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Abstract: Oxidative stress arises when the generation of reactive oxygen species or reactive nitrogen
species overwhelms antioxidant systems. Developing kidneys are vulnerable to oxidative stress,
resulting in adult kidney disease. Oxidative stress in fetuses and neonates can be evaluated by
assessing various biomarkers. Using animal models, our knowledge of oxidative-stress-related
renal programming, the molecular mechanisms underlying renal programming, and preventive
interventions to avert kidney disease has grown enormously. This comprehensive review provides
an overview of the impact of perinatal oxidative stress on renal programming, the implications of
antioxidant strategies on the prevention of kidney disease, and the gap between animal models and
clinical reality.

Keywords: oxidative stress; antioxidant; kidney disease; nitric oxide; asymmetric dimethylarginine;
reactive oxygen species; melatonin; fetal programming

1. Introduction

Imbalances between reactive oxygen species or reactive nitrogen species (ROS and
RNS, respectively) and innate antioxidant systems result in oxidative stress [1]. During
pregnancy, ROS and RNS have dual roles in fetal development [2]. Normally, a moderate
increase in ROS and RNS levels is essential for placental angiogenesis, cell differentiation,
and fetal organogenesis. In contrast, the overproduction of ROS and RNS, as observed in
compromised pregnancies, is associated with adverse pregnancy and fetal outcomes [3]. In
addition, a surplus of ROS reduces nitric oxide (NO) bioavailability. NO is recognized as a
key regulator of both maternal and fetal homeostasis during gestation [4].

After birth, newborns are highly vulnerable to ROS- and RNS-induced oxidative
damage [5]. A newborn encounters the transition from a hypoxic intrauterine environment
to a postnatal oxygen-rich environment with an approximately five-fold increase in oxygen
exposure. Notably, preterm babies have increased susceptibility to increased oxidative
stress conditions (e.g., infection and inflammation), in addition to their antioxidant defenses
being impaired [6].

During development, the kidneys are vulnerable to oxidative stress and other envi-
ronmental insults that impair nephrogenesis [7]. In humans, kidney development starts
at week three and is completed at week 36 of pregnancy [8]. An exponential increase in
nephrons occurs at 18–32 weeks of pregnancy. Nephron development is complete at the
end of gestation [9]. Thus, preterm birth is associated with a reduction in nephron numbers
and increased risk of kidney disease [9]. Impaired nephrogenesis results in low nephron
endowment and a spectrum of defects in the kidneys and urinary tract [10].

To date, little information is available about the influence of perinatal oxidative stress
on the development of kidney disease in humans. Unlike humans, nephrogenesis in rats
lasts after birth and finishes at 1–2 weeks postnatally [11]. Developing kidneys are mostly

Antioxidants 2023, 12, 13. https://doi.org/10.3390/antiox12010013 https://www.mdpi.com/journal/antioxidants

https://doi.org/10.3390/antiox12010013
https://doi.org/10.3390/antiox12010013
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://orcid.org/0000-0002-7059-6407
https://orcid.org/0000-0001-7470-528X
https://doi.org/10.3390/antiox12010013
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com/article/10.3390/antiox12010013?type=check_update&version=2


Antioxidants 2023, 12, 13 2 of 17

vulnerable to suboptimal pre-, peri-, and early postnatal conditions, resulting in alterations
in structure and function, namely renal programming [12]. A growing body of evidence
from animal models has offered greater understanding of the link between oxidative stress
and the development of kidney disease [7,13,14]. On the contrary, data from animal studies
indicated that the perinatal use of antioxidants was able to reverse programming processes
and prevent kidney diseases of developmental origins [15].

Although substantial progress has been achieved in developing various animal models
to study oxidative-stress-related renal programming, the need for meaningful translation
into clinical practice is still a research priority. Hence, the present review seeks to highlight
the best available evidence on the interplay between perinatal oxidative stress and renal
programming. We attempt to discuss the impact of oxidative stress on fetuses and neonates,
its associations with common mechanisms behind renal programming, and the potential of
antioxidant strategies for the prevention of kidney disease.

