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Abstract: Tea tree oil (TTO) is an essential plant oil with diverse antibacterial and antioxidant
properties; however, whether the role played by TTO in low fish meal (LF) diets induced the observed
effects in the farmed crustaceans remains unclear. Therefore, this study used Macrobrachium rosenbergii
as the model crustacean, and an 8-week feeding experiment with NF (normal fish meal), LF (soybean
meal replacing 40% fish meal), and LFT (LF with 200 mg/kg TTO) diets was conducted to evaluate the
positive effects of TTO under the LF diet. Compared to the NF diet, the LF diet reduced hemolymph
antioxidant capacity and non-specific immunity, and induced hepatopancreas apoptosis and damage.
However, in comparison with LF, LTF significantly ameliorated morphological impairment in the
hepatopancreas, improved hepatopancreas energy metabolism by upregulating the Bcl-2/Bax and
Akt/mTOR pathways, and enhanced antioxidant and non-specific immune capacity by activating the
NF-κB/NO pathway. In addition, LFT repaired intestinal barrier injury and the imbalance of intestinal
microbiota induced by the LF diet. Moreover, the Pearson correlation revealed the variations of
the above indicators, which were related to the abundance changes of Klebsiella, Clostridium sensu
stricto 12, Thermobifida, Bifidobacterium, and Alistipes, indicating that these microbes might serve
as prospective targets for the intestine–hepatopancreas axis to affect hepatopancreas apoptosis,
metabolism, and non-specific immunity. In summary, 200 mg/kg TTO supplementation mediated
gut microbiota and positively improved energy metabolism and non-specific immunity, thereby
alleviating hepatopancreas dysplasia and damage induced by the LF diet in M. rosenbergii.

Keywords: M. rosenbergii; alternative fish meal diet; plant essential oil; intestinal microbes; energy
metabolism; crustacean immunity

1. Introduction

With the flourishing development of the aquaculture industry, the demand for fish
meal in the formulation of aquatic feeds is gradually increasing, causing the price of fish
meal to rise rapidly [1]. Therefore, it is necessary to explore inexpensive but effective plant
protein foodstuffs that could partially replace fish meal in aquatic feeds. Soybean meal
(SBM) is the most common alternative protein source in aquatic feed because of its high
protein content, favorable price, balanced amino acid profile, and high level of digestibility.
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However, high levels of SBM have been shown to contain high doses of anti-nutritional
factors (ANFs), which result in adverse effects including reduced growth performance and
oxidative stress [2]. Under clean-water culture systems, as observed in several studies, SBM
could generally replace 37–56% of dietary fish meal in the feed to achieve a non-influential
growth performance for shrimp, and other plant protein sources were equal to or less
efficient than soybean meal [3]. However, another research study showed that when SBM
replaced 30% fish meal, it induced a downregulation of the growth performance and non-
specific immunity in Litopenaeus vannamei [4]. Based on these studies, this experiment used
SBM instead of 40% fish meal to create a low fish meal negative model.

The hepatopancreas is the major energy storage organ and a critical hematopoietic
and energy metabolic organ in crustaceans [5]. Replacing fish meal with vegetable protein
in low fish meal diets resulted in hepatopancreatic damage (increased hepatocyte necrosis
and apoptosis), impaired development (downregulated expression of IGF-1 and IGF-2
signaling factors), and a decreased hepatosomatic ratio [6,7]. This may be due to impaired
energy metabolism in the hepatopancreas [8,9]. Low fish meal diets substituted with plant
proteins also affected intestinal barrier function and intestinal health [10]. Furthermore,
soybean meal’s replacement of fish meal was found to cause host soybean meal-type enteri-
tis, which manifests as intestine structural damage and the downregulation of immunity
associated with the Toll-NF-κB signaling pathway [11], which is reported to be caused by
intestinal flora and their metabolite alternation [12]. Gut microorganisms are essential in
the gut–liver axis, which is involved in the homeostasis of digestion and absorption, the
maintenance of the intestinal barrier, the regulation of immunity, and regulation of liver
function [13]. Research indicates that intestinal flora imbalance can induce hepatopancreas
damage and metabolic disorders [14]. The imbalance of intestinal flora leads to intestinal
barrier damage by increasing intestinal permeability, which leads to pathogenic bacteria
infection and associated harmful metabolite (endotoxin) accumulation, thereby increasing
the occurrence and progression of liver damage through intestine–liver axis circulation [15].
Meanwhile, some metabolites of beneficial gut microbes, such as short-chain fatty acids (SC-
FAs) and bile acids (BAs), could enter the liver via enterohepatic circulation and positively
regulate hepatic metabolism and energy homeostasis [16]. Furthermore, in crustaceans
the gut microbiota also shows significant positive or negative correlations with many
biomarkers of hepatopancreatic injury, suggesting that the gut microbiota is involved in
hepatopancreatic injury [17]. Therefore, gut microbes should be considered when assessing
the hepatopancreatic health of crustaceans.

In general, plant-derived feed additives have been used to alleviate growth inhibition
and metabolic diseases in aquaculture because of their nonpolluting and highly efficient
properties [18]. Tea tree oil (TTO) is an essential oil obtained from Melaleuca alternifolia
via steam distillation. Due to its active antioxidant component, 4-terpineol, TTO could
scavenge excess reactive oxygen species (ROS) and enhance the antioxidant capacity of
the host [19]. Our previous study found that tea tree oil alleviated oxidative stress by
activating the NF-κB/NO pathway [20]. Meanwhile, plant essential oils have been found to
improve the intestinal flora structure, inhibit the growth of harmful bacteria, and enhance
the colonization ability of beneficial bacteria in the intestine [21,22]. In invertebrates, plant
essential oils have been found to inhibit the abundance of Proteobacteria and increase the
abundance of the beneficial bacteria Lactobacillaceae [23]; however, the mechanism of action
is unclear.

Macrobrachium rosenbergii is cultivated worldwide and brings high economic value,
and its production reached 177,836 tons with a market value of CNY 10 billion in China in
2022 [24]. In addition, M. rosenbergii is an important research model for crustacean nutrition,
metabolism, and immunology, and has significant scientific research value. Also, there
have been limited studies on health and immunomodulation from the perspective of the
hepatopancreas–intestine axis in crustaceans, which is a valid area of research and one
of great significance. Therefore, M. rosenbergii could be used as an invertebrate model to
develop low fish meal diets and to study the mechanism of the hepatopancreas–intestine
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axis. In view of this, our research aims to investigate and evaluate the protective effects of
TTO (200 mg/kg, Figures S1 and S2) [25] on the metabolism, antioxidant, immunity, and
intestinal microflora diversity of M. rosenbergii against the side effects induced by a low fish
meal diet (soybean meal replacement).

