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Abstract: Previous studies have shown that salinity eustress enhances the nutritional and bioactive
compounds and antiradical capacity (ARC) of vegetables and increases the food values for nourish-
ing human diets. Amaranth is a salinity-resistant, rapidly grown C4 leafy vegetable with diverse
variability and usage. It has a high possibility to enhance nutritional and bioactive compounds
and ARC by the application of salinity eustress. Hence, the present study aimed to evaluate the
effects of sodium chloride stress response in a selected Lalshak (A. gangeticus) genotype on minerals,
ascorbic acid (AsA), Folin–Ciocalteu reducing capacity, beta-carotene (BC), total flavonoids (TF),
pigments, polyphenolic profiles, and ARC. A high-yield, high-ARC genotype (LS6) was grown under
conditions of 0, 25, 50, and 100 mM sodium chloride in four replicates following a block design with
complete randomization. We recognized nine copious polyphenolic compounds in this accession
for the first time. Minerals, Folin–Ciocalteu reducing capacity, AsA, BC, pigments, polyphenolic
profiles, and ARC of Lalshak were augmented progressively in the order: 0 < 25 < 50 < 100 mM
sodium chloride. At 50 mM and 100 mM salt concentrations, minerals, AsA, Folin–Ciocalteu reducing
capacity, BC, TF, pigments, polyphenolic profiles, and ARC of Lalshak were much greater than those
of the control. Lalshak could be used as valuable food for human diets as a potent antioxidant.
Sodium chloride-enriched Lalshak provided outstanding quality to the final product in terms of
minerals, AsA, Folin–Ciocalteu reducing capacity, BC, TF, pigments, polyphenolic profiles, and ARC.
We can cultivate it as a promising alternative crop in salinity-prone areas of the world.

Keywords: color attributes and pigment; minerals; beta-carotene; ascorbic acid; HPLC–UV; DPPH;
ABTS+; polyphenolic profiles; antiradical capacity; salinity stress

1. Introduction

Consumers’ acceptability largely depends on the color, flavor, and taste of products.
Presently, coloring food products has attracted the favor of consumers. These products
have received much interest from consumers in aesthetic, nutritional, and safety aspects
of food. The demand for natural pigments such as betacyanins, betaxanthins, betalains,
anthocyanin, amaranthine, carotenoids, and chlorophylls is increasing considerably day by
day. The selected Lalshak genotype is bright red–violet due to the presence of abundant
betalains. Leaves of amaranths are an exclusive source of betalains (betaxanthins and
betacyanins) that have a strong antiradical capacity (ARC) [1]. Betalains could be used as
a food colorant in low-acid foods as they have higher pH stability than anthocyanins [2].

Antioxidants 2023, 12, 173. https://doi.org/10.3390/antiox12010173 https://www.mdpi.com/journal/antioxidants

https://doi.org/10.3390/antiox12010173
https://doi.org/10.3390/antiox12010173
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://orcid.org/0000-0002-6814-8816
https://orcid.org/0000-0001-8333-1240
https://orcid.org/0000-0001-5006-5687
https://orcid.org/0000-0002-6409-6019
https://orcid.org/0000-0002-4873-2281
https://doi.org/10.3390/antiox12010173
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com/article/10.3390/antiox12010173?type=check_update&version=1


Antioxidants 2023, 12, 173 2 of 20

Amaranthine, a major pigment of betacyanins in Lalshak, has very strong ARC. It could
be used as a substitute for betanins from red beets in food colorants and natural antiox-
idants [1]. Betacyanins, betaxanthins, and carotenoids are also free radical scavengers
(antioxidants) [3] that play an important role in human health [4]. The active ingredients of
betalains and carotenoids provide anti-inflammatory properties to our food and reduce the
risk of cardiovascular disease and lung and skin cancers [4–6]. The natural properties of
betalains and carotenoids of the amaranth genotype enable these compounds to be used as
additives for drugs, food, and cosmetic products [7].

