eliminate damaged mitochondria through
mitophagy, which is a mechanism that selectively degrades excess and defective mito-
chondria [61,62]. It is worth noting that changes in the mitochondrial structure have been
observed in the ischemic human kidney prior to the occurrence of the clinical symptoms of
AKI, thus suggesting that mitochondrial perturbation may not be a mere epiphenomenon
following injury. Rather, mitochondrial dysfunction could potentially be a factor that
contributes to injury [63].

In addition, heart failure and CKD also induce mitochondrial biosynthesis, mitochon-
drial dynamics, mitophagy, and mitochondrial proteostasis; collectively, these processes
facilitate mitochondrial quality control (MQC).

It is thought that appropriate MQC is a compensatory molecular mechanism that
removes anomalous mitochondrial proteins or completely damaged mitochondria, and re-
stores mitochondrial both function and homeostasis, thus favoring cardiorenal
protection [64,65]. In contrast, the disruption of MQC accelerates lethal damage [66].
Mitochondrial dysfunction and imbalances in MQC are hallmarks of the aging cardiore-
nal system [26,67]. These mitochondrial events driven by oxidative stress contribute to
increased susceptibility of the aging kidneys and hearts to acute and chronic injuries [68].
Intriguingly, the specific ablation of mitochondria from senescent cells was previously
shown to be sufficient to reverse many features of the senescent phenotype [69] (Figure 3).
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Figure 3. Mitochondrial homeostasis is decisive for maintaining oxidative stress with age. Acute
injuries can trigger an increase in mitochondrial membrane potential (∆Ψm), calcium overload,
and the overproduction of reactive oxygen species (ROS) in damaged mitochondria. The reduced
functionality of biosynthesis, dynamics, and quality control in heart failure and chronic kidney
disease can also exacerbate oxidative stress. The ↑ indicates an increase; the ↓ indicates a decrease.
Adobe Illustrator (version 2021 25.0) was used for the production of this figure.
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2.1. Nuclear Factor Erythroid 2-Related Factor 2 (NRF2)

NRF2, encoded by nuclear factor, erythroid 2 like 2 (NFE2L2) gene, is a master regu-
lator of anti-aging and antioxidant defense and protects against various insult-induced
organ damage [8,22,39,70,71] by regulating responses to mitochondrial-derived ROS via its
pleiotropic effects on controlling antioxidant and detoxification genes, including NADPH-
quinone oxidoreductase (NQO1), heme oxygenase-1 (HO-1), and superoxide dismutase 1
(SOD1) [70–72], preventing the progression of AKI to CKD transition and deeply participat-
ing in CKD development. AKI activates the expression of the NRF2 in the kidneys, thereby
enhancing antioxidant target gene transcription that protects the kidney from oxidative
damage [39]. Compared to healthy kidney tissue, NRF2 and its downstream molecules
were found mainly upregulated in earlier human CKD samples, like glomeruli of diabetic
nephropathy (DN) patients, and kidney tissue from patients with lupus nephritis [73,74].
Because of the imbalance of antioxidant mechanism, decreased expression of the NRF2
system is often detected in patients with advanced CKD [75]. The transcription of NRF2 can
also increase mitochondrial biogenesis through the expression of genes that are essential for
mitochondrial biogenesis, including nuclear respiratory factor 1 (NRF-1) and peroxisome
proliferator-activated receptor γ co-activator 1α (PGC-1α) [76–78].