2. Materials and Methods
2.1. Experimental Animals and Ethical Statement

Batches of M. rosenbergii prawns (0.28 ± 0.01 g body weight) were obtained from
Zhejiang South Taihu Lake Freshwater Aquatic Seed Industry Co., Ltd., Huzhou, China.
For temporary breeding, prawns were maintained for 7 days in three aerated cylindrical
polypropylene tanks (100 cm height × 180 cm diameter) and fed with commercial feed
(Fuyuda Food Products Co., Ltd., Yangzhou, China) before feeding experiments.

All experiments were conducted in accordance with the guidelines for the scientific
breeding and use of animals from the Institutional Animal Care and Use Committee
(IACUC) of the CAFS. At the same time, the animal care and use regulations of Nanjing
Agricultural University were followed.

2.2. Experimental Design and Rearing Conditions

The experimental diets were formulated and presented in Table S1. Briefly, three ex-
perimental diets were used: the normal fish meal diet (NF), the low fish-meal diet (LF),
and the low fish-meal diet supplemented with 200 mg/kg TTO (LFT). The TTO emul-
sion (10% available content) was purchased from Nanjing Shanghao Technology Co., Ltd.
(Nanjing, China).

A total of 360 shrimps were weighed using an electronic scale with a precision of
0.01 (body weight: 0.28 ± 0.01 g) and then stocked into 9 polypropylene tanks. As in the
temporary culture, each tank was interconnected with the recirculating water filtration
system (supplied by Zhongke Seawater Treatment Co., Ltd., Qingdao, China), and the
chlorine-free water treated by the filtration system filled half of each tank. A total of
40 prawns per tank and 9 tanks were randomly assigned to three experimental diet groups,
with 3 replicates. As the experiment was conducted indoors, 10 h of light exposure per day
had to be provided by means of large lamps. The temperature, pH and dissolved oxygen
were 29–33 ◦C, 7.5–8.4, and >5 mg/L. Prawns were fed three times a day for 8 weeks at
8:00, 13:00, and 18:00 to apparent satiation. After 1 h of feeding, the remaining feed was
collected using an 80-mesh sieve and weighed on an electronic scale to determine the feed
conversion ratio. The experiment lasted 8 weeks and sampling and measurements were
performed at the end of the experiment.

2.3. Growth Evaluation

After an 8-week feeding experiment, the survival rates, final weights of prawns, and
the hepatopancreases weight were recorded in each group (Table S2). The weight gain rate,
specific growth rate, feed conversion ratio, and hepatosomatic index were calculated using
the following methods:

• Weight gain rate (WGR, %) = (Final weight (g) − Initial weight (g))/initial weight × 100;
• Specific growth rate (SGR, %/day) = (Ln final weight − Ln initial weight) × 100/days;
• Feed conversion ratio (FCR) = Dry feed intake (g)/weight gain (g);
• Hepatosomatic index (HSI, %) = (Hepatopancreas weight/final weight) × 100.

2.4. Samples Collection

After an 8-week feeding trial, all sampled prawns were fasted for 24 h to empty the
digestive tract, and 18 prawns were randomly selected in each group. First, the Elsevier
solution (13.2 g/L trisodium citrate, 4.8 g/L citric acid, and 14.7 g/L glucose) was used
as an anticoagulant to collect the prawns’ hemolymphs. According to the method of Ro-
driguez et al., the air was expelled from the 1 mL syringe, 200 µL of anticoagulant drawn,
and then the hemolymph extracted from the thorax of the prawns, and the proportion
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of hemolymph to the anticoagulant was 1:1 [26]. The mixtures were then centrifuged at
4000 rpm for 10 min at 4 ◦C to separate the hemolymph from blood cells, and the super-
natants of 3 prawns in each replicate were placed in a 1.5 mL centrifuge tube. Next, prawns
were dissected to obtain hepatopancreas and chyme samples. The hepatopancreases from
3 prawns were randomly mixed in each replicate and put into a 2 mL cryogenic vial, and the
chyme was stored similarly. These cryogenic vials were snap-frozen in liquid nitrogen and
finally stored at −80 ◦C for further analysis. In addition, three hepatopancreases from each
diet were randomly collected and fixed in 4% paraformaldehyde and 2.5% glutaraldehyde
solution (Macklin Biochemical Co., Ltd., Shanghai, China) for H&E and TEM analysis,
respectively. The remaining shrimp should be immediately stored in a freezer at −80 ◦C to
supplement the insufficient test samples.

2.5. Biochemical Parameters Analysis

The levels of hemolymph glucose (GLU), triglyceride (TG), total cholesterol (TC),
low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-
C), total protein (TP), albumin (ALB), globulin (GLB), aspartate aminotransferase (AST),
alanine aminotransferase (ALT), and alkaline phosphatase (AKP) were measured with an
automatic hemolymph biochemical analyzer (Mindray BS-400, Shenzhen, China) using
300 µL of hemolymph according to the manufacturer’s instructions with the appropriate
commercial kit (Mindray Medical International Co., Ltd., Shenzhen, China). The pretreated
hepatopancreas AST, ALT, TP, TG, and TC were measured using Nanjing Jiancheng Institute
commercial bioengineering kits. The pre-treatment consisted of homogenising hepatopan-
creas samples from cryogenic vials in ice-cold saline, centrifuging at 4000 rpm for 10 min at
4 ◦C, and retaining the supernatant for analysis. In addition, lipopolysaccharide (LPS) was
determined using ELISA kits that were specific for prawns (Shanghai mlbio Biotechnology
Co., Ltd., Shanghai, China).

2.6. Enzyme Activity Analysis

Following the methods used in our previous research [27], total superoxide dismutase
(T-SOD), catalase (CAT), glutathione (GSH), and lysozyme (LZM) Nanjing Jiancheng Insti-
tute commercial bioengineering kits were used to measure the activity in the hemolymph.
The enzyme activity analysis was performed using a Spectra Max Plus spectrophotometer
(Molecular Devices, Menlo Park, CA, USA), monitored at 450 nm, 550 nm, 420 nm, and
530 nm wavelengths, respectively. The concentration of malondialdehyde (MDA) in the
hemolymph was determined using the thiobarbituric acid (TBA) method and measured at
532 nm [25]. A pre-processing step is required prior to the detection of hepatopancreas. As
is general, the liver and pancreas were suspended in a 50 mM potassium phosphate buffer
containing 0.5 mM EDTA at a pH of approximately 7.0. The suspension was homogenized
using a handheld homogenizer for 5 min in a 2.0 mL centrifuge tube. After homogenization,
all samples were centrifuged at 4 ◦C for 15 min at a speed of 2000× g. The supernatant was
then extracted for subsequent enzyme activity analysis. The hepatopancreatic T-SOD, CAT,
GSH, and MDA were then determined in the same way as the hemolymph parameters.
The hepatopancreatic amylase (AMS) and trypsin (TPS) were analyzed using commercial
bioengineering kits from Beijing Solarbio Co., Ltd. (Beijing, China) at 540 nm and 253 nm,
respectively.