Amaranth is an excellent source of minerals and a unique source of pigments—such as
betalains, chlorophylls, carotenoids [8–10] with strong ARC [11,12], polyphenolic profiles,
BC, and ascorbic acid (AsA) [13,14] with high ARC [15,16]—that has remarkable contribu-
tions to the food industry as these compounds scavenge reactive oxygen species (ROS) [17–19]
in the human body. It may be utilized in various medications, especially neuroprotec-
tive [20], antimicrobial [21–23], antiviral [24], antiulcer [25], anthelmintic [26–29], hepatopro-
tective [30–33], anticancer [34,35], anti-inflammatory [36,37], anti-hyperlipidemic [38–40],
antimalarial, antidiabetic, and snake antidote [41–43] medicine. The concentration of sec-
ondary plant metabolites was enhanced with a degree of salinity that ultimately accelerated
plant defense mechanisms against oxidative stress [44]. Sodium chloride stress oxidizes
lipids, DNA, proteins, and various cellular macromolecules, and produces ROS which
eventually results in oxidative damage [45]. Non-enzymatic antioxidants, for instance,
proteins, betalains, carotenoids, and polyphenolic compounds in plants, are proficient in
ROS detoxification [46]. So, the consumption of salt-induced plants can act as a reserve of
powerful antioxidants in human health promotion. Consumption of these compounds pro-
vides outstanding compensations to our daily diet as a result of efficient quenching of ROS
and defense against several ailments, for instance, cardiovascular ailments, cataracts, cancer,
atherosclerosis, emphysema, retinopathy, arthritis, and neuron-destroying ailments [7].

Although leafy vegetables are sensitive to many stresses, amaranths are leafy vegeta-
bles broadly adjusted to diverse stresses, for instance, sodium chloride [47,48] and water
deficits [49,50], and has various utilities. Various aspects, for instance, biological, physiolog-
ical, ecological, biochemical, environmental, and evolutionary processes, rapidly augment
the quality and contents of natural antioxidants under salinity stress [51]. Inadequate
information exists on the effects of salt stress on pigments, minerals, and polyphenolic
profiles in leafy vegetables. The literature has shown a salt-induced decrease in chloro-
phylls and increases in AsA, Folin–Ciocalteu reducing capacity, beta-carotene (BC), total
flavonoids (TF), and ARC in Cichorium spinosum [52]. Various salt concentrations boosted
the carotenoids in the sprouts of Fagopyrum esculentum compared to a control [53]. ARC,
AsA, Folin–Ciocalteu reducing capacity, BC, and TF of purslane were ameliorated under
salt stress [54]. Folin–Ciocalteu reducing capacity and ARC were increased under salt
stress in barley [55]. Sodium chloride’s impact on nutrients, AsA, Folin–Ciocalteu reducing
capacity, BC, TF, pigments, polyphenolic profiles, and ARC in Lalshak was studied for the
first time. We hypothesized that, similar to the above-mentioned crops, nutrients, phyto-
chemicals, pigments, polyphenolic profiles, and ARC could be increased under various
salinity stresses due to abiotic stress tolerance. We screened high-ARC and high-yielding
genotypes (accession LS6) based on our preceding studies [56–61]. Based on the above
hypothesis, the current study aimed to estimate the influence of salt stress in a selected
Lalshak genotype on nutrients, AsA, Folin–Ciocalteu reducing capacity, BC, TF, pigments,
polyphenolic profiles, and ARC.

2. Materials and Methods
2.1. The Experimental Site, Plant Materials, and Experimental Conditions

Earlier, we evaluated 120 genotypes [53–58] from our departmental collection. From
these studies, we selected a high-yield, high-ARC genotype (accession LS6). The seeds
were sown in plastic pots at Bangabandhu Sheikh Mujibur Rahman Agricultural University
(AEZ-28, 24◦23′ north latitude, 90◦08′ east longitude, 8.4 m.s.l.) following a randomized
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complete block design (RCBD) in four replicates. Recommended fertilizer doses were
used. Four salt treatments, namely 100, 50, 25, and 0 mM (control), were used in the study.
For proper establishment and vigorous growth of seedlings, pots were regularly irrigated
through fresh water for 10 d. On the 11th day, we imposed salt treatments and continued
up to 30 d (edible stage). Pots were irrigated with 100, 50, and 25 mM saline water (NaCl)
and freshwater once a day. At 30 d, Lalshak leaves were harvested.

2.2. Chemicals

Solvent: MeOH and acetone. Reagents: NaOH, AsA, HClO4, cesium chloride, HNO3,
Trolox, H2SO4, dithiothreitol (DTT), Sb, 2, 2-dipyridyl, standard flavonoid compounds,
HPLC-grade acetonitrile and acetic acid, rutin, gallic acid, DPPH, sodium carbonate,
Folin-Ciocalteu reagent, ABTS+, potassium acetate, aluminum chloride hexahydrate, and
potassium persulfate. All solvents and reagents were bought from Merck (Darmstadt,
Germany) and Kanto Chemical Co., Inc. (Tokyo, Japan).

2.3. Determination of Mineral Composition

We dried the leaves in an oven for 24 h at 70 ◦C. We digested ground leaves with
HNO3 and HClO4 to determine the mineral elements [62,63]. We digested a 0.5 g leaf
sample with 400 mL HNO3 (65%), 40 mL HClO4 (70%), and 10 mL H2SO4 (96%). We
read the absorbance at 589 (Na), 213.9 (Zn), 258.056 (S), 285.2 (Mg), 248.3 (Fe), 76 6.5 (K),
422.7 (Ca), 279.5 (Mn), 880 (P), 324.8 (Cu), 313.3 (Mo), and 430 (B) nm wavelengths using a
Hitachi atomic absorption spectrophotometer (Tokyo, Japan). We expressed macro- and
microelements in mg g−1 and µg g−1 DW.

