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Abstract: Chronic liver disease (CLD) affects a significant portion of the global population, leading
to a substantial number of deaths each year. Distinct forms like non-alcoholic fatty liver disease
(NAFLD) and alcoholic fatty liver disease (ALD), though they have different etiologies, highlight
shared pathologies rooted in oxidative stress. Central to liver metabolism, mitochondria are essential
for ATP production, gluconeogenesis, fatty acid oxidation, and heme synthesis. However, in diseases
like NAFLD, ALD, and liver fibrosis, mitochondrial function is compromised by inflammatory
cytokines, hepatotoxins, and metabolic irregularities. This dysfunction, especially electron leakage,
exacerbates the production of reactive oxygen species (ROS), augmenting liver damage. Amidst
this, nuclear factor erythroid 2-related factor 2 (NRF2) emerges as a cellular protector. It not only
counters oxidative stress by regulating antioxidant genes but also maintains mitochondrial health by
overseeing autophagy and biogenesis. The synergy between NRF2 modulation and mitochondrial
function introduces new therapeutic potentials for CLD, focusing on preserving mitochondrial
integrity against oxidative threats. This review delves into the intricate role of oxidative stress in
CLD, shedding light on innovative strategies for its prevention and treatment, especially through the
modulation of the NRF2 and mitochondrial pathways.
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1. Introduction

Chronic liver diseases (CLDs), which encompass a range of conditions, are a major
health burden affecting millions of people worldwide. These include NAFLD, nonalcoholic
steatohepatitis (NASH), ALD, cirrhosis, and hepatocellular carcinoma (HCC) [1]. These
diseases share the common features of progressive ROS production, oxidative stress, liver
deterioration, inflammation, and fat accumulation within the liver, ultimately leading to
compromised liver function and potential long-term complications [2,3]. The impact of
CLDs on public health is substantial, with an estimated 1.5 billion people affected glob-
ally [4]. Tragically, these diseases contribute to approximately 2 million deaths each year [4].
Within the realm of CLD, NAFLD stands out because of its alarming prevalence and strong
correlation with conditions such as metabolic syndrome, oxidative stress, mitochondrial
dysfunction, and obesity [5,6]. Approximately 25% of the global population is affected by
NAFLD [7].

These diseases are characterized by their intricate pathogeneses, highlighting the need
for a comprehensive understanding of the mechanisms underlying their pathophysiologies.
Interestingly, their progression provides crucial insights into the development of targeted
interventions. The development of NAFLD is initiated via the accumulation of excess
fat within hepatocytes, a state known as simple steatosis [8]; this accumulation results
from an imbalance between the influx and clearance of triglycerides [9]. Insulin resistance
and increased lipogenesis contribute to enhanced lipid accumulation [10]. Dysfunctional
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adipose tissue leads to an increased release of free fatty acids, contributing to hepatic fat
accumulation [11]. As simple steatosis progresses to NASH, cellular stress and inflam-
mation intensify [12]. Concurrently, adipokines and pro-inflammatory cytokines drive
inflammation and oxidative stress, further disrupting liver homeostasis.

In contrast, ALD is primarily caused by chronic excessive alcohol consumption, re-
sulting in a continuum of liver conditions that may evolve into cirrhosis and HCC [13].
The initial stage of ALD is liver steatosis driven by alcohol-induced metabolic changes.
Hepatocytes metabolize ethanol through various enzymatic pathways, and alcohol dehy-
drogenase (ADH) and cytochrome P450 2E1 (CYP2E1) convert ethanol into acetaldehyde, a
highly toxic substance that damages liver cells and impairs DNA [14]. Moreover, ethanol
metabolism generates ROS, triggering oxidative stress that leads to cellular damage [15],
protein and DNA modifications [16], and lipid peroxidation [17].

Although NAFLD and ALD have distinct triggers, they share pivotal mechanisms
that accelerate liver disease [18]. Both these conditions involve hepatocellular injury and
inflammation. Inflammatory cytokines contribute to the progression of both NAFLD and
ALD by fostering a pro-inflammatory microenvironment that fuels disease progression.
Cellular stress is amplified as NAFLD and ALD progress, setting the stage for subsequent
stages. Moreover, the progression of NAFLD and ALD is associated with an increased
risk of cirrhosis [19]. Cirrhosis is the end-stage manifestation of both conditions. Con-
tinued inflammation, oxidative stress, and fibrosis drive the transformation of healthy
liver tissue into fibrous scar tissue, which compromises liver function and culminates in
cirrhosis [20,21]. Cirrhosis, often a result of long-standing NAFLD or ALD, creates an
environment conducive to the development of HCC. Chronic inflammation and cellular
stress drive genetic and epigenetic changes, promoting the transition of hepatocytes toward
malignant growth [22].

While CLDs have distinct etiologies, they share common mechanistic pathways, partic-
ularly the pivotal role of oxidative stress [15,23,24]. The imbalance between the production
of ROS and antioxidant defense serves as a unifying factor that accelerates the progression
of CLD. Oxidative-stress-induced cellular damage, lipid peroxidation, and mitochondrial
dysfunction contribute to inflammation, cellular stress, and hepatocellular injury, ultimately
leading to cirrhosis and the development of HCC [25–27]. In this review, we summarize the
current knowledge about the molecular mechanisms underlying oxidative stress in CLDs
and identify innovative approaches to prevent, manage, and treat them.

2. Oxidative Stress and Antioxidant Defense Mechanisms in CLDs
2.1. Definition of Oxidative Stress

Oxidative stress is a crucial concept in understanding cellular and systemic health.
At its core, it denotes a situation wherein there is a significant imbalance in cell antiox-
idative homeostasis. This imbalance does not simply emerge spontaneously; it is often
the consequence of either a surge in the production of ROS or a decline in the body’s
capacity to neutralize these reactive molecules effectively [3,28–30]. What makes ROS
particularly intriguing, yet hazardous, is their high reactivity. The term “reactive oxygen
species” encompasses a range of molecules, including free radicals like superoxide anions
(O2
•−) and hydroxyl radicals (•OH), as well as non-radical species like hydrogen peroxide

(H2O2) [31]. Each of these molecules has a propensity to engage in chemical reactions with
various cellular components, potentially disrupting their normal function. For instance,
they can damage DNA, proteins, and lipids, all of which are essential for cell function and
integrity.

2.2. The Formation of Reactive Oxygen Species

Free radicals and reactive oxygen species are inherent outcomes of various biological
mechanisms. They emerge as natural byproducts of cellular metabolism, chiefly arising
from processes like mitochondrial respiration, immune responses, and enzymatic reac-
tions [32].
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For instance, during oxidative phosphorylation, a process in which cells produce
energy in the mitochondria, electrons sometimes leak from the electron transport chain,
resulting in the incomplete reduction of molecular oxygen (O2) to produce the superoxide
anion (O2

•−), a primary ROS [33]. The rate and extent of electron leakage can be influenced
by various factors, including mitochondrial membrane potential, ambient oxygen concen-
tration, and the presence of certain electron donors or acceptors [34,35]. A more detailed
role of mitochondria in the formation of ROS will be discussed later in the review.

In addition to these sources, some specific enzymes play a role in the production
of ROS. Enzymes such as NADPH oxidases, xanthine oxidase, and cytochrome P450
often yield ROS as byproducts during typical metabolic reactions [36]. These enzymes
facilitate electron transfers to molecular oxygen, subsequently producing superoxide anions
(O2
•−) or hydrogen peroxide (H2O2) [36]. Moreover, during inflammation or when the

immune system is active against pathogens, certain phagocytic cells, like neutrophils and
macrophages, ramp up the production of ROS. This is primarily a defense strategy wherein
these cells activate NADPH oxidase to produce vast quantities of superoxide anions (O2

•−)
aimed at neutralizing or killing the invading microorganisms [37]. Further expanding
on cellular metabolism, ROS are also products of the metabolic breakdown of various
compounds. Molecules such as fatty acids, amino acids, and sugars, when metabolized,
often yield ROS like hydrogen peroxide (H2O2). These reactions are frequently catalyzed
by a range of enzymes, including specific oxidases [38].