2.7. H&E, TUNEL, and Oil Red O Staining, and TEM Analysis

Hepatopancreas samples fixed in 4% paraformaldehyde buffer were removed. The
samples were embedded in optimal cutting temperature (OCT) medium and stored at
−80 ◦C. According to our published work [27], hematoxylin-eosin (H&E) and Oil Red O
(ORO) staining of the hepatopancreas was performed and microimaging was performed
using a Leica DM1000 optical microscope (Wetzlar, Germany) light microscope. Hepatocyte
apoptosis was determined with Xu et al.’s methods and using the terminal deoxynu-
cleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay [28]. The
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TUNEL sections were washed and photographed under a fluorescence microscope. ImageJ
software 1.52a (National Institutes of Health, Bethesda, MD, USA) was used to analyze
the lipid content of the ORO-stained section and positive cells of the TUNEL staining.
Intestinal tissue was extracted from the previously prepared 2.5% glutaraldehyde fixative
and processed according to Xie et al.’s method for tissue sectioning [13]. The cellular
structure was then observed using transmission electron microscopy (Hitachi HT7700 TEM,
Tokyo, Japan).

2.8. Bacterial 16S rDNA Gene Amplification, cDNA Library Construction, and Sequencing

To profile the diversity and structure of the microbial communities, the 16S rDNA
V3-V4 region of the ribosomal RNA gene was amplified with PCR (95 ◦C for 2 min,
followed by 27 cycles at 98 ◦C for 10 s, 62 ◦C for 30 s, and 68 ◦C for 30 s and a final
extension at 68 ◦C for 10 min) using primers 338F: ACTCCTACGGGAGGCAGCAG; 806R:
GGACTACHVGGGTWTCTAAT [29], where the barcode is an eight-base sequence unique
to each sample. PCR reactions were performed in triplicate 50 µL mixtures, with the specific
content determined according to the method of Xue et al. [30]. All PCR products were
extracted from 2% agarose gels and purified using the Merck DNA Gel Extraction Kit
(Merck Sigma-Aldrich, Darmstadt, Germany) according to the manufacturer’s instructions
and quantified using the Bio-Rad CFX96 Real-Time PCR System (Bio-Rad Laboratories, Inc.,
Hercules, CA, USA). Purified PCR amplicons were pooled in equimolar and paired-end
sequenced (2 × 250) on an Illumina platform according to standard protocols and the
manufacturer’s instructions.

Clean reads were obtained using the following steps. The barcode and linker se-
quences were removed and combined with the paired-end reads to form a longer fragment.
Reads with average quality scores of <20 and >100 bp were then removed. Mismatching
primer sequences or ambiguous bases (Ns) greater than 5% were removed from the down-
stream analyses. Reads that could not be assembled were discarded. Spliced paired-ended
sequences were generated using FLASH (Fast Length Adjustment of SHort reads) [31].
VSEARCH 2.21.1 was used to remove chimeric sequences [32]. Sequences were then classi-
fied into operational taxonomic units (OTUs) at the 97% sequence similarity level using
UPARSE (version 7.1) [33]. Taxonomic classifications were annotated in the RDP database.

Microbial variation was compared using multiple analytical methods. The Stamp was
used to analyze the difference in microbial abundance at the genus level among three diets.
The Stamp figure was performed on the Tutools platform http://www.cloudtutu.com
(accessed on 18 March 2023).

LEfSe (Linear discriminant analysis Effect Size) was used to analyze the intestinal
tract microbial communities under different diets. Briefly, the non-parametric factorial
Kruskal–Wallis (KW) sum rank test was used to detect the characteristics of significant
differences in abundance and to find the groups with significant differences in abundance.
LEfSe linear discriminant analysis (LDA) was used to estimate the impact of each intestinal
microbial (species) abundance on the difference effect (screening criteria were p < 0.05, LDA
score > 3). LEfSe was performed using the OmicStudio tools (www.omicstudio.cn/tool
(accessed on 18 March 2023)).

2.9. Quantitative Real-Time RT-PCR (qPCR) Validation

According to the hepatopancreas transcriptome data in our lab, the primers for RT-PCR
were designed using Primer 5.0 (shown in Table S3).

The total RNA of 6 hepatopancreas in each group was extracted with RNAiso Plus
(TaKaRa, Shiga, Japan). Then, RNA concentration was determined with Nanodrop 2000
(Thermo Fisher Scientific, Waltham, MA, USA). The RNA concentration of each sample was
diluted to 400 ng/mL, and the first-strand cDNA was generated from 400 ng DNase-treated
RNA using a HiScript III 1st Strand cDNA Synthesis Kit (Vazyme Biotech Co., Ltd., Nanjing,
China). The Two-Step SYBR® Prime Script® Plus RT-PCR Kit (TaKaRa, Kusatsu City, Japan)
was used to perform RT-PCR with a Bio-Rad CFX96 (Bio-Rad Laboratories, Inc., Hercules,

http://www.cloudtutu.com
www.omicstudio.cn/tool
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CA, USA) real-time PCR system [27], and the 2−∆∆CT method was used to calculate the
relative gene expression with the internal reference gene β-actin.

2.10. Western Blot Analysis

Western blotting was performed to measure protein expression, as described in our
previous report [34]. Briefly, tissue protein extraction and concentration determination were
performed using RIPA lysis buffer (Epizyme, Shanghai, China), phenylmethanesulfonyl
fluoride (Epizyme), SDS-PAGE protein sample loading buffer (Epizyme), and a BCA
protein assay kit (Beyotime, Shanghai, China). SDS-PAGE separated protein samples and
the protein was transferred to a PVDF membrane. The PVDF membrane was then blocked
with BSA (5%) for 2 h at room temperature (RT) and washed three times for 10 min each
time. The membranes were then blocked with primary antibodies for 12 h at 4 ◦C. After
equilibration at room temperature for 1 h, the membranes were washed three times for
10 min each and incubated with a secondary antibody solution (goat anti-rabbit horseradish
peroxidase conjugate, Santa Cruz Biotechnology, Santa Cruz, CA, USA) for 1 h at RT. An
electrochemiluminescence (ECL) kit (Beyotime, P0018FM, China) was used to visualize
the immune complexes, and ImageJ software 1.52a was used for quantification. Specific
primary antibodies used in this experiment, including Bcl-2 (1:2000), Bax (1:4000), p-AKT
(1:5000), AKT (1:2000), NF-κB (1:1000), and β-actin antibody (1:10,000), were purchased
from Abcam Biotechnology Ltd. (Cambridge, UK).