2.4. Determination of Chlorophylls and Carotenoids

The Lalshak leaves were extracted in 80% acetone to estimate total chlorophyll, chloro-
phyll b, carotenoids, and chlorophyll a [64–67]. A spectrophotometer (Hitachi, U-1800,
Tokyo, Japan) was used to read the absorbance at 663 nm for chlorophyll a, 646 nm for
chlorophyll b, and 470 nm for carotenoids. Data were expressed as µg chlorophyll per g
fresh weight (FW) and mg carotenoids per 100 g FW.

2.5. Betacyanins and Betaxanthins Content Measurement

The Lalshak leaves were extracted in 80% methyl alcohol containing 50 mM ascorbate
to measure betacyanins and betaxanthins [68–70]. A spectrophotometer (Hitachi, U-1800,
Tokyo, Japan) was used to measure the absorbance at 540 nm for betacyanins and 475 nm
for betaxanthins. The results were expressed as the nanogram betanin equivalent per gram
FW for betacyanins and nanogram indicaxanthin equivalent per gram FW for betaxanthins.

2.6. Estimation of BC

Fresh leaves (500 mg) were thoroughly mixed with 80% acetone (10 mL) using a mortar
and pestle. We determined BC by centrifuging the mixture for 3–4 min at 10,000× g [71–74].
We separated the filtrate in a flask and maintained the final volume of 20 mL. We measured
the absorbance using a spectrophotometer (Tokyo, Japan) at 480 and 510 nm. Finally, we
calculated BC as mg 100 g−1 FW.

2.7. Estimation of AsA

AsA and DHA were determined from fresh leaves. DHA was reduced to AsA by
pre-incubating the sample using dithiothreitol (DTT). Fe3+ was converted to Fe2+ with the
reduction of AsA. Fe2+ complexes were formed by reacting Fe2+ and 2, 2-dipyridyl [75,76].
We took the optical density of the complexes using a Hitachi spectrophotometer (Tokyo,
Japan) at 525 nm. Finally, we calculated AsA as mg 100 g−1 FW.
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2.8. Sample Extraction and Determination of Folin–Ciocalteu Reducing Capacity, TF, and ARC

To avoid direct sunshine, we dried leaves in a shady place. We extracted both the
ground dried and fresh leaves (30 d) separately with a mortar and pestle. Folin–Ciocalteu
reducing capacity was estimated from fresh leaves, whereas ARC and TF contents were
estimated from dried leaves. Exactly 0.25 g samples were combined with 10 mL MeOH
(90%) in a tightly capped bottle. We placed the mixture in a shaker (Tokyo, Japan) at
60 ◦C for 1 h. For Folin–Ciocalteu reducing capacity, ARC, and TF estimation, we stored
the final filtrate until use. Folin–Ciocalteu reducing capacity and TF were estimated by
the Folin-Ciocalteu reagent and AlCl3 colorimetric methods, respectively [77]. We used a
spectrophotometer (Hitachi, Tokyo, Japan) to read the absorbance at 415 and 760 nm. Folin–
Ciocalteu reducing capacity and TF were measured using gallic acid and rutin standard
curves as gallic acid and rutin equivalent µg GAE g−1 of FW and µg RE g−1 DW. The ARC
was estimated by radical degradation by DPPH and ABTS+ assay [78,79]. We measured the
inhibition % of ABTS+ and DPPH equivalent to the control using the equation:

ARC (%) = (Ab − AS/Ab) × 100

where Ab represents the blank sample absorbance (10 µL and 150 µL MeOH for ARC
(ABTS) and DPPH, respectively, as a substitute of leaf extract), and AS is the absorbance of
the sample. Finally, we calculated ARC as µg Trolox equivalent g−1 DW.