2. Oxidative Stress and Fetal Programming
2.1. ROS, RNS, and NO

The disequilibrium of the pro-oxidant–antioxidant balance leads to oxidative stress.
ROS and RNS can be radical or non-radical compounds. Examples of ROS include free radi-
cals, such as superoxide anions (•O2

−) and hydroxyl radicals (•OH), as well as non-radicals,
such as hydrogen peroxide (H2O2) [16]. Nitrogen-containing oxidants, such as nitric oxide
(•NO), nitrogen dioxide (NO2), and peroxynitrite (ONOO−), are called RNS [17]. On the
other hand, the excess of ROS or RNS can be neutralized by antioxidant systems including
enzymatic components (e.g., superoxide dismutase (SOD) and non-enzymatic antioxidants
(e.g., glutathione) [18]. NO is generated by NO synthases (NOSs) [19]. Asymmetric and
symmetric dimethylarginine (ADMA and SDMA, respectively) can uncouple NOSs to gen-
erate peroxynitrite, further reducing NO bioavailability and enhancing oxidative stress [20].
As ROS, RNS, and NO are essential for pregnancy, maintenance of their balance is crucial
for the normal development of a fetus. The ROS- and RNS-generating pathways, the NO
pathway, and antioxidant systems in a fetus, as well as their interconnections with renal
programming, are illustrated in Figure 1.
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Figure 1. Diagram illustrating the pathways that generate reactive oxygen species (ROS) and reactive
nitrogen species (RNS), the nitric oxide (NO) pathway, and antioxidant systems in a fetus. The
overproduction of ROS or RNS under adverse intrauterine conditions overwhelms the antioxidant
system, resulting in oxidative damage and, thereby, compromising renal development. NOS: nitric
oxide synthase; ADMA: asymmetric dimethylarginine; ONOO−: peroxynitrite; SOD: superoxide
dismutase; GPx: glutathione peroxidase; GR: glutathione reductase; GSH: reduced glutathione; GSSH:
oxidized glutathione; H2O2: hydrogen peroxide; OH•: hydroxyl radical.
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2.2. Studies in Humans: Oxidative Stress in Fetuses and Neonates

A fetus obtains sufficient amounts of oxygen to meet its growth and metabolic needs.
During the first trimester, the fetal oxygen requirement is low. Nevertheless, increasing
oxygen levels are required for the establishment of fetal–placental circulation and the rapid
fetal weight gain in the second and third trimesters [21]. Although a moderate physiological
level of ROS is crucial to maintain a healthy pregnancy [2,3], prior work has indicated that
increased oxidative stress exists in a variety of complications in pregnancy. These include,
but are not limit to, gestational diabetes [22], preeclampsia [23], preterm birth [24], placenta
dysfunction [25], maternal obesity [26], preterm premature rupture of membranes [27],
and intrauterine growth retardation (IUGR) [28]. Fetuses with these complications during
pregnancy have long-term consequences in their health later in life.

Preterm babies are particularly vulnerable to oxidative damage due to the immaturity
of antioxidant systems, high non-protein-bound iron (NPBI) levels, and the high energy
requirements for growth [5]. These instances of oxidative damage include the oxidation
of biological molecules, such as lipids, proteins, and DNA. The plasma of preterm babies
showed reduced antioxidant capacity characterized by low levels of SOD, CAT, GPX, cop-
per, vitamin E, selenium, ceruloplasmin, zinc, etc. [29]. Oxidative stress is identified as one
of the main causes responsible for several complications of prematurity, including necrotiz-
ing enterocolitis (NEC), bronchopulmonary dysplasia (BPD), retinopathy of prematurity
(ROP), intraventricular hemorrhage (IVH), respiratory distress syndrome (RDS), kidney
disease, etc. [5].