2.11. Statistical Analysis

All experimental results were expressed as mean ± S.E.M. (standard error of the
mean). Student’s t-test was used to compare three groups, and comparison between three
groups was carried out using one-way ANOVA. The SPSS 15.0 (SPSS Inc., Michigan Avenue,
Chicago, IL, USA) was used for the statistical analysis. The significance was set at p < 0.05,
and extreme significance was set at p < 0.01. In addition, normalization was performed
on all RT-PCR and WB results. A Pearson correlation analysis was used to analyze the
correlation between the two variables that conformed to the normality, using the following
marks: one asterisk (*) indicated a significant difference (p < 0.05), and two asterisks (**)
indicated an extremely significant difference (p < 0.01).

3. Results
3.1. Growth Performance

As shown in Table 1, WGR, SGR, and HSI showed a decreasing followed by an
increasing trend among the three groups, and FCR showed a contrary tendency. SR,
WGR, SGR, and HSI in the LF group were significantly lower than those in the NF group
(p < 0.05); however, WGR, SGR, and HSI in the LF group were significantly higher than
those in the NF group (p < 0.05). In addition, FCR was significantly lower in the LF group
than in the NF and LFT groups (p < 0.05). The LFT group had no significant difference from
the NF group (p > 0.05).

Table 1. Effects of dietary TTO levels on the growth evaluation of M. rosenbergii.

Index
Groups

p-Value
NF LF LFT

Survival rate (SR, %) 88.75 ± 3.70 b 82.50 ± 2.20 a 85.00 ± 1.44 ab 0.033
Weight gain rate (WGR, %) 1389.91 ± 71.88 b 1246.84 ± 33.72 a 1326.25 ± 57.86 b 0.023
Specific growth rate (SGR, %/day) 6.58 ± 0.05 b 6.22 ± 0.12 a 6.49 ± 0.26 b 0.019
Feed conversion ratio (FCR) 1.24 ± 0.08 a 1.44 ± 0.02 b 1.20 ± 0.02 a 0.036
Hepatosomatic index (HSI, %) 10.63 ± 1.21 b 6.86 ± 0.78 a 9.74 ± 0.56 b 0.009

Note: data are expressed as means with SEM (n = 3). Values with different superscripts are significantly different
according to one-way ANOVA (p < 0.05).



Antioxidants 2023, 12, 1879 7 of 21

3.2. TTO Ameliorates Hepatopancreatic Injury from the LF Diet

The LF group significantly affected the hepatic morphology, as shown in Figure 1A.
Visually, the LF group showed a significant decrease in secretory cells and an increase in
vacuoles compared to the NF group. There was no significant difference between the NF
and LFT groups except for a slight increase in vacuoles. The structures of the lumen in the
three groups were not significantly different. At the same time, the thickness of the basal
laminae was lower in the LF group than in the NF and LFT groups.

Antioxidants 2023, 12, x FOR PEER REVIEW 7 of 22 
 

Table 1. Effects of dietary TTO levels on the growth evaluation of M. rosenbergii. 

Index 
Groups 

p-Value 
NF LF LFT 

Survival rate (SR, %) 88.75 ± 3.70 b 82.50 ± 2.20 a 85.00 ± 1.44 ab 0.033 
Weight gain rate (WGR, %) 1389.91 ± 71.88 b 1246.84 ± 33.72 a 1326.25 ± 57.86 b 0.023 
Specific growth rate (SGR, %/day) 6.58 ± 0.05 b 6.22 ± 0.12 a 6.49 ± 0.26 b 0.019 
Feed conversion ratio (FCR) 1.24 ± 0.08 a 1.44 ± 0.02 b 1.20 ± 0.02 a 0.036 
Hepatosomatic index (HSI, %) 10.63 ± 1.21 b 6.86 ± 0.78 a 9.74 ± 0.56 b 0.009 

Note: data are expressed as means with SEM (n = 3). Values with different superscripts are signifi-
cantly different according to one-way ANOVA (p < 0.05). 

3.2. TTO Ameliorates Hepatopancreatic Injury from the LF Diet 
The LF group significantly affected the hepatic morphology, as shown in Figure 1A. 

Visually, the LF group showed a significant decrease in secretory cells and an increase in 
vacuoles compared to the NF group. There was no significant difference between the NF 
and LFT groups except for a slight increase in vacuoles. The structures of the lumen in the 
three groups were not significantly different. At the same time, the thickness of the basal 
laminae was lower in the LF group than in the NF and LFT groups. 

 
Figure 1. Effect of the three diets on the hepatopancreatic morphology, health, and apoptosis status 
of M. rosenbergii. (A) The representative micrographs of H&E stainings (400× magnification); B, se-
cretory cells; Lu, lumen; Va, vacuole; TBL, the thickness of basal laminae. (B) The indicators of 
hepatopancreatic function; AST, aspartate aminotransferase; ALT, alanine transaminase; TP, total 
protein. (C,D) The representative micrographs of TUNEL stainings (400× magnification) and per-
centage of apoptotic nuclei. (E,F) Western blot assays of Bcl-2 and Bax protein expression and ratio 
of Bcl-2/Bax. (G) mRNA expression of apoptosis-related genes. The asterisk indicated significant 
differences between the two groups. * p < 0.05, ** p < 0.01. 

Figure 1. Effect of the three diets on the hepatopancreatic morphology, health, and apoptosis sta-
tus of M. rosenbergii. (A) The representative micrographs of H&E stainings (400× magnification);
B, secretory cells; Lu, lumen; Va, vacuole; TBL, the thickness of basal laminae. (B) The indicators
of hepatopancreatic function; AST, aspartate aminotransferase; ALT, alanine transaminase; TP, total
protein. (C,D) The representative micrographs of TUNEL stainings (400× magnification) and per-
centage of apoptotic nuclei. (E,F) Western blot assays of Bcl-2 and Bax protein expression and ratio
of Bcl-2/Bax. (G) mRNA expression of apoptosis-related genes. The asterisk indicated significant
differences between the two groups. * p < 0.05, ** p < 0.01.

Table 2 shows the hepatic-function-related biochemical indicators. The TP, AST, ALT,
AKP, ALB, and A/G values significantly increased in the LF group compared to in the
NF and LFT groups (p < 0.05). There was no significant difference in hemolymph GLB
among the three groups (p > 0.05). Correspondingly, the LF group significantly increased
hepatopancreatic AST and ALT and decreased TP content more than the other groups
(Figure 1B).

It was evident from the TUNEL staining diagram that more apoptosis occurred in the
LF group than in the other two groups, as shown in Figure 1C. Statistically, the TUNEL-
positive nuclei in the LF group were dramatically higher than in the NF and LFT groups
(p < 0.05, Figure 1D). The LF group downregulated the protein level of the Bcl-2 and
Bcl-2/Bax radio and upregulated the level of Bax compared to the other two groups
(Figure 1E,F). In addition, the mRNA abundance of Bax, Caspase-2, Caspase-3, and Caspase-8
presented a trend of increasing followed by decreasing among the three groups, and the
Bcl-2 showed contrary trends (Figure 1G).
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Table 2. Glucolipid metabolism and biochemical indicators in the hemolymph of M. rosenbergii.