2.3. Antioxidant Defense Mechanism

It is important to note that while free radicals and ROS are normal byproducts of
cellular metabolism, their excessive and uncontrolled production can lead to oxidative
stress, which can damage cellular components by oxidizing lipids, disrupting protein
structure, and causing DNA strand breaks [39], thereby contributing to impaired cellular
function, tissue inflammation, and the development or progression of CLD [40]. The
body has natural defense mechanisms, including antioxidant enzymes and non-enzymatic
antioxidants, to neutralize and detoxify ROS and maintain the redox balance.

However, oxidative stress occurs when the production of ROS overwhelms the capacity
of antioxidants to neutralize them. Antioxidants, both enzymatic and non-enzymatic,
scavenge ROS and prevent oxidative damage to biomolecules, including lipids, proteins,
and DNA [41].

2.3.1. Enzymatic Antioxidants

Enzymatic antioxidants comprise a set of enzymes vital for counteracting ROS and
shielding cells from the detrimental effects of oxidative stress. These enzymes aid in the
transformation of harmful ROS into molecules that are either less reactive or entirely benign.

Among them, superoxide dismutase (SOD) serves as one of the cornerstones of this
protective mechanism. This enzyme specifically targets superoxide anions (O2

•−) convert-
ing them into the less harmful hydrogen peroxide (H2O2) and benign molecular oxygen
(O2) [42]. It presents itself in three diverse isoforms, copper–zinc SOD (CuZnSOD), man-
ganese SOD (MnSOD), and extracellular SOD (EcSOD). Each isoform has evolved to
function optimally in different cellular environments, ensuring that ROS are managed
efficiently across various cellular compartments [43].

Another pivotal enzyme is catalase, which is primarily found in peroxisomes. Its chief
function involves decomposing hydrogen peroxide (H2O2) into water (H2O) and molecular
oxygen (O2) [44]. By doing so, catalase acts as a defense mechanism, deterring the buildup
of H2O2 which, if left unchecked, could result in the creation of the immensely reactive
hydroxyl radicals (•OH), especially under the conditions of CLD [45,46].

The glutathione peroxidase (GPx) family of enzymes also assumes a prominent role,
particularly in the context of chronic liver diseases. Utilizing stores of reduced glutathione
(GSH), these enzymes neutralize the threats posed by hydrogen peroxide and organic
hydroperoxides, transforming them into corresponding alcohols [47]. Each GPx isoform
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displays unique cellular localization and substrate affinities, positioning them aptly to
counter distinct oxidative threats in specific tissues or cellular regions [48].

Furthermore, glutathione reductase is instrumental in sustaining the reduced state of
GSH, an indispensable cellular antioxidant [49]. This enzyme is responsible for reviving
GSH from its oxidized variant (GSSG), guaranteeing a steady reservoir of GSH to support
diverse antioxidant activities [49].

Lastly, thioredoxin reductase is vital for re-establishing the reduced form of thiore-
doxin, playing an integral part in upholding the cellular redox equilibrium [50]. By restoring
reduced thioredoxin, this enzyme fortifies cellular defenses against oxidative duress and
bolsters a range of redox-reliant processes [51].

2.3.2. Non-Enzymatic Antioxidants

Non-enzymatic antioxidants are another group of molecules that help neutralize ROS
and protect cells from oxidative damage. Unlike enzymatic antioxidants, these molecules
do not rely on specific enzymes to exert their protective effects. Instead, they directly
scavenge free radicals and regenerate other antioxidant molecules, safeguarding the cell’s
integrity and function.

GSH, a tripeptide comprising cysteine, glutamic acid, and glycine, stands out as a
predominant intracellular antioxidant [52]. It is one of the most abundant antioxidants
in cells and plays a crucial role in maintaining cellular redox balance. GSH acts as a
direct scavenger of ROS, particularly hydrogen peroxide (H2O2), and can regenerate other
antioxidants, such as vitamins C and E [52].

Vitamin C, also known as ascorbic acid, is a water-soluble antioxidant crucial for
neutralizing ROS and protecting against oxidative damage. It donates electrons, regenerates
vitamin E, and enhances the antioxidant capacity of other compounds [53]. On the other
hand, vitamin E, which encompasses both tocopherols and tocotrienols, is fat-soluble
and intercepts lipid-based free radicals, thus preventing lipid peroxidation in cellular
membranes [54]. Vitamin E also exhibits anti-inflammatory properties and protects the
liver against oxidative-stress-induced damage [55].

Another group of non-enzymatic antioxidants, carotenoids, are pigment molecules
which give many fruits and vegetables their vibrant colors and include well-known variants
such as beta-carotene, lycopene, lutein, and zeaxanthin [56]. Carotenoids possess antioxi-
dant properties and scavenge ROS, particularly singlet oxygen [56]. In the context of CLD,
they are instrumental in shielding cells, tissues, and organs from oxidative harm [57,58].

Flavonoids are a diverse group of polyphenolic compounds found in fruits, vegetables,
teas, and cocoa [59]. They possess antioxidant and anti-inflammatory properties, and their
chemical structure allows them to scavenge several types of free radicals. Beyond their
role as free radical scavengers, flavonoids can also modulate cellular signaling pathways,
regulate enzyme activity, and influence gene expression [60]. Recognized for their potential
health advantages, flavonoids have been linked to protective effects against oxidative
stress-related ailments, including CLD.

Lastly, alpha-lipoic acid is a sulfur-containing antioxidant that functions in both
water- and lipid-based environments [61]. It acts as a free radical scavenger and can
regenerate other antioxidants such as vitamins C and E. Alpha-lipoic acid also plays a role
in cellular energy metabolism and has been investigated for its potential therapeutic effects
in CLD [62,63].

2.4. Oxidative Stress Biomarkers in CLD

The evaluation of oxidative stress in CLD is important for understanding disease
progression, monitoring treatment response, predicting prognosis, identifying therapeutic
targets, and providing individualized care. However, measuring oxidative stress in the
body is challenging owing to the transient nature and rapid reactivity of ROS. Biomarkers of
oxidative stress, such as lipid peroxidation products, protein carbonyls, and DNA oxidation
products, can be used to assess the extent of oxidative damage.
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Among many biomarkers, malondialdehyde (MDA) stands out. This reactive alde-
hyde, produced via the peroxidation of polyunsaturated fatty acids, is a key marker of
lipid peroxidation [64]. Recognized as a biomarker of lipid peroxidation, MDA serves as a
prominent indicator of oxidative stress. Elevated MDA levels signify heightened oxidative
damage to cellular lipids and membranes [64]. Following the trail of oxidative damage,
8-Hydroxy-2′-deoxyguanosine (8-OHdG) emerges as another significant marker. Origi-
nating from DNA oxidation, 8-OHdG acts as an indicator of oxidative DNA damage [65].
Increased levels of 8-OHdG in urine, blood, and liver tissues indicate DNA damage caused
by ROS [65,66].

Carbonylation occurs when proteins are oxidatively modified, resulting in the for-
mation of carbonyl groups [67]. The protein carbonyl content serves as an indicator of
oxidative damage to proteins. Elevated levels of protein carbonyls reflect the oxidative
stress burden on proteins in CLDs [68].

On a cellular level, glutathione, a vital intracellular antioxidant, plays a pivotal role
in neutralizing ROS [69]. Monitoring the balance between reduced GSH and oxidized
glutathione disulfide (GSSG) can provide insights into the redox status of cells. A dwindling
GSH/GSSG ratio is a warning of intensifying oxidative stress and an ailing antioxidant
defense in CLD [70].

The activity of SOD serves as an indirect barometer of antioxidant capacity against
superoxide radicals. In the realm of CLD, diminishing SOD activity suggests an eroding
defense mechanism against oxidative onslaughts [71].