It has been well documented that the Kelch-like ECH-associated protein 1 (Keap1)/
NRF2 and the glycogen synthase kinase-3β (GSK-3β)/NRF2 signaling pathways represent
redox-sensitive regulator axes through which NRF2 dissociates from Keap1 or GSK-3β
under oxidative stress prior to the induction of various antioxidant genes [22,79,80]. In
addition to this quintessential mechanism, our laboratory provided evidence to indicate
that XBP1s induces the transcriptional upregulation of hydroxymethylglutaryl reductase
degradation 1 (HRD1) [22], an E3 ubiquitin ligase that is also known as synoviolin 1
(SYVN1) that coordinates ER-associated protein degradation (ERAD), a process that di-
rectly catalyzes ubiquitin conjugation onto unfolded or misfolded proteins for proteasomal
degradation [8,22]. Furthermore, HRD1 can ubiquitinate and degrade NRF2 via interaction
with the QSLVPDI motif, while the blockade of HRD1 can prevent the downregulation
of NRF2 in tubular epithelial cells experiencing IRI [22]. Ferroptosis-associated epithelial
and endothelial to mesenchymal transition (EMT) is the principal pathological basis under-
lying the progression of DN to end-stage renal disease (ESRD), which often involves the
accumulation of ROS and iron overload in renal tubular epithelial cells. This is probably
caused by activation of the XBP1-HRD1-NRF2 pathway by high levels of glucose, at least
in part [81]. In line with this, investigations from another laboratory reported that the
cardiac expression of XBP1s could effectively rescue the expression of HRD1 and mediate
the ubiquitination and degradation of NRF2 [8].

2.2. O-Linked GlcNAc Modification (O-GlcNAcylation)

O-GlcNAcylation, a pro-survival pathway that counterbalances age-related decline
in a self-healing capacity [82], can modulate protein stability and function, and has been
implicated in various cardiovascular diseases. In cardiac IRI, XBP1s couples ER stress
with the hexosamine biosynthetic pathway (HBP) by triggering activation of the major
HBP enzymes: glutamine fructose-6-phosphate aminotransferase 1 (GFAT1), glucosamine-
phosphate N-acetyltransferase 1 (GNPNAT1), phosphoglucomutase 3 (PGM3), and uridine
diphosphate-glucose 4-epimease (GalE) [83]. The XBP1s-HBP axis promotes the synthesis
of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), an obligate substrate for the
O-GlcNAcylation of cardiac proteins during IRI [83,84]. O-GlcNAcylation has also been
implicated in various IRI-related cardiovascular diseases. A body of evidence suggests
that increasing O-GlcNAcylation during IRI may represent a unique and endogenously
recruitable mechanism of cardioprotection that acts directly via O-GlcNAcylating voltage-
dependent anion channel 1 (VDAC1) in the mitochondria [85–87]. Because VDAC is a
putative form of mPTP, the O-GlcNAcylation of VDAC prevents the formation of mPTP,
alters sensitivity to the loss of ∆Ψm, relieves Ca2+ overload-induced mitochondrial swelling,
and hence maintains mitochondrial stability [85].
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2.3. BNP and NT-proBNP

Under pathological conditions, XBP1s, which is induced in response to ER stress, is
an essential regulator of BNP transcription in cardiomyocytes, and binds to the proximal
activator protein 1 (AP-1)/cAMP response element (CRE)-like element in the BNP promoter
and increases the activity of its promoter [7,88]. The transcribed unstable BNP mRNA
can rapidly synthesize a 134 amino acid BNP precursor (pre-proBNP) and remove the
N-terminal 26 amino acid signal peptide to form a 108 amino acid BNP (proBNP) [89]. Sub-
sequently, proBNP is cleaved into inactive NT proBNP (comprised of 76 amino acids) and
active BNP (comprised of 32 amino acids) by proBNP convertases (corin or furin) [89–91].
Both BNP and NT-proBNP status are widely used as diagnostic biomarkers for heart failure,
hypertension, and cardiac hypertrophy [89,92]. The significant interaction between changes
in NT-proBNP and the reduction of GFR values indicate that NT-proBNP may precede the
deterioration of renal function in patients with heart failure [93].

As a compensatory protection mechanism in the early stages of disease progression,
BNP is a novel mitochondrial fusion activator, in addition to inducing natriuresis and
dieresis, and reducing RAAS and SNS activity [43,94,95]. BNP binds to its receptor, the
natriuretic peptide receptor-A (NPRA), activates protein kinase G (PKG), and then stimu-
lates signal transducer and activator of transcription 3 (STAT3) by phosphorylation [95].
Phosphorylated STAT3 binds to the optic atrophy 1 (OPA1) promoter and promotes OPA1-
mediated mitochondrial fusion [95]; this process protects against the cardiac dysfunction
associated with mitochondrial depolarization and ROS production [43,95].