Hemolymph Parameters
Groups

p-Value
NF LF LFT

Glucolipid metabolism
Glu (mmol/L) 9.72 ± 1.16 b 7.86 ± 0.76 a 8.65 ± 0.92 ab 0.032
TG (mmol/L) 0.68 ± 0.29 0.61 ± 0.29 0.65 ± 0.15 0.105
TC (mmol/L) 0.75 ± 0.33 0.70 ± 0.13 0.71 ± 0.14 0.154
LDL-C (mmol/L) 0.28 ± 0.05 b 0.15 ± 0.04 a 0.21 ± 0.04 ab 0.036
HDL-C (mmol/L) 0.40 ± 0.04 0.46 ± 0.03 0.42 ± 0.05 0.326
Biochemical
TP (g/dL) 17.55 ± 1.14 a 21.64 ± 2.09 b 18.43 ± 1.41 a 0.007
ALB (g/dL) 7.82 ± 0.28 a 9.70 ± 0.24 b 8.07 ± 0.09 a 0.017
GLB (g/dL) 15.58 ± 0.17 14.97 ± 0.06 15.06 ± 0.15 0.268
ALB:GLB (A/G, %) 50.23 ± 2.11 a 64.79 ± 1.81 b 53.63 ± 0.48 a 0.019
AST (U/L) 38.14 ± 4.27 a 64.73 ± 6.72 b 43.61 ± 3.74 a 0.009
ALT (U/L) 12.32 ± 2.10 a 18.62 ± 2.81 b 13.45 ± 1.65 a 0.016
AKP (U/L) 2.84 ± 0.17 a 5.05 ± 0.24 b 3.44 ± 0.23 a 0.026
Enzyme activity
T-SOD (U/mL) 57.66 ± 2.88 b 50.38 ± 3.14 a 57.42 ± 2.65 b 0.002
CAT (U/mL) 22.59 ± 1.21 20.81 ± 3.08 23.16 ± 1.49 0.158
GSH (nmol/mL) 87.23 ± 4.21 b 51.71 ± 5.73 a 92.65 ± 6.59 b 0.001
MDA (nmol/mL) 15.74 ± 1.44 a 20.8 ± 1.62 b 16.08 ± 2.13 a 0.019
LZM (U/mL) 175.65 ± 21.40 b 125.33 ± 13.93 a 185.65 ± 31.24 b 0.001

Note: data are expressed as means with SEM. Values with different superscripts are significantly different
according to one-way ANOVA (p < 0.05).

3.3. TTO Alleviates Metabolic Disorders Associated with LF Diet

The hemolymph metabolic indicators are shown in Table 2. The Glu and LDL-C
content was significantly lower in the LF group than in the NF group (p < 0.05), and the
Glu and LDL-C in the LFT group had no noticeable difference from the other groups. There
was no significant difference in hemolymph TG, TC, and HDL-C among the three groups
(p > 0.05).

Figure 2A–C showed the status of lipid accumulation in the hepatopancreas. The
hepatopancreatic lipid droplet area and TG content of the LF group were significantly
lower than those of the NF group (p < 0.05). However, they had no statistical significance
in the LFT group (p > 0.05). Meanwhile, the LF group had substantially lower TPS levels
than the NF and LFT groups (p < 0.05), but the three groups had no significant difference in
AMS activity (p > 0.05, Figure 2D).

In investigating the energy metabolism pathway AKT-mTOR, the protein level results
showed that the LF group significantly inhibited the AKT-mTOR signaling pathway by
downregulating the AKT phosphorylation level compared to the control. Furthermore,
compared to the LF group, TTO could significantly activate the AKT-mTOR by enhancing
the p-AKT/AKT ratio (Figure 2E,F). As a validation, the mRNA levels of the genes for the
hepatopancreas are shown in Figure 2G; the LF group showed significantly lower AKT,
mTOR, IGF-1, and IGF-2 mRNA abundances than the other two groups (p < 0.05). The
IGF-1 mRNA level in the LFT group was significantly lower than in the NF group (p < 0.05).
Additionally, the Ampk level in the LF group was significantly increased compared to that
of the NF group (p < 0.05), but there was no significant difference in Ampk level between
the LFT group and the NF or LF group (p > 0.05).

3.4. TTO Alleviates Innate Immunodeficiency from the LF Diet

Table 2 shows that the levels of the hemolymph T-SOD, GSH, and LZM presented a
significant decrease in the LF group compared to the NF and LFT groups (p < 0.05), and the
MDA showed the contrary. There was no significant difference in hemolymph CAT among
the three groups.

The hepatopancreatic antioxidant status is shown in Figure 3. The LF group had
significantly lower levels of T-SOD, CAT, and GSH than the NF and LFT groups (p < 0.05).
The LF group had significantly higher MDA levels than the other two groups (p < 0.05). In
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addition, the LFT group had significantly higher T-SOD levels than the NF group (p < 0.05).
Figure 3B showed that the levels of two antimicrobial peptides, anti-lipopolysaccharide
factor (ALF) and lysozyme (LZM), were significantly decreased in the LF group compared
to the other two groups (p < 0.05). LZM levels were significantly higher in the LFT group
than in the NF group (p < 0.05).
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Figure 2. Effect of the three diets on the hepatopancreatic lipid energy and protein metabolism of
M. rosenbergii. (A) The representative micrographs of Oil Red O staining (200× magnification) and
relative area of lipid droplets; LD, Lipid droplet. (B) Relative area of lipid droplets. (C) TG and TC
content in hepatopancreas. (D) AMS and TPS content in hepatopancreas. (E,F) The phosphorylation
level of AKT protein was detected using Western blot analysis. (G) mRNA expression of energy
metabolism-related genes. The asterisks indicate significant differences between the two groups.
* p < 0.05, ** p < 0.01.

To examine the changes in the NF-κB pathway, we first measured the levels of INOS
and NO in Figure 3C. The levels of INOS and NO were significantly downregulated in
the LF group compared to the other two groups. The NF-κB signaling pathway was
significantly inhibited in the LF group compared to the LFT group because the LF group
significantly reduced the protein level of NF-κB compared to the LFT group (Figure 3D,E).
The prawns’ homologs of the component’s mRNA levels are shown in Figure 3F. The LF
group altered the Toll, Dorsal, IMD, and Relish mRNA expression. The expression levels of
these four genes were significantly decreased compared to the other two groups (p < 0.05).

3.5. Alterations in the Physical Barrier and Microecological Structure of the Intestine by
Three Diets

Figure 4A shows that TEM results showed intestinal microstructural damage in the
LF group. The mitochondria in the LF group were found to be swollen, and the mito-
chondrial ridge was also broken and tended to dissolve; the endoplasmic reticulum matrix
became irregularly arranged, microvilli ruptured, and the nuclear membrane was indistinct
compared to the control group. After the supplementation of TTO in the LF diet, the
endoplasmic reticulum recovered to its original state; the mitochondria, microvilli, and
nuclear membrane almost recovered to the level of the NF control group.
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significant differences between the two groups. * p < 0.05, ** p < 0.01.