2.3. Biomarkers of Oxidative Stress in Clinical Practice

Oxidative stress in fetuses and neonates has been evaluated by assessing products
of lipid peroxidation in the serum or amniotic fluid, such as malondialdehyde (MDA),
F2-isoprostanes (F2-IsoPs), 4-hydroxy-2-nonenal (4-HNE), and thiobarbituric-acid-reactive
substances (TBARSs) [30,31]. In addition, oxidative-stress-related protein damage can
be measured by advanced oxidation protein products (AOPPs) in the serum or cord
blood [30,32]. Regarding DNA damage, 8-hydroxy-2′-deoxyguanosine (8-OHdG) is a
commonly used biomarker, as it is an oxidized nucleoside released upon the repair of dam-
aged DNA [33]. 8-OHdG is excreted in urine without further metabolism; therefore, urinary
8-OHdG is employed as a biomarker of oxidative stress in newborn medicine [34]. The ratio
of reduced to oxidized glutathione (GSH/GSSG) is another biomarker employed [35], as it
represents a dynamic balance between oxidants and antioxidants. Moreover, measurements
of antioxidant status that include the total antioxidant capacity (TAC) and antioxidant en-
zymes (e.g., SOD and catalase) can also be utilized as oxidative stress biomarkers [36].

Regarding RNS, plasma and cerebrospinal fluid levels of 3-nitrotyrosine have been
applied as markers for peroxynitrite in neonates [37,38]. ADMA and the NO metabolites of
nitrite and nitrate have been measured in the plasma and urine [39,40]. Preeclampsia is
connected to low NO bioavailability, represented by the L-arginine-to-ADMA ratio [41].
Thus far, NO can be detected in vivo using various methods, such as chemiluminescence,
fluorescence, and electron spin resonance spectroscopy. Nevertheless, NO measurements
by these methods are still limited in neonatal medicine.

2.4. What Is Missing from Human Studies?

At full-term birth, neonates generally possess a complete endowment of nephrons.
Nevertheless, nephron numbers may be reduced in infants who are born preterm due
to compromised pregnancy, inadequacy of postnatal nutrition, intrauterine growth retar-
dation (IUGR), and treatment with certain medications (e.g., gentamicin) after birth [42].
Low nephron numbers play a part in glomerular hypertension and hyperperfusion injury,
consequently provoking a vicious cycle of more nephron loss later in life [43]. Impor-
tantly, low nephron endowment presumably enacts a first hit to the kidneys, which makes
the remaining glomeruli more vulnerable to developing CKD when facing second-hit
kidney injuries [44].
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To date, nephron numbers cannot be calculated in vivo. Despite average nephron
numbers reported at about 1 million in each kidney based on prior studies of kidney
autopsies, human nephron numbers are highly variable (10-fold difference) [8]. In human
studies, there remain unmet needs to elucidate the molecular mechanisms behind perinatal
oxidative-stress-induced kidney disease and to develop interventions necessary to prove
causation. Clinically, kidney biopsies are a technically difficult procedure in children,
especially in neonates. It should be noted that it remains largely unknown whether there is
a link between kidney pathologies and circulating oxidative stress biomarkers in fetuses and
neonates. This is the reason why much of our knowledge of oxidative-stress-related renal
programming, the molecular mechanisms underlying renal programming, and preventive
interventions to avert kidney disease mainly originate from animal studies.

3. Animal Models of Oxidative-Stress-Related Renal Programming

Through the use of animal models, our understanding of the molecular mechanisms
behind renal programming has grown enormously in recent years [7,12]. Core mechanisms
include, but are not limited to, oxidative stress, NO deficiency, low nephron number,
aberrant activation of the renin–angiotensin system, dysregulated nutrient-sensing signals,
and gut microbiota dysbiosis [7,12,45,46]. The tight interconnections between oxidative
stress and other common mechanisms behind renal programming mean that oxidative
stress plays a prominent role.