3. Inflammation

It is now well established that oxidative stress links XBP1 to inflammation [1,2,26]. The
overexpression of proinflammatory cytokines may be linked to the pathogenesis of anemia
in patients with heart failure. Inflammation can impact the function of endothelial kidney
cells by causing exposure to a proinflammatory and prothrombotic profile, vasoconstriction,
and capillary obstruction, thus resulting in AKI. Moreover, proinflammatory cytokines
may reduce the production of red blood cells in the bone marrow by damaging red blood
cell precursors and by limiting the expression of erythropoietin receptors; this process
may result in anemia. The reduction of renal oxygen delivery due to the hypoperfusion of
nephrons and low hemoglobin levels may affect aerobic metabolism in cells, thus resulting
in cellular death [96,97]. Hence, oxidative stress can cause cardiorenal tissue inflammation,
a process characterized by the activation of inflammatory cells and high circulating levels
of inflammatory molecules; this process has been proposed as an oxidative stressor in
acute and chronic cardiorenal impairment with advancing age [98–101]. In addition,
proinflammatory and anti-inflammatory cytokines, along with chemokines, released by
the kidneys can reach the circulation, thus leading to the dysfunction of the cardiovascular
system via the main circulation [102].

3.1. NLRP3

Aging-related cardiovascular diseases and renal diseases are often associated with in-
flammasomes; these cytosolic multi-protein complexes, consisting of apoptosis-associated
speck-like protein containing a caspase-associated recruitment domains (ASC), procaspase-1,
inflammasome nucleators such as NLRs, AIM2, and pyrin, are responsible for innate immunity
and involved in almost all cardiorenal diseases [103]. There are many types of inflammasomes;
NLRP3 is the most well-characterized of these inflammasomes and acts as a receptor for
cardiorenal damage, metabolic stress and ROS surveillance [104,105]. In addition, NLRP3
triggers the induction of cleaved caspase-1 which plays a role in pyroptosis and the release of
cytokines belonging to the IL-1β family, primarily IL-1β and IL-18 [26,105]. In the clinical data
of AKI and early-stage CKD, it is evident that the expression of NLRP3 component increases,
indicating that NLRP3 guides the occurrence and prognosis of these diseases [106–108]. On
the contrary, low levels of NLRP3 or caspase-1 were measured in some populations of lu-
pus nephritis, urate nephropathy (UAN), and ESRD patients [109]. The changes in NLRP3
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activation differs also between acute and chronic cardiac injury. Acute cardiac injury, such
as cardiac IRI, is associated with remarkably increasing NLRP3 inflammasomes [110,111],
while low basal activation of NLRP3 inflammosomes contributes to chronic cardiac diseases
progression, including atherosclerosis, hypertensive heart disease, diabetic cardiomyopathy,
and heart failure [111].

In our previous work, we found that NLRP3 was localized to both the mitochondria
and the ER of tubular epithelial cells in the resting state. In addition, we found that the
expression and activity of NLRP3 were elevated during renal IRI and were reduced by the
knockdown of XBP1. Further experimental verification suggested that XBP1s could translo-
cate into the nucleus to enhance NLRP3 gene promoter activity; this induced the increased
clustering of NLRP3 inflammasomes on the mitochondria and the mitochondrial associated
membranes (MAMs), eventually exacerbating caspase-1-dependent mitochondrial damage
and the production of mitochondrial ROS in the kidneys exposed to IRI [26].

3.2. NOX and Nuclear Factor Kappa-B (NF-κB)

The NOX family of proteins represents the chief source of controlled ROS forma-
tion and includes seven isoforms with a broad tissue distribution and activation mecha-
nism, including NOX1, NOX2, NOX3, NOX4, NOX5, and the dual oxidases (Duox1 and
Duox2) [112]. NOX functionality and redox-based signaling play critical physiological and
pathophysiological roles in aging [113]. NF-κB is an important nuclear transcription factor
that plays a key role in all diseases characterized by inflammatory processes.