In addition, the LF group had significantly elevated hemolymph LPS levels compared
to the other two groups, and the LFT group had a significantly lower LPS level than the
NF control (p < 0.05, Figure 4B). The Principal Coordinate Analysis (PCoA) results showed
that the microbial composition in the NF, LF, and LFT groups was apparently different
(Figure 4C). Meanwhile, to evaluate the diversity of the microbial community diversity, the
Observed_species, Goods_coverage, Chao1, and Shannon indices were calculated based on
the OTUs from each sample (Figure 4D). The Shannon, Goods_coverage, Observed_species,
and Chao1 were significantly higher in the LF group than in the NF and LFT groups
(p < 0.05). In addition, the Shannon results showed that the LFT group was significantly
higher than the control group (p < 0.05).

The relative abundances of Proteobacteria and Planctomycetes in the LF group were
significantly increased at the phylum level (p < 0.05) compared with the NF and LFT groups.
At the same time, Bacteroidetes and Actinobacteria were significantly reduced (p < 0.05). The
relative abundance of Firmicutes was significantly lower in the LF group than in the NF
group (p < 0.05, Figure 4E). Additionally, the relative abundance of Bacteroidetes in the
LFT groups was significantly decreased compared to the control group, and the level of
Actinobacteria was the opposite (p < 0.05). At the genus level, as shown in Figure 4F, the
relative abundance of Klebsiella and Enterobacter was extremely significantly increased in the
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LF group compared with the other two groups (p < 0.01), whereas the relative abundance
of Clostridiumsensustricto 12 and Candidatus Hepatoplasma was extremely significantly de-
creased (p < 0.01). The abundance of Alistipes and Candidatus Hepatoplasma was significantly
lower in the LFT group compared to the control, and the Clostridiumsensustricto 12 level
was the opposite (p < 0.05). It is worth noting that the Lactococcus and Alistipes levels were
significantly reduced in the LF group compared to the control group (p < 0.05).

1 
 

 
Figure 4. Effects of three diets on the structural diversity of intestinal microflora. (A) Microstructure
of prawn intestine; MV, microvilli; ER, endoplasmic reticulum; N, nucleus; NM, nuclear membrane;
M, mitochondria. (B) Hemolymph lipopolysaccharide (LPS) content. (C) Principal coordinate analysis
of community. (D) Alpha diversity indices. (E,F) Microbiota composition at the phylum and genus
level with relative abundance in the top ten. All data are expressed as the mean ± SEM. The asterisks
indicate significant differences between the two groups. * p < 0.05, ** p < 0.01.

3.6. Specific Microbial Compositional Differences

LEfSe was used to analyze the microbial communities under different diets, as shown
in Figure 5. The most abundant phylotypes in the LF group, from phylum to genus
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level, were p_Proteobacteria, c_Gammaproteobacteria, o_Enterobacterales, f_Enterobacteriaceae,
and g_Klebsiella compared to the NF and LFT groups (Figure 5A). The most abundant
phylotypes in the LFT group included p_Actinobacteria, c_Actinomycetales, o_Actinobacteria,
f_Actinomycetaceae, and g_Bifidobacterium, compared to the NF and LF groups.
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Figure 5. Analysis of differential intestinal microbes in three diets. (A) Microbial community
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among the three taxa. Microbial comparation analysis on NF vs. LF (B) and LF vs. LFT (C) at genus
level with t-test.

Differences in microbial composition at the genus level were analyzed to understand
further the effects of different diets on microbial composition in Figure 5B,C. STAMP analy-
sis showed that the abundance of five genera (Candidatus Nitrotoga, Klebsiella, Candidatus
Chloroploca, Sulfurifustis, Microlunatus) was increased, and that of six genera (Ochrobactrum,
Clostridiumsensustricto 12, Phenylobacterium, Truepera, Alistipes, Acinetobacter) was signifi-
cantly decreased in the LF group compared to the NF group (p < 0.05). In the LFT group, the
abundance of six genera (Clostridiumsensustricto 12, Pseudonocardia, Galbibacter, Thermobifida,
Bifidobacterium, Microlunatus) increased, and two genera (Klebsiella, Acinetobacter) decreased
compared to the LF group (p < 0.05).

3.7. Differences in the Enrichment Function of Intestinal Microorganisms in Three Diets

The prediction of the function of intestinal microorganisms in different diets by the
Tax4Fun package (based on R software 4.3.0) is shown in Figure 6. The secondary function
prediction (Figure 6A) showed that the LF group increased the abundance of cell growth and
death and endocrine and metabolic diseases pathways compared to the other two groups,
and decreased the abundance of carbohydrate metabolism, transport and catabolism, and
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amino acid metabolism compared to the LFT groups. However, the results of the LFT group
showed a high abundance of energy metabolism compared to the NF and LF groups.

Antioxidants 2023, 12, x FOR PEER REVIEW 14 of 22 
 

 
Figure 6. Effect of three diets on intestinal microbial functions. (A) Secondary functional annotation; 
(B) Tertiary functional annotation; red color represents upregulated function, and bule color repre-
sents downregulated function. 

In addition, in tertiary function prediction (Figure 6B), the LF group predicted a 
lower abundance of the mTOR signaling pathway, secondary bile acid biosynthesis, lyso-
some, protein processing in the endoplasmic reticulum, and fatty acid metabolism, and a 
higher abundance of apoptosis and primary bile acid biosynthesis than the other two 
groups. The abundance of fatty acid biosynthesis and elongation was increased in the LF 
and LFT groups compared to the NF group. Simultaneously, the LF group had lower NF-
κB signaling pathway levels than the LFT group. 

3.8. Correlation Analysis of Hemolymph and Hepatopancreas Indicators with Intestinal Microbes 
The correlation analysis of intestinal microbes (based on Euclidean distances) and 

phenotypes (based on Manhattan distances) revealed that gut microflora played an essen-
tial role in shaping phenotypes (Figure 7). The abundances of Klebsiella, Thermobifida, Clos-
tridiumsensustricto 12, and Bifidobacterium were highly relevant to both phenotypes (p < 
0.01). Hemolymph indicators were significantly correlated with Microlunatus, Candidatus 
Chloroploca, and Lysobacter (p < 0.05) and significantly associated with Alistipes (p < 0.01). 

Figure 6. Effect of three diets on intestinal microbial functions. (A) Secondary functional annotation;
(B) Tertiary functional annotation; red color represents upregulated function, and bule color represents
downregulated function.