Table 1 provides a summary of animal models of oxidative-stress-related renal pro-
gramming [33,35,47–77]. The current review is chiefly restricted to adverse environ-
mental cues beginning in gestation and lactation. A wide range of environmental cues
can lead to oxidative-stress-related renal programming, including imbalanced mater-
nal nutrition [47–59], maternal disorders [60–69], environmental chemical and toxin ex-
posure [70–73], and medication use [74–77].

Table 1. Animal models of oxidative-stress-related renal programming.

Animal Models Species/
Gender

Age at
Evaluation

Mechanisms of
Oxidative Stress Renal Outcomes Ref.

Maternal nutritional insults

Maternal caloric
restriction diet SD rat/M 12 weeks ↑ ADMA, ↓ NO, ↑ renal

8-OHdG expression

↓nephron number,
glomerular

hypertrophy, ↑
tubulointerstitial

injury, hypertension

[47,48]

Maternal protein
restriction diet Wistar rat/M 12 weeks ↑ F2-isoprostane, ↓

glutathione ↑BP [49]

Maternal high-fructose
diet SD rat/M 12 weeks ↓ NO, ↑renal 8-OHdG

expression ↑BP [50]

Maternal plus
post-weaning

high-fructose diet
SD rat/M 12 weeks ↑ renal 8-OHdG

expression ↑BP [51]

Maternal methyl-deficient
diet SD rat/M 12 weeks ↑ renal 8-OHdG

expression ↑BP [52]

Maternal
high-methyl-donor diet SD rat/M 12 weeks ↑ renal 8-OHdG

expression ↑BP [52]

Maternal iron deficiency SD rat/M 16 weeks ↑ renal 8-OHdG
expression ↑BP [53]

Maternal high-fat and
high-cholesterol diet

SD rat/M
and F 90 days ↓ SOD activity in M, ↑

renal MDA level in F ↑BP [54]

Maternal plus
post-weaning high-fat diet

SD rat/M
and F 16 weeks ↓ NO, ↑renal 8-OHdG

expression
↑BP, ↑kidney injury in

M [55,56]

Maternal high-fat and
high-cholesterol diet SD rat/M 18 weeks

↑renal MDA,
↓antioxidant enzymatic

activity

hypertension,
impaired renal

function
[57]



Antioxidants 2023, 12, 13 5 of 17

Table 1. Cont.

Animal Models Species/
Gender

Age at
Evaluation

Mechanisms of
Oxidative Stress Renal Outcomes Ref.

Maternal high-fat diet C57BL/6
mice/M 9 weeks ↑renal 8-OHdG

expression
↑renal hypertrophy,
↑albuminuria [58]

Maternal high-fat diet C57BL/6
mice/M 32 weeks ↑ renal 3-NT, ↑ renal

NOX2 expression

↑renal global DNA
methylation,
↑albuminuria,

↑glomerulosclerosis

[59]

Maternal disorders

Maternal L-NAME
administration SD rat/M 12 weeks ↑ renal F2-isoprostane ↑BP [60]

Maternal ADMA
administration SD rat/M 12 weeks ↓ NO ↑BP [61]

Streptozotocin-induced
diabetes SD rat/M 12 weeks ↓ NO, ↑ ADMA

↓nephron number,↑
tuburointerstitial

injury
[62]

Streptozotocin-induced
diabetes SD rat/M 12 weeks ↑ renal TBARS, ↑3-NT ↑BP, discurbed acute

renal hemodynamics [63]

Maternal suramin
administration SD rat/M 12 weeks ↓ NO, ↑ ADMA ↑BP [64]

Maternal adenine-induced
CKD SD rat/M 12 weeks ↓ NO, ↑ ADMA, ↑ renal

8-OHdG expression,
↑BP, ↑renal

hypertrophy [65,66]

Reduced uterine perfusion SD rat/M 16 weeks

↑ urinary F2-isoprostane
level and renal NADPH-

oxidase-dependent
superoxide

↑BP [67]