Moreover, the total antioxidant capacity (TAC) offers a broader perspective. Represent-
ing the cumulative antioxidant power of biological samples, including plasma and liver
tissues, the TAC evaluates the efficacy of both enzymatic and non-enzymatic antioxidants
at quelling free radicals. A declining TAC level underscores a mounting discord between
pro-oxidants and antioxidants [72].

Lastly, advanced oxidation protein products (AOPPs) further highlight the intricacies
of oxidative stress. Emerging from protein oxidation, AOPPs lead to the birth of advanced
glycation end products (AGEs) [73]. AOPP levels increase in response to oxidative stress
and can serve as markers of protein damage and inflammation in CLDs [74].

The interpretation and clinical utility of oxidative stress biomarkers should be con-
sidered in the contexts of specific liver diseases. These biomarkers can provide valuable
insights into the oxidative stress burden, disease progression, and potential therapeutic
interventions targeting oxidative stress in CLDs. However, a comprehensive evaluation
of multiple biomarkers is often necessary to accurately assess the overall oxidative stress
status.

3. Oxidative Stress and NRF2 Signaling Pathways in Chronic Liver Disease
3.1. The NRF2-KEAP1 Pathway as a Key Regulator of Oxidative Stress in Liver Health

NRF2 is a critical transcription factor that plays a pivotal role in cellular defense
against oxidative stress resulting from a high level of ROS [75]. NRF2 is involved in various
cellular functions, including detoxification and the regulation of cell metabolism [76]. It has
particular relevance considering that oxidative stress is a leading cause of liver disease [77].

Under normal physiological conditions, NRF2 is tightly regulated by its interaction
with Kelch-like ECH-associated protein 1 (KEAP1), a primary inhibitor of NRF2. KEAP1
acts as a sensor for redox reactions, and together with CULLIN3, forms an E3 ubiquitin
ligase complex responsible for targeting NRF2 for ubiquitination and subsequent degrada-
tion. This tight regulation ensures that NRF2 activity is precisely controlled, preventing the
uncontrolled activation of cytoprotective genes [78] (Figure 1).
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Figure 1. NRF2 regulation and NRF2-mitochondrial interplay in chronic liver disease. In chronic liver
disease, elevated levels of ROS lead to the oxidation of membranes, particularly polyunsaturated
fatty acids (PUFAs), culminating in lipid peroxidation. Subsequently, lipid peroxides are converted
into aldehydes, such as malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), which further
inflict damage on mitochondria and DNA. This cycle results in an accumulation of dysfunctional
mitochondria and DNA mutation. Normally, NRF2 is complexed with Keap1-Cul3, targeting it for
proteasomal degradation. NRF2 activators (oxidative stress/NRF2-activator drugs) modify KEAP1,
stabilizing NRF2 and facilitating its translocation to the nucleus. In the nucleus, NRF2 binds to the
antioxidant response element (ARE), initiating the transcription of proteins that reduce the levels of
ROS, inhibit lipid peroxidation, neutralize lipid peroxides and aldehydes, and bolster mitochondrial
biogenesis, activity, and turnover. This cascade also enhances the expression of proteins like CD36,
CPT1A, ACAD, and CACT, promoting beta-oxidation and mitophagy. Mitochondria produce the
protein NAMPT, which further activates NRF2, establishing a feedback loop between NRF2 and
mitochondrial function. All graphical figures are created by using BioRender (https://biorender.com;
accessed on 27 September 2023).

Notably, critical cysteine residues on KEAP1 are modified in response to oxidative
stress or increased ROS, leading to the disruption of the KEAP1–NRF2 complex; addition-
ally, certain chemicals, known as NRF2 activators, can also modify this complex, illustrating
the diverse regulatory mechanisms in the KEAP1–NRF2 pathway [79,80]. Consequently,
NRF2 is stabilized and accumulates within cells. The accumulated NRF2 translocates to
the nucleus, where it forms a heterodimer with a small musculoaponeurotic fibrosarcoma
oncogene homolog (sMAF). The NRF2–sMAF complex binds to antioxidant response el-
ements (AREs) within the promoter regions of target genes, initiating their transcription.
The transcriptional program orchestrated by NRF2 activation encompasses a broad range
of cytoprotective genes, including those encoding phase II detoxification enzymes, such as
NAD(P)H quinone oxidoreductase 1 (NQO1), glutathione S-transferases (GSTs), and heme
oxygenase-1 (HO-1), which play crucial roles in neutralizing toxic compounds and reactive
metabolites [81]. This regulatory network encompasses antioxidant metabolism, lipid
metabolism, protein degradation, and inflammation regulation and reduces the activation
of hepatic stellate cells (HSCs), thereby ensuring the maintenance of cellular homeostasis

https://biorender.com
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and resilience against diverse stressors and thus contributing to liver health and protection
against oxidative damage [82].

3.2. The NRF2-Mediated Regulation of Lipid Metabolism in CLDs

In addition to NRF2’s primary function in regulating antioxidant pathways, it has also
been shown to impact lipid metabolism, making it a topic of growing interest, especially in
the context of CLDs [83,84].

The dysregulation of lipid metabolism plays a significant role in CLDs such as NAFLD
and NASH. The activation of NRF2 because of oxidative stress or corresponding activators
has emerged as a promising therapeutic approach to addressing lipid metabolism abnormal-
ities and mitigating disease progression in chronic liver conditions [85]. It exerts its effects
on lipid metabolism via several interconnected mechanisms. A notable study emphasized
Nrf2’s regulatory influence on hepatic lipid accumulation induced via a high-fat diet. It
was observed that an Nrf2 deficiency augments lipogenesis primarily through enhancing
the activity of sterol regulatory element-binding protein-1c (SREBP-1c), a fundamental
molecule in lipid synthesis. Moreover, the absence of Nrf2 diminishes autophagic flux and
hinders the fusion of autophagosomes with lysosomes, causing a reduction in lipolysis in
the liver and leading to lipid accumulation [84]. Conversely, when examining the effects of
a methionine- and choline-deficient diet, which typically induces fatty liver, it was found
that amplifying Nrf2 expression in mice counteracted the fatty liver condition, suggesting
Nrf2’s protective or remedial role against fatty liver disease under particular dietary circum-
stances. Additionally, in high-fat-diet-resultant liver diseases, NRF2 activation prevented
the adverse effects of the diet, including increased body weight, adipose mass, and hepatic
lipid accumulation in wild-type mice. In cells undergoing adipogenesis, the activation of
NRF2 inhibited lipid accumulation, and its influence led to a marked downregulation of
the genes responsible for fatty acid synthesis in the liver [86].

Another significant effect of NRF2 activation is the promotion of β-oxidation, the
process through which fatty acids are broken down in the mitochondria to produce en-
ergy [87]. NRF2 induces the expression of genes associated with fatty acid transport, such
as carnitine palmitoyl transferase 1A (CPT1A) and acyl-CoA dehydrogenases (ACADs),
thereby facilitating the transport of fatty acids into the mitochondria for β-oxidation [88].
Furthermore, NRF2 enhances the expression of key enzymes in the β-oxidation pathway,
such as carnitine acylcarnitine translocase (CACT), which results in an increased break-
down of triglycerides into fatty acids and glycerol. This heightened β-oxidation helps
metabolize accumulated lipids and reduces the hepatic lipid content, thus ameliorating
hepatic steatosis [89]. Moreover, NRF2 activation plays a crucial role in reducing oxidative
stress and is strongly associated with the pathogeneses of CLDs. Oxidative stress leads
to lipid peroxidation, which causes cellular damage and impairs lipid metabolism [90].
By mitigating oxidative stress, NRF2 protects hepatocytes from lipid-induced injury and
maintains lipid homeostasis.