In addition, in tertiary function prediction (Figure 6B), the LF group predicted a lower
abundance of the mTOR signaling pathway, secondary bile acid biosynthesis, lysosome,
protein processing in the endoplasmic reticulum, and fatty acid metabolism, and a higher
abundance of apoptosis and primary bile acid biosynthesis than the other two groups.
The abundance of fatty acid biosynthesis and elongation was increased in the LF and
LFT groups compared to the NF group. Simultaneously, the LF group had lower NF-κB
signaling pathway levels than the LFT group.

3.8. Correlation Analysis of Hemolymph and Hepatopancreas Indicators with Intestinal Microbes

The correlation analysis of intestinal microbes (based on Euclidean distances) and phe-
notypes (based on Manhattan distances) revealed that gut microflora played an essential
role in shaping phenotypes (Figure 7). The abundances of Klebsiella, Thermobifida, Clostrid-
iumsensustricto 12, and Bifidobacterium were highly relevant to both phenotypes (p < 0.01).
Hemolymph indicators were significantly correlated with Microlunatus, Candidatus Chloroploca,
and Lysobacter (p < 0.05) and significantly associated with Alistipes (p < 0.01).

A more specific presentation of Figures 7 and S3A shows significant correlations
between 17 measured hemolymph indicators, and 22 differential microbial genera were
found through Pearson’s correlation analysis. The levels of AKB, ALB, MDA, AST, and
LPS were significantly positively correlated with Klebsiella and almost negatively correlated
with Clostridiumsensustricto 12, Bifidobacterium, and Thermobifida, while the hemolymph
antioxidant enzymes (GSH, T-SOD, LZM) showed opposite trends (p < 0.05). In addition,
the hemolymph’s GLU, TC, TG, and LDL-C content was significantly positively correlated
with Alistipes (p < 0.05).

Figure S3B shows that hepatic enzyme activity (T-SOD, CAT, TP, AMS, AKP, NO, and
INOS) and genes (Bcl-2, AKT, mTOR, Toll, Dorsal, IMD, Relish, LZM, and ALF) were almost
positively correlated with Thermobifida, Clostridiumsensustricto 12, and Bifidobacterium and
negatively correlated with Klebsiella. The apoptosis-related genes Bax, Caspase-2, Caspase-3,
and Caspase-8 were positively correlated with Klebsiella, Candidatus Nitrotoga, and Sulfuri-
fustis, but negatively correlated with Microlunatus and Bifidobacterium (p < 0.05). The IGF-1
and IGF-2 were positively correlated with Alistipes and Methylocaldum (p < 0.05). In addition,
hepatopancreas injury-related indicators (MDA, ALT, AST) were significantly positively
correlated with Klebsiella and negatively correlated with Thermobifida, Clostridiumsensustricto
12, and Bifidobacterium (p < 0.05).
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4. Discussion

To develop low-cost and sustainable low-fish meal (LF) feed, soybean meal (SBM)
can replace fish meal in the diet. However, an inappropriate replacement ratio results in a
limitation of amino acids and ANFs, thus affecting the growth of aquatic animals [35]. Our
results indicate that SBM replacing 40% fish meal (LF) reduced growth performance, leading
to higher mortality and FCR in M. rosenbergii. Interestingly, the addition of TTO alleviated
the growth inhibition without significant feed wastage and reduced it. In addition, although
the addition of TTO resulted in a slight decrease in SR, WGR, and FCR compared to the
control group, no significant difference was observed. These results suggest that the
inclusion of the LFT diet in the production diet does not have negative effects on growth.
Similar to our study, plant essential oils were found to have growth-promoting effects
in aquaculture and did not have negative effects [36]. As nutrient uptake and pathogen
resistance are generally achieved through enterohepatic circulation [37], we speculated that
the inhibited growth and increased mortality of LF diets in our study were closely related
to the physiological state of the hepatopancreas and intestine [38]. At the same time, it
has also been reported that high levels of SBM diets caused pathological features in the
enterohepatic tissues of gibel carp and L. vannamei [39,40]. Therefore, in this study, we used
SBM to replace 40% fish meal (LF) as a side effect diet model. Subsequently, 200 mg/kg
TTO was added to the LF diet (LFT) to investigate the protective effects of TTO against LF
diet-induced enterohepatic injury in M. rosenbergii.

The hepatopancreas is the center of energy and lipid metabolism in crustaceans. The
current results showed that the LF diet caused damage to the hepatopancreas, as indi-
cated by a decrease in secretory cells and severe vacuolization in the microstructure in
the LF group [14]. At the same time, the hepatic function indicators AST, ALT, and AKP
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were significantly elevated in the hepatopancreas and hemolymph in the LF group [41].
The significantly upregulated TP, ALB, and A/G levels in the LF group also reflected
the unhealthy condition of the hepatopancreas, which was consistent with findings in
Eriocheir sinensis [42,43]. However, the structural damage of the hepatopancreas and the
level of liver injury indicators were alleviated by LFT, which could be attributed to the
supplementation of TTO, inhibiting the activation of apoptosis caused by the LF diets [44].
The previous study showed that activated Akt/mTOR signaling could inhibit apoptosis.
Specifically, phosphorylated AKT increased the Bcl-2/Bax ratio, which determines the di-
rection of apoptosis (increasing the Bcl-2/Bax ratio inhibits apoptosis) [45]. In addition, the
Akt/mTOR is also a pivotal pathway that promotes histiocyte growth and differentiation
and even regulates energy (glucose and lipid) metabolism [46]. In this study, LFT alleviated
AKT/mTOR expression and AKT phosphorylation inhibited by LF, suggesting that LFT
could alleviate apoptosis and energy metabolism disorder caused by LF.

In energy metabolism, trypsin plays an important role in protein digestion, releasing
amino acids and glucose to provide energy for the organism [47,48]. In the present study,
decreased trypsin and blood glucose levels in the hepatopancreas revealed an LF-induced
energy metabolism disorder. Consistently, hepatic weight, HSI, hepatic lipids, and blood
lipids were all decreased in the LF group, indicating that hepatopancreas dysplasia caused
hepatic atrophy and lipid loss [49]. Meanwhile, the polypeptide hormones IGF-1 and
IGF-2, as well as the downstream Akt/mTOR signaling pathway, were downregulated in
the LF group, indicating that LF inhibited hepatic development and growth [50]. After
TTO was added, IGF-1 and IGF-2 levels were upregulated, restoring energy metabolism
and hepatopancreas development to the control levels. In conclusion, TTO supplemen-
tation reversed the hepatopancreas dysplasia and damage caused by SBM replacing the
fish-meal diet.