2.9. Sample Extraction and Determination of Polyphenolic Profiles by HPLC

Exactly 1 g of fresh leaves was extracted in 10 mL MeOH (80%) comprising ascorbate
(1%). We homogenized the mixture thoroughly and placed it in a 50 mL test tube (tightly
capped). Then, we placed the test tube in a shaker (Scientific Industries Inc., New York, NY,
USA) at 400 rpm for 15 h. The mixture was filtered using a 0.45 µm filter (Springfield, MA,
USA) and centrifuged at 10,000× g for 15 min. We estimated polyphenolic compounds
from the filtrate. We repeated all extractions 3 times. For the HPLC determination of
polyphenolic compounds, we followed the method of Sarker and Oba [50]. We equipped
Shimadzu HPLC equipment (Kyoto, Japan) with a degasser, detector, and binary pump. A
CTO-10 AC (STR ODS-II, 150 × 4.6 mm, 5 µm; Shinwa Chemical Industries, Ltd., Kyoto,
Japan) column was used for the separation of polyphenolic compounds. We pumped
Solvent A (acetic acid 6% (v/v) in water) and Solvent B (acetonitrile) at 1 mL/min for
70 min. We used a gradient program to run the HPLC system with 0–15%, 15–30%, 30–50%,
and 50–100% acetonitrile for 45, 15, 5, and 5 min. We maintained the column temperature
of 35 ◦C with an injection volume of 10 µL. We set a Shimadzu SPD-10Avp UV–vis detector
at 280, 360, and 370 nm to continuously monitor polyphenolic compounds. We identified
the compound by comparing the retention time and UV–vis spectra with their respective
standards. Finally, we calculated polyphenolic compounds as µg g−1 FW.

2.10. Quantification of Polyphenolic Compounds

We quantified each polyphenolic compound using the corresponding standards of
calibration curves. We prepared stock solutions (100 mg/mL) by dissolving 9 polyphenolic
compounds with 80%MeOH. We quantified polyphenolic compounds using standard
curves (10, 20, 40, 60, 80, and 100 µg/mL) with external standards. Co-chromatography of
samples’ retention times spiked with commercially available standards. We identified and
matched the polyphenolic compounds utilizing UV spectral characteristics.

2.11. Statistical Analysis

To obtain a replication mean, we averaged each treatment from all the sample data of a
trait [80–83]. We biometrically and statistically analyzed the mean data of various traits [84–87].
Statistix 8 software was used to analyze the data to obtain an analysis of variance
(ANOVA) [88–90]. Duncan’s multiple range test (DMRT) at a 1% level of probability
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was used to compare the means. The results were reported as the mean ± SD of four
separate replicates.

3. Results and Discussion
3.1. Influence of Sodium Chloride Stress on Color Parameters and Pigments

Figures 1 and 2 represent the color parameters and pigments under different sodium
chloride stresses. Preference, choice making, and acceptability of the product mostly
depend on leaf color, which contributes significantly to the choice of consumers. It is a
key indicator for evaluating the ARC of leafy vegetables [91]. The LS6 accession had high
positive a* and b* values, indicating the presence of abundant red and yellow color pigments
(betaxanthins, carotenoids, betacyanins, anthocyanins, and betalains). Our obtained results
corroborated the results of Colonna et al. [91]. Betacyanins, chroma, L*, carotenoids,
betaxanthins, betalains, a*, and b* values were progressively augmented in the order:
Control < 25 < 50 < 100 mM salt stress. In contrast, total chlorophyll, chlorophyll b, and
chlorophyll a content were drastically reduced in the order: Control > 25 > 50 > 100 mM
salt stress. Carotenoids, L*, chroma, b*, betacyanins, betaxanthins, betalains, and a* were
augmented by 14%, 0%, 1%, 1%, 2%, 4%, 1%, 4%; 28%, 32%, 3%, 7%, 7%, 6%, 5%, 3%, 11%;
and 59%, 6%, 14%, 16%, 10% 10%, 8%, 22% under 25; 50; and 100 mM salt concentrations,
respectively. In contrast, chlorophyll b, chlorophyll a, and total chlorophyll content were
reduced by 2%, 6%, 4%; 9%, 9%, and 9%; and 17%, 19%, 18%, respectively, compared
to control conditions (Figure 3). Petropoulos et al. [52] reported that the chlorophylls of
Cichorium spinosum were drastically reduced with an increment in sodium chloride stress.
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Figure 1. Color attributes of Lalshak as influenced by salt stress (n = 6). L* = Lightness;
a* = Redness/greenness; b* = Yellowness/blueness. Dissimilar letters in the bars varied signifi-
cantly by Duncan’s Multiple Range Test (DMRT) (p < 0.01).
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Sodium chloride stress affected plant growth and development through decreas-
ing stomatal conductivity, which restricts CO2 influx to leaves and causes osmotic stress
in plants, reduction in water potential, and unfavorable CO2/O2 ratios in chloroplasts,
reducing photosynthesis. Lim et al. [53] reported that different salt concentrations aug-
mented carotenoid content. They observed the highest increment (two-fold) in carotenoids
under 50 and 100 mM salt concentrations in comparison to the control conditions.
Alam et al. [54] observed both stimulation and reduction in carotenoid content in salt-
stressed purslane. To regulate plant development under sodium chloride stress, the plant
accelerates the mevalonic acid pathway for the biogenesis of abscisic acid from carotenoids.
Thus, sodium chloride stress enhances the synthesis of carotenoids to accelerate the meval-
onic acid pathway [47]. The decline in pigment for photosynthesis under salt stress is
also linked with the oxidation of chlorophyll pigment through free radicals, interference
of salt ions with pigment–protein complexes [92], chloroplast disruption, and increased
activity of chlorophyllase enzymes responsible for the degradation of chlorophylls [93].
The presence of betalain pigments (betaxanthin and betacyanin) may act as an antioxi-
dant and absorb radiation significantly to protect against excessive harmful light in the
chloroplasts. These findings were corroborative to the findings of Jain et al. [94]. In Dis-
phyma australe, they reported that salt-induced plants with increased betalains exhibited
more tolerant physiology through the production of less H2O2, faster recoveries of PSII,
and increased rates of assimilation of CO2, and photochemical quenching, photochemical
quantum yields, and water-use efficiencies. Moreover, betalains (betacyanins and betaxan-
thins) protect the chloroplasts from salinity stress by scavenging reactive oxygen species
in thylakoids [95] and through faster recoveries of PSII, photochemical quenching, and
photochemical quantum yields [94].