3.3. NRF2-Mediated Protection against Lipid Peroxidation

NRF2 plays a crucial role in regulating lipid peroxidation and protecting cells from its
detrimental effects. Lipid peroxidation, a result of ROS action and oxidative stress, plays a
pivotal role in driving pathological processes in the liver and contributes to inflammation,
fibrosis, and cellular damage [91]. The excessive accumulation of ROS within cells initiates
a series of chemical reactions that lead to the oxidation of the polyunsaturated fatty acids
(PUFAs) present in lipid molecules. PUFAs with multiple double bonds are particularly
susceptible to oxidation [92]. During lipid peroxidation, ROS, such as the hydroxyl radical
(OH•), abstract a hydrogen atom from neighboring PUFAs in lipid molecules, leading to the
formation of highly reactive lipid radicals (L•) and water (H2O). The lipid radicals (L•) then
react with molecular oxygen (O2) to generate lipid peroxyl radicals (LOO•). This initiates a
chain reaction that propagates lipid peroxidation throughout the cellular membranes [93].
As lipid peroxidation progresses, reactive aldehydes, such as MDA and 4-hydroxynonenal
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(4-HNE), are produced [64]. These highly reactive aldehydes interact with cellular macro-
molecules, including nucleic acids [94], and other lipids [95]. The accumulation of lipid
peroxidation products intensifies cellular damage and perpetuates oxidative stress, further
contributing to the onset of CLDs such as NAFLD, NASH, and ALD [95–97]. However,
amidst this oxidative onslaught, NRF2 strengthens cellular defenses, particularly by up-
regulating enzymes such as glutathione S-transferases (GSTs). These crucial enzymes
attach GSH to the products of lipid peroxidation, mitigating their damaging effects and
emphasizing NRF2’s pivotal role in cellular protection [98] (Figure 1).

In the absence of adequate NRF2 response, lipid peroxidation can induce inflammation
via the NF-κB pathway [99], a key regulator of inflammation. Reactive aldehydes from
lipid peroxidation can activate NF-κB, a central regulator of inflammation [100]. Under
such circumstances, NRF2 serves as a counteractive force. NRF2 not only upregulates the
expression of antioxidant enzymes like HO-1 and NQO1 but also plays a role in maintaining
redox homeostasis through the regulation of glutathione synthesis and recycling, further
helping to detoxify reactive aldehydes and other byproducts of oxidative stress [101]. This
robust antioxidant response orchestrated by NRF2 effectively reduces the pro-inflammatory
response instigated by NF-κB [83,102].

Continued inflammation from lipid-peroxidation-derived aldehydes significantly con-
tributes to the activation of HSCs, a defining event in fibrosis [103]. Inflammatory signals
within the liver microenvironment stimulate the transition of quiescent HSCs into an acti-
vated myofibroblast-like phenotype. Activated HSCs become the main source of excess
ECM proteins like collagen and fibronectin, leading to ECM accumulation and remodeling.
This disrupts the liver’s structure and impairs its function. These HSCs also intensify
inflammation by producing proinflammatory substances [104]. The ongoing inflammation
and fibrogenesis form a cycle that exacerbates liver damage and fibrosis. Persistent liver
injury can advance fibrosis to cirrhosis, further affecting liver function and raising the risk
of complications like HCC [105]. NRF2’s protective role in this scenario is pivotal. Apart
from promoting the elimination of reactive lipid derivatives, NRF2 activation also down-
regulates profibrogenic genes in HSCs, thereby reducing their activation potential [106].
Together, these NRF2-mediated responses not only curb the immediate threats posed by
lipid peroxidation but also play a more long-term role in safeguarding liver health and
preventing fibrotic changes [107].

3.4. The Interplay of NRF2 and NF-κB in the Modulation of Inflammation via Kupffer Cells

In chronic liver disease, Kupffer cells, the resident macrophages of the liver, play a
pivotal role in inflammation. The activation and subsequent inflammation of Kupffer cells
can be initiated via various stimuli, such as hepatotoxic agents, damaged liver cells, or
pathogens [108]. Within a Kupffer cell, NRF2 acts as a key modulator of the inflammatory
response and contributes to cellular homeostasis and tissue integrity in mitigating liver
inflammation [109,110].

NRF2 regulates inflammation through multiple mechanisms. It promotes the ex-
pression of genes encoding antioxidant enzymes, including HO-1, SOD, and GPx. These
enzymes play crucial roles in neutralizing ROS and reducing oxidative stress, which are
known to trigger inflammation [111,112]. Additionally, NRF2 promotes the production of
anti-inflammatory mediators that help suppress inflammatory responses. One such media-
tor is interleukin-10 (IL-10), an immunomodulatory cytokine that inhibits the production
of pro-inflammatory cytokines. NRF2 stimulates the expression of IL-10 by binding to
AREs in the IL-10 promoter. IL-10 acts as a negative feedback regulator that attenuates the
inflammatory cascade and promotes tissue resolution [113,114].

In Kupffer cells, NRF2 and NF-κB represent two pivotal transcription factors that
play contrasting roles in the regulation of inflammation. NRF2 curtails the inflammatory
effects of NF-κB by impeding its signaling pathway [115,116]. NRF2 interferes with NF-κB
activation through multiple mechanisms. It also competes with NF-κB for coactivators
required for gene transcription that enhance the activity of transcription factors by fa-
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cilitating their interactions with the transcriptional machinery. By effectively competing
with NF-κB for these coactivators, NRF2 limits their availability, resulting in reduced
NF-κB transcriptional activity and dampening the NF-κB-dependent expression of pro-
inflammatory genes [117–119]. Thus, NRF2 attenuates the pro-inflammatory response by
reducing NF-κB-mediated gene expression.

Another mechanism through which NRF2 inhibits NF-κB signaling involves the regu-
lation of IκB (inhibitor of NF-κB) proteins. IκB proteins play a crucial role in controlling
NF-κB activation. They sequester NF-κB in the cytoplasm, thereby preventing its translo-
cation to the nucleus and inhibiting its transcription [115,120]. NRF2 activation induces
IκB proteins, including IκBα, leading to the enhanced retention of NF-κB in the cytoplasm
and restricting its nuclear translocation, thereby reducing pro-inflammatory signaling [120]
(Figure 2).
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Figure 2. The interplay of NRF2 in Kupffer cells and HSCs during the progression of chronic liver
disease. In the context of CLD, elevated levels of ROS play a pivotal role in amplifying inflammation.
An increase in ROS accelerates the degradation of IκB, a natural inhibitor of NF-κB. Therefore,
more NF-κB translocates to the nucleus, fostering the production of pro-inflammatory and growth
factors such as IL-1B, IL-6, and TNF-a. Kupffer cells then secrete these cytokines, among which
growth factors are recognized by hepatic stellate cells (HSC) via receptors. This recognition process
subsequently triggers the formation of SMAD complexes that migrate to the nucleus, promoting
fibrotic responses. NRF2 has a dual role in both inhibiting the pro-inflammatory NF-κB signaling
pathway and modulating HSC activation. NRF2 prevents the degradation of IκB and curtails the
translocation of NF-κB. This transcription factor further dampens the inflammatory landscape by
inhibiting the release of pro-inflammatory cytokines and bolstering the formation of IL-10, an anti-
inflammatory cytokine. Specifically, within HSCs, NRF2 thwarts the formation of fibrosis-promoting
SMAD complexes and diminishes the expression of fibrogenic mediators like PDGF, CTGF, and
ET-1. All graphical figures are created by using BioRender (https://biorender.com; accessed on 27
September 2023).

Furthermore, the degradation of IκB proteins is tightly regulated and critical for NF-κB
activation [121]. Cellular exposure to pro-inflammatory stimuli causes IκB phosphorylation,
followed by ubiquitination and proteasomal degradation. This frees NF-κB, allowing for

https://biorender.com
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its nuclear translocation, where it activates the transcription of pro-inflammatory medi-
ators. However, NRF2 inhibits the phosphorylation and subsequent degradation of IκB
proteins. By preventing IκB degradation, NRF2 aids the cytoplasmic sequestration of
NF-κB, restricting its activity and reducing its pro-inflammatory signaling [122].