Maternal angiotensin II
administration Wistar rat/M 18 week ↑ renal ROS

↑BP,
↑tuburointerstitial

injury
[68]

Prenatal LPS
Exposure Wistar rat/M 28 weeks ↑ renal MDA ↑BP [69]

Toxins

Prenatal bisphenol A
exposure plus high-fat

diet
SD rat/M 16 weeks ↑ ADMA, ↓ NO, ↑renal

8-OHdG expression ↑BP [70]

Prenatal dexamethasone
plus TCDD exposure SD rat/M 16 weeks ↑ renal 8-OHdG

expression, ↑ ADMA ↑BP [71]

Maternal di-n-butyl
phthalate exposure

SD rat/M
and F 18 months ↑ renal ROS

Renal dysplasia,↑
tuburointerstitial

injury
[72]

Matenal smoking
exposure

Balb/c
mice/M 13 weeks ↑ renal ROS ↓nephron

number,↑albuminuria [73]

Medication and Drugs

Dexamethasone
administration during

lactation

Wistar rat/M
and F 12 weeks ↑renal MDA level, ↓SOD

and catalase activity
↑Tubular necrosis,
renal dysfunction [74]

Prenatal dexamethasone
exposure SD rat/M 16 weeks ↓ renal NO ↑BP [75]

Prenatal dexamethasone
exposure plus postnatal

high-fat intake
SD rat/M 16 weeks ↑ renal 8-OHdG

expression, ↓ NO ↑BP [76]

Prenatal betamethasone
exposure

Sheep/M
and F 18 months ↓ NO,↑ ROS ↑BP [77]

ADMA: asymmetric dimethylarginine; MDA: malondialdehyde; 8-OHdG: 8-hydroxy-2’–deoxyguanosine; 3-NT:
3-nitrotyrosine; 4-NHE: 4-hydroxynonenal; TBARS: thiobarbituric acid; NO: nitric oxide; ROS: reactive oxy-
gen species; CKD: chronic kidney disease; LPS: lipopolysaccharide; SD: Sprague–Dawley; TCDD: 2,3,7,8-
tetrachlorodibenzo-p-dioxin; L-NAME: L-NG-nitro arginine methyl ester; BP: blood pressure; M: male; F: female;
↑: increase; ↓: decrease.
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3.1. Maternal Insults

Table 1 illustrates that nutritional imbalance is the most common insult that induces
renal programming. Types of maternal nutritional insults can be grouped into differ-
ent models that aim to reduce calorie intake [47,48], reduce protein intake [49], increase
fructose intake [50,51], manipulate methyl donor [52] or iron intake [53], and increase fat in-
take [54–59]. In addition, maternal disorders, such as NO deficiency [60,61], diabetes [62,63],
preeclampsia [64], CKD [65,66], reduced uterine perfusion [67], hypertension [68], and
inflammation [69], have all been reported to impair nephrogenesis, resulting in renal
programming. Environmental toxins, such as bisphenol A [70], 2,3,7,8-tetrachlorodibenzo-
p-dioxin (TCDD) [71], di-n-butyl phthalate [72], and smoking [73], also contribute to
renal programming. Moreover, medications, such as glucocorticoid, are able to induce
renal programming [74–77].

As all nutrients during pregnancy have essential roles in fetal development, the
excessive or insufficient intakes of certain nutrients have been employed to establish animal
model for studying renal programing. As shown in Table 1, different maternal nutritional
insults could induce the same phenotype of hypertension, suggesting there might be
common mechanisms involved in nutritional programming [78]. Conversely, the BP of
offspring exposed to high-fat maternal diets could vary according to age, sex, fatty acid
composition, and strain [79]. In addition, the data from Table 1 indicate that high-fat
maternal diets could induce renal programming related to various sources and mechanisms
of oxidative stress. Accordingly, a deeper understanding of oxidative-stress-induced
nutritional programming may help to limit or avoid specific foods during pregnancy and
develop effective nutritional interventions for clinical practice.