3.2. Sodium Chloride Impact on Minerals (Macroelements and Microelements)

Macroelements and microelements in Lalshak are presented in Figures 4 and 5. The
studied Lalshak demonstrated copious macroelements and microelements, which corrob-
orated with the results of Shukla et al. [96], who reported very high levels of minerals in
open-field-grown A. tricolor. Lalshak has greater iron and zinc compared to the leaves of
cassava [97] and beach peas [98]. The previous study showed copious amounts of Mn, Fe,
Cu, and Zn in different A. spp. [99]. They demonstrated greater levels of copper and iron
in different A. spp., which were superior to kale, and Zn levels of different A. spp. were
also superior to spinach, kale, and black nightshade. At 100 mM salt concentration, the
maximum calcium, magnesium, sulfur, iron, manganese, copper, zinc, sodium, molybde-
num, and boron contents were noted, while at control conditions, the minimum calcium,
magnesium, manganese, zinc, sodium, and boron contents were displayed. Similarly,
under control and 25 mM salt stress conditions, the minimum sulfur, iron, copper, and
molybdenum contents were detected. Calcium, magnesium, manganese, zinc, sodium, and
boron contents were gradually increased in the order: Control < 25 < 50 < 100 mM salt
concentrations. Inversely, potassium and phosphorus contents extremely declined in the
order: Control > 25 > 50 > 100 mM salt concentrations.

In 25, 50, and 100 mM salt concentrations, calcium, magnesium, sulfur, iron, man-
ganese, copper, zinc, sodium, molybdenum, and boron contents were increased by 11%,
10%, −7.5%, −1%, 13%, 3%, 10%, 3%, 5%, and 4%; 24%, 25%, 16%, 6%, 29%, 36%, 46% 55%,
66%, and 20%; and 30%, 44%, 30%, 40%, 57%, 64%, 69%, 94%, 18%, and 45%, respectively,
compared to control conditions (Figure 6). In 25, 50, and 100 mM salt concentrations,
potassium and phosphorus contents were reduced to 9%, 20%, and 30%, and 1%, 19%, and
30%, respectively, compared to control conditions (Figure 6).
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Figure 4. Macroelements (mg g−1 DW) of Lalshak as influenced by salt stress (n = 6). Dissimilar
letters in the bars varied significantly by DMRT (p < 0.01).
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Figure 5. Microelements (µg g−1 DW) of Lalshak as influenced by salt stress (n = 6). Dissimilar letters
in the bars varied significantly by DMRT (p < 0.01).
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Figure 6. Comparison of the salt-induced increment in mineral composition (%) over control
in Lalshak.

Petropoulos et al. [52] detected a progressive increment in minerals, which corrobo-
rated the current findings. Petropoulos et al. [52] reported a sharp rise in calcium, iron,
magnesium, manganese, sodium, and zinc content and a reduction in potassium content
in C. spinosum. They reported that salt treatment and fertilizer application could be the
cause for the enhancement of sodium content and recommended that, to cope with the
adverse effects of salinity, the species accumulate sodium. The iron content of Lalshak was
statistically similar to the value of control and 25 mM salt concentration conditions, while
iron content was gradually increased under 50 and 100 mM salt concentration conditions
by 12% and 62%, respectively. At 25 mM salt concentration, the minimum sulfur content
was attained, which fluctuated noticeably from the control conditions. The sulfur content
was progressively increased at 50 and 100 mM salt concentrations by 20% and 51%, respec-
tively (Figure 6). Menezes et al. [100] and Odjegba and Chukwunwike [101] reported a
similar increase in Na+ and a reduction in K+ content at different salt concentrations in
A. cruentus and A. hybridus, respectively. Koksal et al. [102] showed that Ca2+ and Mg2+

increased in the roots and shoots as the salinity stress increased, while the K+ concentration
decreased in marigolds, which corroborated the present findings. Non-specific ion uptake
in salt-induced cells raises the concentration of Na+ ions. In salt-tolerant plants, two main
mechanisms, namely salt exclusion and sequestration, are identified to maintain cytosolic
Na+ levels appropriately [103]. In many plant species, the main physiological mechanism
of salt tolerance is the uptake of selective K+ against Na+ [104].