Through these mechanisms, NRF2 effectively modulates NF-κB signaling and the
subsequent expression of pro-inflammatory genes. This crosstalk between NRF2 and NF-κB
contributes to the fine-tuned regulation of inflammation by NRF2.

3.5. The Role of NRF2 in Mitigating Oxidative-Stress-Induced HSC Activation

NRF2 activation plays a crucial role in ameliorating liver fibrosis by interfering with
the activation of HSCs, which are the key drivers of excessive ECM production. NRF2
exerts its inhibitory effects through multiple interconnected mechanisms [123]. One of
the major mechanisms though which NRF2 inhibits HSC activation is the modulation
of the transforming growth factor-beta (TGF-β) signaling pathway [124]. TGF-β is a
potent profibrogenic cytokine that promotes HSC activation and ECM synthesis. NRF2
activation disrupts the Smad signaling pathway downstream of TGF-β, preventing the
formation of Smad complexes and their translocation to the nucleus [125]. Consequently,
the expression of fibrotic genes is suppressed, leading to reduced HSC activation and ECM
production. In addition to interfering with TGF-β signaling, NRF2 activation modulates the
expression of various fibrogenic mediators involved in HSC activation. For example, NRF2
downregulates the production of platelet-derived growth factor, connective tissue growth
factor, and endothelin-1, which are potent stimulators of HSC activation and ECM synthesis.
Thus, NRF2 limits HSC activation and attenuates fibrosis progression by inhibiting the
expression of these fibrogenic mediators [126] (Figure 2).

Moreover, NRF2 activation exerts anti-inflammatory effects on HSCs, which are crucial
for the development of fibrosis. It inhibits the release of pro-inflammatory cytokines and
chemokines such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), thereby re-
ducing the inflammatory milieu that promotes HSC activation [127]. The anti-inflammatory
effect of NRF2 attenuates fibrogenesis and limits ECM production in HSCs [128]. Addition-
ally, NRF2 activation reduces oxidative stress in HSCs, which is another key driver of the
activation and progression of fibrosis. By enhancing the cellular antioxidant defense system,
NRF2 upregulates the expression of antioxidant enzymes that scavenge ROS, thereby reduc-
ing oxidative damage in HSCs [129,130]. Reduced oxidative stress inhibits HSC activation
and subsequent ECM production. Furthermore, NRF2 activation modulates epigenetic
mechanisms in HSCs. It influences DNA methylation patterns and histone modifications,
which can lead to the suppression of fibrotic gene expression in HSCs [131].

In summary, NRF2 activation ameliorates liver fibrosis by interfering with HSC activa-
tion through modulating TGF-β signaling, downregulating fibrogenic mediators, suppress-
ing inflammation, reducing oxidative stress, and epigenetic regulation. These intercon-
nected mechanisms work together to limit HSC activation, ECM production, and fibrosis
progression in CLDs.

4. Crosstalk between NRF2 and Mitochondria Quality Control in Chronic
Liver Disease
4.1. The Role of Mitochondria in the Formation of ROS

Mitochondria, often referred to as the powerhouses of cells, play a pivotal role in
producing ROS and driving oxidative stress, especially in the context of chronic liver
disease [132]. One primary source of ROS in mitochondria is electron leakage from the
electron transport chain (ETC), which is fundamental in generating cellular energy through
oxidative phosphorylation. While this chain mostly transfers electrons efficiently to molec-
ular oxygen, a small fraction can escape prematurely, resulting in the creation of superoxide
anion (O2

•−) as a primary ROS. Components such as complex I and complex III of the
ETC are recognized as significant sites for the production of ROS. Electron leakage, along
with inefficient electron transfer and compromised mitochondrial membrane potential, can
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escalate the output of ROS [133]. Several factors can induce these dysfunctions, including
mitochondrial DNA mutations, calcium accumulation, the opening of the mitochondrial
permeability transition pore (mPTP), oxidative damage to ETC components diminishing
the availability of electron carriers, and issues with protein assembly [34,134]. Mitochon-
drial DNA (mtDNA), which is situated close to ROS production locations, is exceptionally
vulnerable to oxidative harm. Damaged mtDNA can further debilitate mitochondrial
functionality, promoting the generation of ROS and establishing a cycle of increasing
mitochondrial malfunction and oxidative stress [135].

In the context of chronic liver disease, mitochondria-derived ROS cause hepatocellular
injury, inflammation, and fibrosis, thereby intensifying the progression of liver pathology.
Understanding the intricate mechanisms through which mitochondria contribute to the
production of ROS and oxidative stress is crucial for the development of strategies for
countering mitochondrial dysfunction, restoring redox balance, and alleviating oxidative-
stress-related damage in disease conditions [2,136].

4.2. The Importance of Mitochondrial Metabolism in the Progression of Chronic Diseases

In the liver, mitochondria play a pivotal role both in metabolic functions and in disease
pathology. Chronic conditions such as NAFLD, ALD, and liver fibrosis are character-
ized by mitochondrial dysfunction, oxidative stress, and weakened antioxidant defense
mechanisms [137].

Mitochondrial dysfunction arises from various adversities like inflammation and
hepatotoxic substances. The liver, a key metabolic organ, requires substantial energy to
maintain its crucial functions, especially while experiencing the strain of a chronic disease.
Mitochondria meet this demand by producing ATP through oxidative phosphorylation, a
highly efficient process. This ATP is fundamental for various liver functions. For instance,
the syntheses of proteins and lipids, which are energy-intensive processes, rely heavily
on ATP. Additionally, the liver’s role in detoxification, a process that neutralizes and
removes toxins and waste, is also ATP-dependent. Any disruption in mitochondrial ATP
production can impede the liver’s detoxification capabilities, disrupt the synthesis of
essential molecules, and affect ionic balance. Thus, ensuring mitochondrial health and
adequate ATP production is vital for managing and potentially mitigating the impacts of
liver diseases [138].

Beyond their role in energy production, the mitochondria in liver cells carry out a cru-
cial function in gluconeogenesis. This process involves the conversion of non-carbohydrate
substrates, such as lactate derived from anaerobic glycolysis, amino acids from protein
catabolism, and glycerol from fat breakdown, into glucose [139]. Mitochondrial enzymes
play a pivotal role in this pathway. Enzymes like PEPCK (phosphoenolpyruvate carboxyk-
inase) and G6Pase (glucose-6-phosphatase) are instrumental in the final stages of this
pathway, converting oxaloacetate to glucose which can then be released into the blood-
stream to maintain blood glucose levels [140]. In the context of chronic liver diseases, this
pathway becomes even more significant, particularly during prolonged fasting or under
conditions in which the glucose supply is limited [141].

Moreover, the role of mitochondria in fatty acid oxidation holds immense significance
in liver metabolism. During this process, fatty acids are broken down, leading to the
production of acetyl-CoA. This molecule subsequently enters the citric acid cycle to produce
ATP. In the context of chronic liver diseases like NAFLD or alcoholic liver disease, there
might be an accumulation of lipids in the liver [142]. Here, efficient mitochondrial fatty acid
oxidation becomes imperative to prevent excessive lipid buildup. A malfunction in this
process can contribute to the progression of fatty liver diseases as accumulated lipids can
cause liver inflammation, fibrosis, and even cirrhosis in prolonged cases. For patients with
chronic liver disease, the optimal function of mitochondria in the liver is paramount. They
support energy production, regulate glucose and lipid metabolism, assist in the synthesis
of ketone bodies and heme, and participate in detoxification pathways [143]. Disruptions
in these mitochondrial functions could worsen conditions like NAFLD and metabolic
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syndrome. Recognizing the central role of mitochondria in liver metabolism is crucial for
the effective management and treatment of chronic liver diseases [144].

4.3. NRF2 Mediates Mitophagy and Mitochondrial Turnover

NRF2 is a crucial factor in maintaining cellular homeostasis. Its activation can lead
to increases in mitophagy and mitochondrial turnover, which are important processes for
maintaining mitochondrial quality control [145,146].