As shown in Table 1, rats are the preferred animals used to study renal programming,
followed by mice and sheep. Unlike humans, kidney development in rats lasts until
1–2 week after birth [11]. Adverse environmental conditions, not only during gestation but
also lactation, can affect kidney development, consequently leading to kidney disease later
in life. As each rat month is roughly equivalent to three human years in adulthood [80],
Table 1 illustrates the ages at evaluation, allowing calculations for reference to human ages.

Table 1 shows that the most common outcome of renal programming evaluation is
hypertension. Although several environmental cues have been connected to low nephron
endowment [81], the interconnection between low nephron number and oxidative stress has
only been reported in models of streptozotocin-induced diabetes [62], caloric restriction [47],
and maternal smoking exposure [73]. In addition to reduced nephron number, renal
hypertrophy [47,48,58], glomerulosclerosis [59], tubulointerstitial injury [47,48,62,68,72,74],
renal dysfunction [57,74], and albuminuria [58,59,73] are major adverse renal outcomes
associated with renal programming (Table 1).

3.2. Oxidative-Stress-Mediated Mechanisms

As a fetus has low antioxidant capacity, a surplus of ROS or RNS under adverse
intrauterine conditions can overwhelm antioxidants, resulting in oxidative damage and,
thereby, compromising fetal development [2,3]. Cumulative evidence supports the key
role of oxidative stress implicated in fetal programming. ROS can mediate several key
epigenetic processes, such as DNA methylation, histone modifications, and micro-RNAs
(mRNAs) [82]. It is noteworthy that these epigenetic modifications of genes are considered
crucial mechanisms for fetal programming [83].

NO is also involved in epigenetic regulation and fetal programming [84,85]. ADMA
can reduce NO production and increase ROS [20]. In our prior work, ADMA-treated
embryonic kidneys exhibited reductions in nephron numbers in a dose-dependent man-
ner [86]. We also evaluated a transcriptome analysis of developing kidneys in response to
ADMA. Embryonic kidneys grown in 10 µM ADMA were isolated for a next-generation
RNA sequencing (NGS) analysis, and 1221 differentially expressed genes (DEGs; 735 up-
and 486 down-regulated) were identified [86]. In a model of maternal NO inhibition
by NG-nitro-L-arginine-methyl ester (L-NAME), a total of 2289 DEGs (1259 up- and
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1030 down-regulated) were identified in neonatal kidneys [60]. Among these DEGs, several
genes were related to kidney development and epigenetic regulation. These observations
suggest that a link between oxidative stress and epigenetic gene regulation during preg-
nancy could represent a strong contribution to renal programming and kidney disease risk
in offspring later in life.

Renal programming can be attributed to several oxidative-stress-mediated mechanisms,
including increased ROS-producing enzyme expression [59], increased ROS [68,72,73,77],
increased peroxynitrite [59,63], decreased antioxidant capabilities [54,57,74], increased
ADMA [47,48,62,64–66,70,71], reduced NO bioavailability [47,48,50,61,62,64–66,70,75–77],
and increased oxidative damage [47–58,60,63,69–71,74,76].