3.3. Influence of Sodium Chloride on Phytochemicals

The Folin–Ciocalteu reducing capacity, BC, AsA, TF, and ARC varied noticeably at
different sodium chloride concentrations (Figure 7).
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Figure 7. Response of phytochemical composition of Lalshak under salt stress (n = 6). Dissimilar
letters in the bars varied significantly by DMRT (p < 0.01).

Sodium chloride concentrations gradually increased Folin–Ciocalteu reducing capacity,
BC, AsA, TF, and ARC in the following order: Control < 25 < 50 < 100 mM salt concentra-
tions. BC, AsA, Folin–Ciocalteu reducing capacity, TF, and ARC (DPPH and ABTS+) under
25, 50, and 100 mM salt concentration conditions were progressively increased by 14%, 6%,
10%, 6%, 6%, and 5%; 37, 21%, 23%, 22%, 20%, and 19%; and 52%, 55%, 57%, 41%, 38%, and
40%, respectively, compared to control conditions (Figure 8).
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Figure 8. Comparison of the salt-induced increment in phytochemical composition (%) over control
in Lalshak.
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BC, AsA, Folin–Ciocalteu reducing capacity, TF, and ARC (DPPH and ABTS+) of
Lalshak were maximized at 100 mM salt stress. On the contrary, minimum BC, AsA, Folin–
Ciocalteu reducing capacity, TF, and ARC (DPPH and ABTS+) values were noted under
control conditions. Petropoulos et al. [52] described the salinity-mediated increases in
AsA, Folin–Ciocalteu reducing capacity, BC, TF, and ARC in Cichorium spinosum. Different
concentrations of sodium chloride boosted the carotenoid content in buckwheat sprouts
compared to a control [53]. Alam et al. [54] reported salt-induced enhancement of TF
and ARC in purslane. Ahmed et al. [55] demonstrated a salinity-mediated rise in Folin–
Ciocalteu reducing capacity and ARC in barley. Salinity stress creates excessive ROS
which eventually causes oxidative stress in plants. To cope with oxidative damage, plants
accumulate several secondary metabolites and non-enzymatic antioxidant compounds,
such as BC, AsA, polyphenols, flavonoids, and antioxidant enzymes. BC plays a main
protective role in photosynthetic tissue by protecting it from oxidative damage, preventing
the generation of singlet oxygen and direct scavenging of triplet chlorophyll [105]. Non-
enzymatic antioxidants, such as ascorbic acid, phenolics, and flavonoids, play an important
role in reducing oxidative stress and cellular ROS homeostasis regulation in plants [106].

3.4. Response of Sodium Chloride Stress on Polyphenolic Compounds

The HPLC-identified polyphenolic profile values of Lalshak (accession LS6) under
four salt stresses were collated with polyphenolic compounds using the respective peaks
of the compounds (Table 1). Figure 9 designates the identified polyphenolic profiles of
the Lalshak genotype under four salt stresses. Nine polyphenolic profiles including six
flavonols, namely quercetin, rutin, iso-quercetin, hyperoside, kaempferol, and myricetin;
one flavanol (catechin); one flavone (apigenin); and one flavanone (naringenin) were
identified in adequate quantities in Lalshak leaves. We identified six polyphenolic com-
pounds (iso-quercetin, kaempferol, myricetin, catechin, apigenin, and naringenin) for the
first time in this genotype. Across polyphenolic profiles, rutin is the most preponderant
flavonoid compound in Lalshak followed by quercetin, naringenin, and myricetin (Figure 9).
Khanam et al. [107] and Khanam and Oba [108] reported three flavonoids (quercetin, rutin,
and hyperoside) in amaranths.

Table 1. Retention time (Rt), wavelengths of maximum absorption in the visible region (λmax), mass
spectral data, and tentative identification of polyphenolic compounds in Lalshak.