Mitophagy is a selective form of autophagy that involves the removal and degradation
of damaged or dysfunctional mitochondria. It is a critical process for maintaining a
healthy mitochondrial population within cells. Dysfunctional mitochondria can escalate
the production of ROS, intensifying oxidative stress, which is a documented antagonist in
the progression of CLD [147]. By mediating the removal of dysfunctional mitochondria,
mitophagy acts as a defense mechanism, thereby potentially alleviating liver damage. In
the context of CLD, this is of paramount importance given the role oxidative stress plays in
the disease’s progression [148].

The activation of NRF2 is empirically linked to the enhancement of mitophagy in
liver cells. It achieves this by promoting the expression of genes fundamental to both
autophagy and mitophagy. Genes like p62/SQSTM1 and LC3, which are central to the
process of recognizing and isolating damaged mitochondria during mitophagy, are directly
influenced by NRF2. By bolstering these mechanisms, NRF2 reinforces liver health and
resilience against CLD [149].

In addition, NRF2 plays a broader role in augmenting mitochondrial turnover, which
encompasses the creation and degradation of mitochondria [150]. Key genes involved
in mitochondrial biogenesis, such as peroxisome proliferator-activated receptor gamma
coactivator 1-alpha (PGC-1α) and mitochondrial transcription factor A (TFAM), witness an
uptick in their expression due to NRF2 activation [151]. This, in turn, boosts the replication
and synthesis of mitochondrial DNA (mtDNA), fostering the growth of new, healthy
mitochondria in liver cells [152].

Healthy mitochondria, in addition playing a role in combating ROS, have another
significant function: they contribute to reducing free fatty acids (FFA) and bolster insulin
sensitivity. A build-up of FFAs can lead to lipid toxicity, further exacerbating liver damage,
while improved insulin sensitivity is critical for glucose metabolism. Both these functions
are vital in the context of CLD, with lipid accumulation and insulin resistance among the
hallmarks of conditions like NAFLD [153]. Thus, NRF2’s role in promoting healthy mito-
chondrial populations indirectly supports these two pivotal functions, further underscoring
its therapeutic potential in preventing and treating CLD [154,155].

4.4. The Interplay of Mitochondria and NRF2 in CLD

In protecting the liver from oxidative stress, mitochondria, in turn, influence the
regulatory dynamics of NRF2.

One way mitochondria achieve this is through an enzyme called NAMPT (nicoti-
namide phosphoribosyl transferase), which is an enzyme that is important to mitochon-
drial function and instrumental in the biosynthesis of NAD+ (nicotinamide adenine dinu-
cleotide) [156]. NAD+ is vital in cellular redox reactions and bioenergetics, processes which
are quintessential for liver cells, especially when dealing with problems like NAFLD or
alcoholic liver disease [157]. With reduced mitochondrial health, which is often seen in
liver problems due to factors like inflammation, harmful substances, and viral infections,
there is a clear change in NAMPT activity [158]. This change results in a drop in NAD+
levels. Later effects impact the SIRT1 pathway, a known controller of NRF2 in liver cells.
SIRT1, depending on NAD+, works with NRF2, affecting its defense roles [159].

This relationship shows a two-way connection where in which NRF2 helps keep
mitochondria healthy. At the same time, mitochondrial health, guided by the NAMPT-
NAD+-SIRT1 path, influences NRF2 activity [156,160].
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5. Antioxidant Drugs (Clinical Trials) for the Treatment of CLD
5.1. Targeting the KEAP1-NRF2 Complex as a Therapeutic Strategy in Liver Diseases

Antioxidant therapy targeting the NRF2 pathway focuses on its activation to enhance
the antioxidant defense system and protect the liver from oxidative-stress-induced damage.
Liver diseases, such as NAFLD, ALD, and liver cirrhosis, share a common underlying factor:
oxidative stress [161,162]. This strategy shows great promise as a potential management
approach for various liver diseases [163].

Under normal conditions, KEAP1 binds to NRF2 and targets it for degradation, thereby
regulating NRF2 activity. However, certain drugs inhibit KEAP1, leading to the activation
and accumulation of NRF2 in the nuclei of liver cells [164,165] (Table 1). Given the impactful
role of KEAP1 in modulating NRF2 activity, modifying KEAP1 has emerged as a promis-
ing frontier in drug discovery. This is especially pertinent in the context of developing
therapeutic interventions designed to ameliorate oxidative-stress-related liver ailments
by leveraging the NRF2 pathway [166]. The manipulation of KEAP1 emerges as a novel
and promising strategy for the creation of drugs intended to treat various liver diseases by
strengthening the body’s inherent antioxidant defenses, a prospect further substantiated
via ongoing pre-clinical and clinical studies that reveal the promising potential of drugs
targeting KEAP1 [167,168].

Table 1. Compilation of therapeutic compounds targeting the NRF2-Keap1 pathway in CLD.

Compound Type Mechanism of
Action Clinical Trial Registration

Number

Bardoxolone Synthetic
Triterpenoid

Keap1
Modification Phase I NCT01563562

Omaveloxolone
(RTA-408)

Synthetic
Triterpenoid

Keap1
Modification Phase I NCT03902002

Oltipraz Synthetic
Dithiolethione

Keap1
Modification Phase II NCT00956098

Liraglutide Synthetic
Peptide

Keap1
Modification Phase II NCT01237119

Ursodiol Bile Acid Keap1
Modification Phase IV NCT05849558

Resveratrol Nonflavonoid
Polyphenol

Keap1
Modification Phase II NCT02216552

Curcumin Diarylheptanoid Keap1
Modification Phase II NCT04109742

5.2. Efficacy of Keap1-NRF2-Targeting Therapeutic Agents in Liver Disease Treatment

Among the drugs targeting the Keap1-NRF2 complex, ursodeoxycholic acid (Urso-
diol/UDCA) has demonstrated noteworthy therapeutic benefits in patients with cirrhosis.
One of the most significant markers of its efficacy is the positive response observed in serum
enzyme levels. After UDCA treatment, there was a notable improvement in serum AST,
ALT, ALP, GGT, and IgM levels [169]. Additionally, the condition of lobular necroinflam-
matory lesions, a characteristic feature of cirrhosis, showed marked amelioration. Beyond
these physiological indicators, the effect of UDCA is further accentuated at the cellular level.
The hepatic expression of 8-OHdG, an oxidative stress marker, was reduced post treatment,
suggesting decreased oxidative damage in the liver. Moreover, the hepatic expression levels
of both total and phosphorylated Nrf2, key proteins involved in antioxidative responses,
increased significantly with the administration of UDCA [169]. This is further supported
by elevated levels of antioxidant proteins TRX and TrxR1 in the liver post UDCA treat-
ment, emphasizing the drug’s role in bolstering the liver’s inherent antioxidative defenses.
Furthermore, a post-treatment increase in serum TRX levels reiterates UDCA’s systemic
antioxidative effect. UDCA elevates cellular defenses against oxidative stress in its efficacy
in attenuating cirrhosis, underscoring its potential as an effective therapeutic agent for
cirrhosis patients [170].
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Oltipraz has also been studied for its ability to activate the NRF2 pathway in the liver.
Like bardoxolone and Omaveloxolone, oltipraz enhances the expression of antioxidant and
phase II detoxification enzymes [171]. Oltipraz has demonstrated significant therapeutic
potential in human trials for NAFLD and liver cirrhosis. Subjects treated with oltipraz,
especially those on a high-dose regimen, experienced substantial improvements. The liver
fat content was noticeably reduced, insulin resistance was ameliorated, lipid profiles were
enhanced, and proinflammatory cytokines decreased. Moreover, ALT and AST levels,
pivotal indicators of liver health, showed marked positive changes [172]. In the context of
liver cirrhosis, patients receiving both low and high doses of oltipraz displayed improved
outcomes in their Ishak fibrosis scores and modified Knodell’s HAI scores. The hepatic
collagen area, a marker of fibrosis, also exhibited a declining trend, shedding light on the
potential mechanism of oltipraz’s efficacy [173].