As delineated earlier, several biomarkers of lipid peroxidation have been demonstrated
in neonates, such as MDA, F2-IsoPs, and TBARS. Table 1 reveals that these biomarkers of
lipid peroxidation are elevated in offspring kidneys in different rodent models of renal
programming [49,54,57,60,63,66,69,74]. In addition, 8-OHdG, a frequently studied oxida-
tive DNA damage marker, is highly expressed in rat offspring kidneys and is correlated
to adverse renal outcomes [47,48,50–53,55,56,58,65,66,70,71,76]. As ROS is difficult to de-
termine in human kidneys, animal studies have provided evidence that increased renal
ROS is associated with adverse renal outcomes in models of reduced uterine perfusion [73],
maternal angiotensin II administration [68], maternal DEHP exposure [72], and maternal
smoking exposure [73]. Renal 3-NT level can also be used to detect peroxynitrite in rat
models of renal programming [59,63]. Moreover, numerous studies in Table 1 indicate that
an impaired ADMA/NO pathway contributes to oxidative-stress-induced renal program-
ming [47,48,62,64–66,70,71,75–77]. In summary, these observations support the idea that
oxidative-stress-induced renal programming contributes to adverse renal outcomes later in
life. The impact of oxidative stress on renal programming can be evaluated by biomarkers
that quantify the levels of ROS, RNS, NO, antioxidants, and oxidation by-products from
DNA, protein, and lipid damage, as illustrated in Figure 2.
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Figure 2. Schema summarizing the potential biomarkers regarding oxidative-stress-related renal pro-
gramming in clinical and experimental studies. NO: nitric oxide; ADMA: asymmetric dimethylargi-
nine; AOPPs: advanced oxidation protein products; 4-HNE: 4-hydroxy-2-nonenal; MDA: malondi-
aldehyde; TBARS: thiobarbituric acid; 8-OHdG: 8-hydroxy-2′-deoxyguanosine; 3-NT: 3-nitrotyrosine.

4. Antioxidant Strategies for Kidney Health

As mentioned above, perinatal oxidative stress plays a pivotal role in renal program-
ming, resulting in adult-onset kidney diseases. It is reasonably assumed that a surplus of
ROS or RNS may be amenable to antioxidant therapies, which, if administered in early life,
may avert the development of kidney diseases. Even though the role of oxidative stress in
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the pathogenesis of renal programming is undoubted, the positive effects of antioxidant
therapies on kidney diseases remain inconclusive clinically [87,88], as well as in fetuses
and neonates [89–91]. While the majority of human trials have not confirmed any evidence
of kidney benefits from antioxidant supplementation, we recognize the potential benefit of
antioxidant therapies through current evidence in preclinical animal models and limited
human studies.

Antioxidants can be grouped as enzymatic or non-enzymatic and natural or synthetic.
They are categorized by mechanism of action as either targeting ROS or NO. As reviewed
elsewhere [7], data from animal studies indicate that the uses of several natural antiox-
idants, including vitamins, amino acids, melatonin, and polyphenol, during pregnancy
and lactation have shown to benefits to kidney health and prevent renal programming.
Sources of natural antioxidants are mainly plants, i.e., vegetables, fruits, seeds, and nuts,
which are rich in vitamins, polyphenol, carotenoids, and glutathione. Along with natural
antioxidants, some synthetic antioxidants have also been implemented in animal models of
renal programming.

As mentioned earlier, nutritional programming is emerging as a critical mechanism
contributing to oxidative-stress-related renal programming. It is noteworthy that nutri-
tional programming can also be advantageous [92]. Several nutritional interventions with
antioxidant or anti-inflammatory diets have been proved effective in preventing the devel-
opment of adult-onset kidney diseases with the use of animal models [7] (Figure 3). These
are discussed below.
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4.1. Vitamins

Vitamins A, C, and E, as well as selenium, folic acid, etc., exhibit advantageous effects
on kidney health [93]. The most frequently used antioxidant supplements are vitamins C
and E. Vitamin C, a water-soluble antioxidant, is a scavenger of free radicals and a reducing
agent [94]. Vitamin E, a lipid-soluble antioxidant, inhibits several oxidative enzymes to
reduce ROS production [95].

Vitamin C or E supplementation alone during pregnancy protects maternal lipopolysac-
charide (LPS)-exposure-primed offspring hypertension, a major phenotype of renal pro-
gramming [96,97]. Additionally, the combined supplementation of vitamins C and E
with selenium and folic acid averted offspring hypertension in a rat model of maternal
caloric restriction [98].
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Though several vitamins exhibit beneficial effects on oxidative-stress-related kidney
diseases [93], little attention has been paid to determining their protective actions starting at
the fetus and neonate stages. As mentioned earlier, the disturbance of epigenetic regulation
can lead to oxidative stress, linking to renal programming. Although vitamins B6, vitamin
B12, and folate contribute to DNA methylation and have recognized roles as methyl
donors [99], it would be interesting to know whether perinatal use of these vitamins can
prevent renal programming via the regulation of epigenetics.