Recent studies have shown that hearts suffering from pressure overload exhibit in-
creased NOX4 expression and ROS generation, thus resulting in the splicing of XBP1 and
the activation of receptor interacting protein kinase 1 (RIPK1)-related NF-κB signaling
downstream of XBP1s, ultimately leading to cardiomyocyte hypertrophy [7,114]. Corre-
spondingly, XBP1s can also exacerbate lipopolysaccharide (LPS)-associated cardiomyocyte
injury by downregulating the X-linked inhibitor of apoptosis protein (XIAP) and SOD
by activating the NF-κB signaling pathway [115]. In human mesangial cells (HMCs), the
silencing of XBP1 expression amplifies low-density lipoprotein (LDL)-induced inflamma-
tion via feedback based on the increased activity of the IRE1α/IκB kinase (IKK)/NF-κB
pathway [100]. In the vasculature of spontaneously hypertensive rats (SHR), NOX4-related
ROS provoked IRE1α oxidation which then accelerated the activation of XBP1s; this process
improved the survival and proliferation of vascular smooth muscle cells (VSMCs) and
improved the hypertension causing vascular dysfunction [116].

Macrophage-mediated innate and adaptive immune responses have been postulated
as a notable mechanism during the pathogenesis of cardiorenal syndrome. Toll-like re-
ceptors (TLR) 2 and 4 are highly expressed by macrophages and respond to bioactive
molecules secreted into the circulation due to cardiorenal tissue damage, such as the sol-
uble form of biglycan (sBGN) [117,118]. Activated TLRs specifically upregulate XBP1s
via NOX, thus facilitating the activation of NF-κB to elicit the release of proinflamma-
tory cytokines, predominantly in macrophages. Interestingly, a recent study showed that
TLR/NOX2-induced ROS was able to impair the expression and maturation of IL-1β [119];
furthermore, TLR/NOX1/4-induced ROS favors the expression and maturation of IL-1β in
macrophages [120,121].

3.3. Transforming Growth Factor-β (TGF-β) 1

TGF-β1 has been identified as an essential regulator of the cardiorenal fibrotic process
in the aging population [122–124]. After extensive or sustained inflammation, resident
macrophages, myocardial cells, and renal parenchymal cells secrete TGF-β1 [125–127];
this process reduces the production of antioxidants and enhances oxidative stress, there-
upon accentuating fibrosis by stimulating the production of extracellular matrix (ECM),
activating resident populations of fibroblasts, and inducing EMT [128]. Furthermore, TGF-
β1-induced fibrosis is known to primarily depend on TGF-β1/Smad signaling [127,129,130].
Tumor necrosis factor (TNF) receptor-associated protein 1 (TRAP1, also known as heat
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shock protein (HSP75), a member of the HSP90 chaperone family that resides principally
in the mitochondria [131,132], is associated with the TGF-β/Smad signal transduction
pathway [133]. XBP1s acts directly upstream of TRAP1; furthermore, the XBP1s-TRAP1
axis can inhibit the production of TGF-β1, prolong G2/M cell cycle arrest, reduce the
expression of profibrotic factors, and ameliorate the progression of fibrosis [134].

3.4. Vascular Endothelial Growth Factor (VEGF) A

VEGFA is produced by most cells in the body, but is known to be upregulated in
hypoxia. Furthermore, research has shown that VEGFA plays an important role in regener-
ative capacity via vasculogenesis and angiogenesis [135–137]; this requires ROS derived
from NOX (especially NOX2 and NOX4) and gradually declines with age [138,139].

As a transcription factor, XBP1s binds to two regions on the VEGFA promoter and
induces the upregulation of VEGFA in the heart and kidneys [140]. The XBP1s/VEGFA axis
has been proven to be a novel regulatory pathway for vasculogenesis and angiogenesis [141]
and can contribute to the progression of adaptive hypertrophy during heart failure. In
addition, this axis can contribute to chronic inflammation and oxidative stress to induce
diabetic cardiomyopathy [140]. During IRI, there is a reduction in renal VEGFA levels;
however, research has shown that VEGFA is upregulated in both glomeruli (podocytes, en-
dothelial cells, and mesangial cells) and in the tubular compartment during the early stages
of diabetic kidney disease (DKD); in addition, VEGFA promotes subsequent alterations in
vascular remodeling, inflammatory processes, glomerulosclerosis, and tubulointerstitial
fibrosis [140,142–144].