Crustaceans rely on innate immunity (non-specific immunity) to resist damage from
pathogens and other noxious agents. As a critical immune organ in crustaceans, the hep-
atopancreas exhibits non-specific immune deficiencies when hepatopancreatic damage and
energy metabolism disorders occur [51]. Antioxidant capacity is a part of innate immunity,
which depends on the ability of antioxidants to scavenge free radicals or other harmful
substances, such as GSH, SOD, CAT, and GPX. Consistent with other studies, decreased
SOD, GSH, CAT, and increased MDA levels in the hepatopancreas and hemolymph in
this study suggest that LF reduces antioxidant capacity [7]. However, TTO alleviated the
antioxidant dysfunction through non-specific immune signaling pathways, such as the NF-
κB/NO pathway and the homologous proteins Dorsal and Relish, and the ligand proteins
Toll and IMD for Dorsal and Relish [27,52]. In addition, antibacterial peptides (AMPs) from
crustin (Cru), lysozyme (LZM), and anti-lipopolysaccharide factor (ALF) are important for
antioxidant resistance and innate immunity when induced by Dorsal and Relish [53,54].
In the present study, TTO activated the expression of ALF, LZM, and hemolymph LZM.
Therefore, the addition of TTO improved the non-specific immune ability and antioxidant
capacity through the NF-κB/NO and NF-κB/AMPs pathways.

In addition to digestion and absorption, the shrimp intestine also functions as a critical
immune organ. There are trillions of gut bacteria in the intestine, but the disruption of in-
testinal flora leads to an increased abundance of pathogenic bacteria, ultimately resulting in
intestinal damage. In addition, the intestinal flora participates in several biological reactions
in the host, of which intestine–hepatic connections are the most meaningful [55]. In the LF
group, we found markedly affected intestinal microbial composition and diversity, includ-
ing a significant increase in the abundance of Proteobacteria. All bacteria in this phylum are
Gram-negative and are the primary source of plasma LPS. In our study, hemolymph LPS
replacement showed that LPS entered the hepatopancreas via the enterohepatic circulation
and promoted the initiation and progression of hepatopancreatic injury [56]. It is worth
noting that the abundance of Firmicutes and Actinobacteria was significantly increased by
the addition of TTO. The Firmicutes included the vast majority of lactic acid bacteria and
Clostridium genera, such as Lactobacillus, Clostridiumbutyricum, and Leuconostoc, which are
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generally considered to be probiotics for intestinal health [57]. The phylum Actinobacte-
ria produced short-chain fatty acids (SCFAs) associated with oligosaccharide-fermenting
bacteria such as Bifidobacterium [58]. Thus, the recovery of Firmicutes and Actinobacteria
abundance following TTO intervention suggests that TTO has the potential to positively
improve the intestinal flora.

Tax4Fun microbial function analysis is an effective method to identify microbial
functions and has been used in many studies [59]. Through Tax4Fun analysis, we found
dysregulated gut microbial functions in the energy metabolism, cell apoptosis, and NF-
κB pathway. However, the mechanisms between these gut microbiota and the critical
pathway are still unclear. Therefore, we performed Pearson correlation analyses to uncover
the relationship between the three different microbial genera, the hemolymph, and the
hepatopancreatic indicators.

The results showed that Clostridium sensu stricto 12 and Thermobifida were positively
correlated with antioxidant indicators and negatively correlated with hepatic damage.
Clostridium sensu stricto and Thermobifida are both beneficial microorganisms, but there is no
detailed research indicating their direct relationship with hepatic injury and antioxidant
activity. We speculated that they might be mediated through two pathways; on the one
hand, some metabolites produced by Clostridium sensu stricto and Thermobifida regulate
the immune system by stimulating the secretion of mucin proteins in intestinal mucosal
epithelial cells to improve intestinal mucosal barrier function. Another possible mechanism
is that their metabolites may contain a variety of antioxidants that could scavenge free
radicals and reduce hepatic oxidative damage, such as GSH and SOD. Based on the changes
in non-specific immune competence in M. rosenbergii, we believe that the first speculation is
the most likely. Further studies are needed.

Research has shown that Klebsiella is often regarded as a pernicious bacterium, leading
to intestinal barrier damage, apoptosis, and defects in the immune signaling pathway [60].
In our study, Klebsiella showed a negative correlation with antioxidant and immune-related
indicators, while being positively correlated with hypohepatia and apoptosis indicators,
suggesting that increased Klebsiella abundance by LF leads to immune suppression and
oxidative damage. The pathogenic factor LPS expressed by Klebsiella also caused the onset
and exacerbation of hepatic disease, leading to hypohepatia [61]. A significant negative
correlation has also been found between the AMPs gene and Klebsiella, indicating that a
decrease in AMPs in the LF group may lead to Klebsiella colonization in the intestine [62].
Bifidobacterium is a probiotic in the gut that is critical to improve hepatic development
and function [63,64]. It is worth noting that Bifidobacterium has completely opposite ef-
fects to Klebsiella, suggesting that Bifidobacterium positively enhances growth performance
and immune function. In addition, as an upstream regulator of NF-κB, the activation of
Akt/mTOR by Bifidobacterium upregulates the expression of NF-κB homologous genes
(Relish/Imd, Toll/Dorsal), which may ultimately achieve antioxidant activity through
NF-κB/NO. At the same time, AMPs genes activated by NF-κB transcription factors can
induce immune responses [65], further demonstrating that Bifidobacterium could enhance
non-specific immunity [66]. Additionally, Alistipes could improve the metabolic state in the
gastrointestinal tract, increasing the host’s ability to use glucose for energy while promoting
increased fatty acid synthesis [67]. Interestingly, glucose and lipid levels, IGF-1, and IGF-2
were positively correlated with Alistipes in this study. Therefore, Alistipes may promote
increased glucose utilization, lipid synthesis, and IGF-1 and IGF-2 levels to promote growth.
Our results showed that the growth and immunosuppression produced by replacing fish-
meal with SBM were correlated with the increase in Klebsiella in the intestine. At the same
time, an improvement after TTO supplementation can be achieved by probiotics such as
Clostridium sensu stricto 12, Thermobifida, Bifidobacterium, etc., to improve intestinal function.

5. Conclusions

In conclusion, the LF diet resulted in significant growth inhibition. Although a small
negative effect on growth performance was observed in the LFT diet, it was not very
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severe considering its non-significance and several positive health benefits. The growth
inhibition and hepatopancreas damage caused by the LF diet may be related to metabolic
disturbances and non-specific immunodeficiency, which were caused by increased levels of
LPS by Klebsiella. The positive regulation of non-specific immunity and energy metabolism
in the hepatopancreas of M. rosenbergii by the addition of 200 mg/kg TTO may depend on
the combined effects of metabolites from different microorganisms (Clostridium sensu stricto
12, Thermobifida, Bifidobacterium) on the AKT/mTOR and NF-κB/NO pathways (Figure 8).
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Figure 8. Mechanisms of regulation of the hepatopancreas–intestine axis and intestinal microbiota
after LF diet and 200 mg/kg TTO supplementation (LFT). The red arrows indicate the regulatory
effects of the LF diet; the green arrows indicate the regulatory effects of the LFT diet. Arrows pointing
upwards indicate significant upregulation or improvement and arrows pointing downwards indicate
significant downregulation or inhibition.
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