Parallel in vivo studies in mice underscored oltipraz’s profound impact on high-fat
diet (HFD)-induced changes. Oltipraz was found to boost insulin sensitivity, regulate
body weight, reduce fat accumulation, modulate leptin levels, and improve factors such
as glucose tolerance, liver gluconeogenesis, adipocyte size, and lipid profile. Central to
these effects is oltipraz’s role in activating the endogenous NRF2 system, which seems
pivotal in its mechanism of action against detrimental impacts on liver health [171]. Al-
though the findings are promising, it is imperative to note some reported side effects,
particularly gastrointestinal disturbances and hepatic function irregularities, in the human
trials [172,173]. However, these side effects were limited in comparison to the promising
therapeutic outcomes observed in the primary study domains.

Resveratrol (RSV), recognized for its anti-inflammatory attributes and SIRT1 activation,
has emerged as a potential treatment for NAFLD. While a meta-analysis indicated marginal
enhancements in NAFLD with RSV, distinct clinical markers such as ALT, AST, IL-6, TNF-α,
and lipid profiles were employed to assess its effects [174]. Notably, shorter treatments
with smaller doses of RSV, like 300 mg daily for three months, manifested beneficial
results, including reduced ALT and AST levels, better lipid metabolism, and diminished
inflammation [175], yet the prolonged usage of higher doses in some studies did not reflect
such benefits [176]; one study even depicted increased levels of ALT and AST [177]. When
complemented with lifestyle changes like diet and exercise, RSV’s efficacy in treating
NAFLD was augmented [178]. In other research, diverse results emerged. For instance,
Timmers et al. found that obese men, when administered 150 mg/day of RSV for 30 days,
showed metabolic improvements [179], whereas Poulsen et al. discerned no significant
benefits with 500 mg/day of RSV for 4 weeks [180].

In the realm of HCC, RSV suppresses cell viability and inhibits invasive properties in a
dose- and time-dependent manner. It induces autophagy, marked by elevated expression of
Beclin1 and LC3 II/I, highlighting its role in cellular self-cleansing and its robust antitumor
effect. RSV’s modulation of the p53 and PI3K/Akt pathways is pivotal in triggering
autophagy and elucidates its anticancer mechanisms, counteracted by 3-MA, Pifithrin-α,
and IGF-1 [181].

This multifaceted impact of RSV highlights its potential as a versatile agent in mitigat-
ing liver conditions and emphasizes the importance of further exploration into its optimal
dosages and therapeutic approaches.

Curcumin, a natural compound, has demonstrated significant efficacy in a range of
medical conditions. It has been observed to reduce lipid deposition in models of liver
damage by modulating various cellular signaling pathways, such as ERK-p38-MAPK
and hepatic Keap1/Nrf2 signaling. Of note is its ability to promote DNA demethylation
and inhibit histone deacetylases, which play roles in suppressing the development of
HCC [182]. Clinical evidence further substantiates the efficacy of curcumin at treating
conditions like HCC, ALD, and especially NAFLD. For instance, in a study conducted by
Panahi et al., the administration of phytosomal curcumin at a dose of 1000 mg/day over 8
weeks showed marked reductions in body mass index, and liver enzymes, and displayed
improvements in liver sonography [183]. Rahmani et al.’s research echoed similar results
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in which a lower dose of 500 mg/day resulted in significant improvements in several
metabolic and liver-related markers, including reductions in LDL-C, total cholesterol, and
elevated HDL-C [184].

In the context of ALD, notably, curcumin resulted in 27% and 15.9% reductions in
TG and TC levels, respectively, compared to the EtOH group. Additionally, it mitigated
oxidative stress in the liver from chronic ethanol exposure by reducing levels of ROS and
MDA, maintaining hepatic GSH levels, and preserving GPx and GST activities, which are
essential for antioxidative defense. This highlights curcumin’s potential as a treatment for
ethanol-induced liver abnormalities and oxidative stress [185].

Importantly, despite its known challenges with bioavailability, both clinical and pre-
clinical studies have consistently confirmed curcumin’s protective and therapeutic effects
in oxidative-associated diseases, including liver disorders. It is posited that the underlying
therapeutic activities of curcumin might predominantly arise from its main metabolites,
which seem to play a pivotal role in its biological function.

The therapeutic potential of Liraglutide, previously studied in high-fat diet (HFD)
mice, was highlighted in attenuating NAFLD via the modulation of NRF2. In an in vivo
study, Liraglutide reduced body weight and fat mass, improved dyslipidemia, and ame-
liorated glucose homeostasis. Notably, the drug enhanced NRF2 expression in the liver,
leading to the upregulation of crucial downstream genes, including Catalase, NQO1, and
GCLM, highlighting its pivotal role in combating NAFLD [186].

Transitioning from mice to clinical settings, a study on NAFLD patients revealed
Liraglutide’s pronounced effects. Patients reported decreased HbA1c levels, body weight,
BMI, and altered fat distribution, leading to diminished visceral and subcutaneous fat areas.
Alongside these, significant biochemical alterations such as reduced ALT, GGT, and plasma
triglyceride levels and increased HDL-C and plasma adiponectin levels were observed.
The considerable reduction in the liver fat content (LFC) was particularly salient [187].
A subsequent meta-analysis further vouched for Liraglutide’s efficacy, highlighting mild
declines in liver enzymes and its positive impact on BMI, lipoproteins (both HDL and LDL),
HbA1c, and triglycerides [188].

However, while Liraglutide promises therapeutic benefits, its side effects warrant
attention. Many patients experienced gastrointestinal reactions typical of GLP-1 receptor
agonists like Liraglutide. Symptoms ranged from mild, such as nausea and indigestion, to
severe cases of vomiting or diarrhea. It is paramount for patients and healthcare providers
to meticulously monitor these reactions, ensuring an informed balance between the drug’s
benefits and potential risks [188].

Bardoxolone methyl (BM) is under scrutiny for its ambiguous effects in treating chronic
liver diseases as an NRF2 activator [189]. Various studies illustrate its ability to upregulate
antioxidant and detoxifying enzymes by inhibiting KEAP1, leading to the mitigation of
inflammation and oxidative stress. BM demonstrates a substantial positive impact on lipid
metabolism and insulin sensitivity. It aids in reducing lipid accumulation and steatosis
in the liver, particularly under a high-fat diet, and in improving the regulation of blood
glucose levels [190]. The subsequent enhanced insulin sensitivity and glucose metabolism
are pivotal for managing chronic liver conditions, such as ALD and NAFLD/NASH, and
have been highlighted in various in vivo studies and human clinical trials, illustrating BM’s
capacity to establish an anti-inflammatory state in hepatic tissues [163].

However, the landscape of research presents a dichotomy. While some studies and
clinical trials underscored BM’s positive impact on liver functionality and chronic liver
disease, contrasting studies revealed alarming effects. These opposing findings suggest
that BM may elevate ALT levels, potentially leading to liver damage, a dire contradiction
to its therapeutic benefits. The severe side effects observed, including muscle spasms,
heart failure, and fatal outcomes, cast further shadows on its prospective approval as a
therapeutic agent [191,192].
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Given the conflicting evidence, the medical community is pressed to conduct compre-
hensive and holistic studies to elucidate BM’s precise therapeutic potential and risks and
its contradictory role in liver health.

Omaveloxolone (RT-408) is emerging as a notable agent in addressing chronic liver
diseases, attributed to its role in upregulating NRF2 expression and displaying antioxidative
and anti-inflammatory properties. It shows promise in improving the liver’s architecture
by reducing fat deposition and inflammatory cell infiltration in NASH models, indicating
potential efficacy in ameliorating CLD. Additionally, the drug reduces collagen and lipid
accumulation in the liver and induces hepatoprotective Nrf2 target genes. Furthermore,
it aids metabolic management by improving glucose control and altering lipid profiles,
enhancing HDL cholesterol levels [193].