4. SNS and RAAS

SNS influences intrarenal hemodynamics and stimulates RAAS via the juxtaglomerular
apparatus of the kidney. Activation of the RAAS cascade typically commences with the
secretion of prorenin and renin; this process induces pro-fibrotic effects in the kidneys
by binding to the prorenin–renin receptor (PRR) [6,8]. The hypoperfusion of peripheral
tissue in heart failure induces over-activity of SNS, thus resulting in the increased release of
renin from the juxtamedullary apparatus. The synthesis of renin is also stimulated by the
reduction of hydrostatic pressure in the glomerular afferent arterioles and a reduction in the
amount of sodium delivered to the macula densa [7,145]. Subsequently, angiotensinogen
(AGT) is converted into the decapeptide angiotensin I (AT1) by renin or the chymase
enzyme. Then, AT1 is cleaved by angiotensin converting enzyme (ACE) to generate
angiotensin II (AT2); this can lead to renal efferent arteriolar vasoconstriction and the
formation of aldosterone, which increases tubular sodium reabsorption in the kidney and
the effective circulating plasma volume by binding to either angiotensin II type 1 receptor
(AT1R) or angiotensin II type 2 receptor (AT2R) [14]. ACE2, a homologue of ACE, acts on
AT1 and AT2 to produce a 9-amino acid peptide known as angiotensin 1-9 (Ang1-9) and
a 7-amino acid peptide known as angiotensin 1-7 (Ang1-7), which can protect hearts and
kidneys against damage, fibrosis and remodeling by binding to angiotensin receptor type
2 or the endogenous orphan Mas receptor (MasR) [146]. Aged kidneys possess a lower
abundance of cells of renin lineage and reduced responsiveness to RAAS inhibition [147].
One of the consequences of the RAAS system is an increase in the generation of ROS via
NOX and increased protein aggregation, thus assisting the development of cardiorenal
syndrome [8,14,148].

The XBP1s-HRD1-NRF2 axis exerts functional dichotomy in the cardiorenal system.
When the ubiquitination/degradation functionality of the XBP1s-HRD1 axis is inhibited,
NRF2 is aberrantly expressed and retained in the nucleus, thus resulting in the dys-
functional expression of RAAS genes, including the upregulation of AGT/ACE genes
and the downregulation of ACE2/MasR genes; these effects can aggravate cardiorenal
diseases [8,149]. XBP1s can also directly manipulate the expression of some genes that
encode components of the RAAS. In human umbilical vein endothelial cells (HUVECs)
treated with arsenite, XBP1s was responsible for the accumulation of hypoxia-inducible
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factor 1α (HIF1α) and the assembly of an XBP1s/HIF1α transcriptional complex, which
occupies the responsive elements of the ACE/AT2/AT1R axis within the promoter region
of the RAAS gene. This process attracts RNA polymerase II and drives transcription, thus
causing the occurrence of oxidative stress and proinflammatory response by the activation
of RAAS in several cardiovascular diseases, including hypertension, atherosclerosis, and
microvascular abnormalities [6,7].

5. The Akt Pathway

Akt, also known as protein kinase B (PKB), is a crucial signaling protein that is
strongly activated by cellular damage and governs cellular survival, proliferation, and
senescence [24,150–153]. Many studies have demonstrated that Akt plays a significant
role in protecting the aging cardiorenal system from oxidative stress [24,150–152]. The
78 kDa glucose-regulated protein (GRP78, also known as BiP/HSPA5), is a master protein
chaperone located in the ER and modulates homeostasis in the ER [154]. As myocardial cells
experience IRI, the XBP1s signaling branch and its downstream target GRP78 are activated
in a highly robust manner. Subsequently, a fraction of GRP78 is translocated to the cell
surface to stimulate the Akt-dependent suppression of ROS accumulation by interacting
with phosphatidylinositol 3-kinase (PI3K) [150]. Previous DN research discovered that
the overexpression of XBP1 in glomerular mesangial cells (MCs) exposed to high glucose
(HG) could activate the phosphatase and tensin homolog deleted on chromosome ten
(PTEN)/Akt signaling pathway, thus mitigating oxidative stress caused by HG or MCs
apoptosis [24].