Rt
(min)

λmax
(nm)

Molecular Ion
[M − H]−

(m/z)

MS2

(m/z)
Identity of Tentative Compounds

4.6 370 626.2468 626.3216 Myricetin-3-O-rutinoside
7.5 370 301.0348 301.2267 2-(3,4-dihydroxy phenyl)-3,5,7-trihydroxychromene-4-one

15.4 370 270.2344 270.3221 4′,5,7-Trihydroxyflavone, 5,7-Dihydroxy-2-(4-hydroxyphenyl)-4-benzopyrone
17.8 370 593.4253 593.3687 kaempferol-3-O-rutinoside
23.9 280 290.2463 290.1238 (2R-3S)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-2-chromene-3,5,7-triol
26.7 280 271.0622 271.2448 Naringenin
53.0 360 609.3874 609.4265 Quercetin-3-O-rutinoside
53.3 360 463.4358 463.5125 Quercetin-3-O-galactoside
54.3 360 463.2875 463.3124 Quercetin-3-O-glucoside

Abiotic stresses such as salinity generate various ROS, such as H2O2, superoxide,
hydroxyl radical, singlet oxygen, etc., and cause oxidative damage in plants which, fi-
nally, can oxidize lipids, DNA, proteins, and various cellular macromolecules. To cope
with oxidative damage, plants accumulate non-enzymatic antioxidant compounds, such
as polyphenols, flavonoids, and antioxidant enzymes. Generally, the accumulation of
polyphenols that possess antioxidant properties is stimulated in response to ROS increases
under biotic and abiotic stresses. They are plentiful and present in plant tissues [109].
Polyphenols can chelate transition-metal ions, can directly scavenge molecular species
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of active oxygen, and may quench lipid peroxidation by trapping the lipid alkoxyl radi-
cal. Furthermore, flavonoids and phenylpropanoids are oxidized by peroxidase and act
in the H2O2-scavenging, phenolic/AsA/POD system. Antioxidant activity is the com-
bined results of all enzymatic and non-enzymatic antioxidant activity in natural and/or
biotic/abiotic stress. Tolerant plant genotypes usually have a better antioxidant content to
protect them from oxidative stress by maintaining high antioxidant enzyme and antioxidant
molecule activities under stress conditions. Antioxidants protect the cells from free radicals
and, therefore, have been considered as a method to improve plant defense responses [110].
Antioxidant activity has a crucial role in maintaining the balance between the production
and scavenging of free radicals [111].
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Figure 9. Impact on polyphenolic compounds of Lalshak under salt stress (n = 6). Dissimilar letters
in the bars varied significantly by DMRT (p < 0.01).

Salt stress progressively augmented all flavonoid compositions. At 100 mM salt stress,
all flavonoid compounds showed maximum contents, while the lowest flavonoid contents
were recorded from the control treatment. Quercetin, rutin, hyperoside, myricetin, and
naringenin were progressively augmented in the following order: Control < 25 < 50 < 100 mM
salt stress. From control to 100 mM salt stress conditions, quercetin, rutin, hyperoside,
myricetin, and naringenin ranged from 7.35 to 18.63, 14.62 to 32.47, 3.35 to 7.36, 7.48 to
15.48, and 9.14 to 16.58 µg g−1 FW, respectively (Figure 9). From control to 100 mM salt
concentration conditions, quercetin, rutin, hyperoside, myricetin, and naringenin were
sharply and remarkably augmented by 16%, 110%, and 153%; 21%, 56%, and 112%; 19%,
95%, and 120%; 9%, 57%, and 107%; and 14%, 36%, and 81% (Figure 10).
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Figure 10. Comparison of the salt-induced increment in polyphenolic compounds (%) over control
in Lalshak.

Iso-quercetin did not augment between control and 25 mM salt stress conditions;
however, when increasing salt concentration from 25 to 100 mM, this compound sharply
increased with an increase in salt concentration with a range from 6.01 to 8.96 µg g−1 FW.
Apigenin sharply increased from control to 50 mM salt stress conditions with a range
from 6.37 to 7.97 µg g−1 FW. However, when increasing salt concentration from 50 to
100 mM, the apigenin concentration statistically remained constant. Kaempferol and
catechin ranged from 7.88 to 10.86 and 2.88 to 5.36 µg g−1 FW. These two compounds had
statistical similarity between the control and 25 mM salt stress conditions and between
50 and 100 mM salt stress conditions; however, these two compounds were remarkably
augmented from the control condition or 25 to 50 or 100 mM salt stress conditions (82%)
(Figures 9 and 10).

Among the four groups of polyphenolic profiles, the flavonols group is the most plen-
tiful in Lalshak compared to other groups, followed by flavanones. Polyphenolic groups in
Lalshak were in the order: flavonols > flavanones > flavones > flavanols (Figure 11). All
polyphenolic portions were abruptly increased under salt stress. All polyphenolic portions
displayed maximum concentrations under 100 mM salt concentrations, although the control
had minimum polyphenolic portions. From control to 100 mM salt concentration, flavonols,
flavones, flavanols, flavanones, and total polyphenols ranged from 46.66 to 93.76, 6.37 to
8.06, 2.88 to 5.36, 9.14 to 16.58, and 65.05 to 123.76 µg g−1 FW, respectively (Figure 11).