However, human clinical trials revealed a blend of beneficial effects and noteworthy
adverse events. Patients experienced mild to moderate side effects like headaches, nausea,
and elevated ALT and AST levels, primarily within the initial 12 weeks, with a marked
decrease in frequency between weeks 12 and 48, emphasizing the need for prolonged,
meticulous studies to comprehensively assess Omaveloxolone’s overall therapeutic effect
and safety. The reversible nature of adverse events and the absence of hepatic injury
symptoms are pivotal observations, indicating potential therapeutic promise [194].

Omaveloxolone’s potential in mitigating chronic liver conditions and its blend of
positive effects with reversible adverse events demand careful evaluation through long-
term, rigorous studies to conclusively validate its efficacy and safety [195].

Antioxidant therapy targeting NRF2 activation exhibits substantial promise for treating
chronic liver diseases such as NAFLD, ALD, and liver fibrosis by mitigating oxidative-
stress-induced damage. The agents that were described show considerable therapeutic
benefits, including the amelioration of inflammation, liver enzyme normalization, and
improved lipid metabolism [196]. However, the efficacy of these agents is nuanced, with
varying results on liver health parameters and a range of side effects, highlighting the need
for personalized therapeutic approaches and optimal dosing strategies. Notably, several
agents displayed adverse effects in short-term treatments, necessitating long-term and
comprehensive studies to delineate the full spectra of their therapeutic windows, safety,
and holistic impacts. Interestingly, some studies demonstrated that the drug exhibited hep-
atoprotective effects even in the absence of NRF2, highlighting its multifaceted mechanisms
of action [197]. Nonetheless, the contrasting outcomes and serious adverse effects observed,
particularly with Bardoxolone methyl, underscore the urgent need for the meticulous evalu-
ation and validation of these agents’ therapeutic potentials and risk profiles. Consequently,
while the initial findings are promising, the convergence of enhanced therapeutic outcomes
with minimized adverse events requires rigorous, in-depth exploration, keeping patient
safety at the forefront [82,165,198,199].

6. Challenges and Limitations: The Double-Edged Role of NRF2 in Chronic
Liver Diseases

In the intricate realm of chronic liver diseases, NRF2 has a multifaceted role that
stretches beyond its well-established cytoprotective and antioxidant capacities. Although
NRF2 is fundamental to cellular defense, particularly in combating liver diseases, its wider
roles in NAFLD, ALD, and HCC present a complex landscape which is intricately tied to
inflammation, fibrosis, and malignancy. Nrf2’s role in these chronic conditions may be
double-edged [200].

Inflammation remains a critical phase in the progression of NAFLD and ALD and is a
prevalent precursor to HCC. Acutely activated NRF2 bolsters the liver’s defense against
oxidative insults, exemplified via its upregulation of genes like ADH and ALDH, which
combat alcohol-induced oxidative stress. However, the darker side of this mechanism in
chronic alcohol consumption, as seen in ALD, is the resultant buildup of acetaldehyde,
a toxic metabolite that triggers inflammatory processes by activating Kupffer cells and
drawing neutrophils into the liver [201]. In the NAFLD scenario, NRF2’s sway over
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lipid metabolism is pronounced. Its prolonged stimulation of lipogenic genes indirectly
encourages hepatic fat buildup and a subsequent pro-inflammatory state marked by the
secretion of cytokines like TNF-α and IL-6, further exacerbating liver damage [89].

In the domain of malignancies, particularly HCC, NRF2’s role becomes even more
intricate. Its continuous activation in liver diseases can be a harbinger of cancer progres-
sion [202]. Intriguingly, the presence of Mallory–Denk bodies (MDBs) and intracellular
hyaline bodies (IHBs), characteristic of specific HCC subtypes, is interlaced with NRF2’s
function. The main component of IHBs, p62, correlates with shorter survival in HCC
patients, and its accumulation is synonymous with dysfunctional autophagy and en-
during NRF2 activation [203]. This interrelation has repercussions in the progression of
HCC, with heightened glutathione (GSH) production potentially causing chemoresistance
and amplifying the proliferative potential of hepatoma cells [204]. Further emphasizing
NRF2’s influence, its overexpression has been observed to modulate apoptosis, increasing
anti-apoptotic factors like Bcl-xL while diminishing pro-apoptotic entities like Bax, thus
providing a survival boon to malignant cells [205].

NRF2 indisputably occupies a pivotal position in hepatoprotective and antioxidant
mechanisms, offering potential therapeutic avenues in the treatment of liver diseases.
Its capacity to bolster the liver’s defenses against oxidative threats is a testament to its
foundational role in cellular defense. Additionally, the prolonged activation of NRF2 has
been shown to lead to increased lipid accumulation in the liver due to the upregulation of
genes associated with lipid synthesis and storage [206]. As our understanding deepens,
it becomes evident that the benefits of NRF2 are intertwined with potential pitfalls. The
prolonged activation of NRF2, while protective in certain scenarios, can paradoxically
exacerbate the progression of specific liver diseases. As a result, therapeutic interventions
harnessing NRF2 activators should be judiciously considered and tailored to the unique
conditions of each patient. Furthermore, any therapeutic approach must concurrently
evaluate other influential factors, ensuring that the multifaceted role of NRF2 is both
respected and harnessed optimally for the betterment of patient outcomes.

7. Concluding Remarks and Perspectives

In conclusion, oxidative stress plays a significant role in the pathogeneses and pro-
gression of CLDs. This stress orchestrates a cascade of detrimental events: hepatocellular
damage, inflammation, fibrosis, and the activation of hepatic stellate cells, leading to liver
fibrosis. The interplay between oxidative stress and inflammatory pathways constitutes a
relentless cycle, exacerbating liver injuries and accelerating disease progression.

In the labyrinth of liver metabolism, mitochondria stand as irreplaceable powerhouses,
underpinning ATP generation and orchestrating pivotal hepatocyte operations. They
catalyze processes such as gluconeogenesis, fatty acid oxidation, and ketone body synthesis,
particularly during carbohydrate shortfalls. Additionally, they play a vital role in heme
synthesis, which is indispensable for oxygen transport and metabolism. However, these
critical functions, especially their detoxification role, can be jeopardized by toxins, casting
shadows on liver health. Chronic conditions like NAFLD, ALD, and liver fibrosis spotlight
the susceptibility of mitochondria to dysfunctions induced by inflammatory cytokines,
hepatotoxins, and metabolic aberrations.

Amidst this complexity, NRF2 surfaces as a beacon of defense. As a transcription factor,
it shoulders the responsibility of shielding cells from oxidative stress and upholding cellular
equilibrium. NRF2 not only orchestrates the antioxidant gene response to battle ROS but
also fortifies mechanisms like mitophagy, which is pivotal for mitochondrial integrity. Its ac-
tivation champions the elimination of malfunctioning mitochondria, bolstered by genes like
p62/SQSTM1 and LC3, and stimulates new mitochondrial generation through genes such
as PGC-1α and TFAM. The enzyme NAMPT, ensconced within mitochondria, augments
NRF2 activation through the NAD+-SIRT1 axis. This multifaceted relationship emphasizes
NRF2’s therapeutic potential, highlighting pathways which guard mitochondrial structure
and shield cells from oxidative duress.
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Integrating this with our earlier understanding of oxidative stress in CLD, it is evident
that combating this menace extends beyond the mere management of ROS. The intricate
dance between mitochondrial function, NRF2, and oxidative stress provides a rich tapestry
of potential therapeutic interventions. Continuing to unravel these complexities is not only
vital for pioneering treatment strategies but also holds immense promise for improving the
life quality of those battling CLD. Through persistent research and the exploration of these
molecular intricacies, we edge ever closer to transformative strategies that can redefine the
prognosis and therapeutic landscape of CLD.
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