6. Myo-Inositol Oxygenase (MIOX)

MIOX, a cytosolic enzyme expressed predominantly in the renal proximal kidney
tubules, catalyzes the conversion of myo-inositol to d-glucuronic acid and activates the
glucuronate-xylulose pathway, which increases the ROS generation and can impose ox-
idative stress. It has been noted to be associated with tubulopathy in the context of DKD
and AKI [23,155]. Sharma et al. reported that an increased nuclear translocation of XBP1s
could bind MIOX promoter in the tubular compartment of diabetic mice, prompting the
excessiveness of ROS via MIOX-mediated increased oxidant stress, which eventuated
deleterious tubulointerstitial effects [23].

7. XBP1u

XBP1u, translated from XBP1, is an unspliced mRNA isoform and acts as a regulator
with the same N-terminal and internal DNA binding domains as XBP1s. XBP1u consists
of a basic region and a leucine zipper region [156]; in addition, the C-terminus of XBP1u
contains a nuclear exclusion signal and lacks the transcription activation domain that is
evident in XBP1s [157].

Most cardiorenal studies of XBP1u have focused on blood vessels [158–160]. In the
aging cardiorenal system, pathological states involving disturbed flow can cause ligand-
independent activation of the kinase insert domain receptor (KDR), which then upregulates
XBP1u and histone deacetylase 3 (HDAC3) in endothelial cells [160]. Furthermore, because
XBP1u can counteract XBP1s by sequestering XBP1s for proteasomal degradation, the over-
expression of XBP1u has been shown to protect HDAC3 from the transcriptional repression
caused by XBP1s [158,161]. XBP1u and HDAC3 promote the formation of the mammalian
target of rapamycin complex 2 (mTORC2)-Akt1-XBP1u-HDAC3 complex and increases
mTORC2-dependent Akt1 phosphorylation, which subsequently enhances the stability of
NRF2 and NRF2-mediated HO-1 expression and reduces oxidative stress in endothelial
cells during atherosclerosis and the formation of neointima post-injury [158,160].

8. Conclusions and Future Perspectives

Existing literature indicates that XBP1 plays a critical role in the survival of senescent
cells by coordinating the responses of the cytoplasm, ER and mitochondria to cellular stress,
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and alleviates the risk of age-related acute and chronic diseases [162]. However, there is
a growing body of evidence to support a relationship between high expression levels of
XBP1 and the induction of oxidative stress [8,22,26]; this relationship is indispensable for
normal cellular activity but is also a causative factor of aging. The mechanisms responsible
for the effect of XBP1 on cellular sensitivity to oxidative stress and aging have yet to be
elucidated. Research has clearly shown that the heterogeneous pathways mediated by XBP1
are interrelated in the cardiorenal system. Furthermore, XBP1 has the ability to connect
mitochondria and cytoplasmic oxidative stress signals via MAMs; these signals can exert
direct influence on inflammation, fibrosis, and apoptosis. On the other hand, almost all
adverse changes in XBP1 expression can cause detrimental effects in cardiorenal tissues via
disturbances in the pro-/antioxidant balance (Figure 4). XBP1 is not the only RNA targeted
by the activity of UPR. Generally, acute injury is always accompanied by short-term and
extensive ER stress, and overexpression of XBP1 may have a greater effect on promoting
the production of toxic ROS. However, prolonged ER stress attenuates the expression of
XBP1, and the antioxidant ability of XBP1 gradually manifests.
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system. The ordinary arrow indicates the promotion; the T-shaped arrow indicates suppression.
Adobe Illustrator (version 2021 25.0) was used for the production of this figure.

Given the age-dependent decline of antioxidants and the increased possibility of
oxidative stress in the heart and kidneys, it is possible that the regulation of these XBP1
pathways may effectively protect the function of aging organs from oxidative damage by
preserving the ER, mitochondria, RAAS, and immune homeostasis. Current treatment
strategies for cardiorenal syndrome, particularly chronic diseases, are able to alleviate
symptoms but have little effect on the inherent course of disease. Further exploration of
the XBP1 correlative mechanisms described herein should provide valuable information
for the development of novel therapeutic approaches that could improve the function of
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the aging cardiorenal system and guide clinical decisions relating to the management of
cardiorenal syndrome.
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