Flavonols, flavanones, and total polyphenols were progressively augmented in the
order: Control < 25 < 50 < 100 mM salt concentrations, while flavones and flavanols were
progressively augmented in the order: Control = 25 < 50 = 100 mM salt concentrations
(Figure 11). In 25, 50, and 100 mM salt concentration conditions, flavonols, flavones,
flavanols, flavanones, and total polyphenols were predominately augmented by 12%, 60%,
and 101%; 14%, 25%, and 27%; 5%, 82%, and 86%; 14%, 36%, and 81%; and 12%, 5%, and
90%, respectively, compared to control conditions (Figure 12).
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Figure 12. Comparison of the salt-induced increment polyphenolic fractions (%) over control
in Lalshak.

3.5. The Coefficient of Correlation Study

The coefficient of correlation among BC, AsA, TF, Folin–Ciocalteu reducing capacity,
ARC (DPPH), and ARC (ABTS+) are shown in Table 2. BC showed significant associations
with AsA, TF, Folin–Ciocalteu reducing capacity, ARC (DPPH), and ARC (ABTS+). This
indicated that the augmentation of BC is predominately related to the enhancement of AsA,
TF, Folin–Ciocalteu reducing capacity, ARC (DPPH), and ARC (ABTS+). Similarly, AsA
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exhibited a significant inter-relationship with TF, Folin–Ciocalteu reducing capacity, ARC
(DPPH), and ARC (ABTS+). Both BC and AsA had significant and strong contributions to
the ARC of the genotype.

Table 2. The correlation coefficient for Folin–Ciocalteu reducing capacity (FCRC), AsA, BC, TF, and
ARC (DPPH and ABTS+) in Lalshak.

AsA FCRC TF ARC
(DPPH)

ARC
(ABTS+)

BC 0.82 ** 0.81 ** 0.96 ** 0.79 * 0.84 *
AsA 0.88 ** 0.91 ** 0.92 ** 0.96 **

FCRC 0.81 * 0.93 ** 0.94 **
TF 0.82 * 0.78 *

ARC (DPPH) 0.97 **
* and **: significant at 5% and 1% level (n = 6).

TF, Folin–Ciocalteu reducing capacity, ARC (DPPH), and ARC (ABTS+) were sig-
nificantly correlated with each other. Gharibi et al. [112] observed a positive associ-
ation among total Folin–Ciocalteu reducing capacity, TF, and ARC in Achillea species.
Alam et al. [54] also reported a significant correlation among carotenoids, Folin–Ciocalteu
reducing capacity, AsA, BC, and TF with ARC (FRAP) in salt-stressed purslane. Significant
positive associations of AsA, Folin–Ciocalteu reducing capacity, BC, TF, ARC (DPPH), and
ARC (ABTS+) signifies the strong antioxidant potential of TF and Folin–Ciocalteu reducing
capacity of the genotype. Likewise, significant positive correlations between ARC (DPPH)
and ARC (ABTS+) confirmed the validation of the antioxidant potential of the genotype by
estimation of ARC using two different methods.

4. Conclusions

Sodium chloride stress remarkably augmented a*, calcium, L*, AsA, magnesium,
b*, ARC (DPPH), sulfur, TF, iron, BC, manganese, ARC (ABTS+) copper, zinc, sodium,
Folin–Ciocalteu reducing capacity, molybdenum, boron, chroma, polyphenolic profiles,
and pigments such as betacyanins, betaxanthins, betalains, and carotenoids of Lalshak
leaves. All mineral contents, AsA, Folin–Ciocalteu reducing capacity, BC, TF, pigments,
polyphenolic profiles, and ARC of Lalshak leaves under 50 and 100 mM salt concentrations
were much higher in comparison to the control conditions. It could be used as a valuable
food for human diets with health benefits. Salt-treated Lalshak leaves had abundant miner-
als, AsA, Folin–Ciocalteu reducing capacity, BC, TF, pigments, polyphenolic profiles, and
ARC. Pigments, AsA, Folin–Ciocalteu reducing capacity, BC, TF, polyphenolic compounds,
and ARC quench ROS; thus, Lalshak could be beneficial for human health via its potent
antioxidant activities. Moreover, sodium chloride-enriched Lalshak provided outstanding
quality in the final product in terms of nutrients, pigments, polyphenolic profiles, and ARC.
We can cultivate it as an encouraging alternative vegetable in salt-prone zones of the world.
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