On the other hand, a meta-analysis recruiting 56 clinical trials concluded that high
doses of vitamin A, β-carotene, and vitamin E appeared to increase mortality [100]. It is
noteworthy that excessive dietary vitamin A intake was linked to human birth defects [101].
Perinatal vitamin supplements should only be administered in cases of deficiency, not as a
usual intake. The contamination of vitamin supplements is another concerning problem
being discussed. With the particular vulnerability of a developing fetus, attention to the
detrimental effects of heavy metals and toxic elements contaminating vitamins consumed
in pregnancy is imperative [102].

4.2. Amino Acids

The moderation of dietary amino acid consumption has therapeutic and
protective effects on kidney diseases [103]. Several amino acids are known to possess
antioxidant properties [104].

L-arginine is a substrate for the NOS production of NO, and L-citrulline is a precursor
of L-arginine [105,106]. Considering that NO deficiency is a major pathogenetic mechanism
behind renal programming, perinatal use of these two amino acids has been assessed to
protect offspring against adult kidney diseases [105,106].

Human kidneys can covert L-citrulline to L-arginine [106]. Oral L-citrulline supple-
mentation enables bypassing hepatic metabolism to enhance L-arginine production and
raise NO levels [106]. Currently, maternal L-citrulline supplementation has been reported
to enhance NO bioavailability and protect adult rat offspring against renal programming
in oxidative-stress-related models of streptozotocin-induced diabetes [62], maternal caloric
restriction [47], and prenatal dexamethasone exposure [75].

Additionally, L-tryptophan and L-cysteine have also been assessed as reprogramming
interventions to target oxidative stress in maternal CKD-primed renal programming mod-
els [65,107]. Despite other amino acids, such as L-taurine and branched-chain amino acids,
showing beneficial potential for kidney diseases [108], whether their protective effects are
attributed to the reduction of oxidative stress awaits further clarification.

4.3. Melatonin

Melatonin is an endogenous tryptophan-derived indolamine with multiple biofunc-
tions [109]. Melatonin plays an essential role in pregnancy and fetal development [110].
Melatonin and its metabolites are able to scavenge ROS and RNS, upregulate antioxidant
enzymes, and increase NO bioavailability [111,112]. Hence, it has been clinically applied as
an antioxidant therapy in pregnant women and neonates [113,114].

Several human studies reported that melatonin treatment ameliorated oxidative
stress in newborns with asphyxia, sepsis, or other conditions with overproduction of
ROS [114]. Moreover, the urinary excretion of melatonin’s metabolite could be used as
a biomarker for babies with IUGR, suggesting the impact of the melatonin pathway in
fetal programming [115].

Data from animal studies indicated that perinatal melatonin treatment could serve as
a preventive intervention for many adult-onset diseases, including kidney diseases [116].
Maternal melatonin treatment has shown kidney benefits in several models of oxidative
stress programming, such as caloric restriction [48], methyl donor diet [52], maternal
L-NAME exposure [60], and high fructose intake [117]. When targeting oxidative stress,
the protective effects of melatonin include reduced lipid peroxidation [60], ADMA [48],
and 8-OHdG expression [52], as well as enhanced NO [117].
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Although melatonin has a favorable safety profile in the pediatric population [113,114,117],
the use of melatonin in pregnant women is not yet recommended [118]. As such, perinatal
use of melatonin as a preventive strategy for kidney health, especially in fetuses and
neonates, still awaits further clinical translation.

4.4. Polyphenols

Polyphenols are well-known phytochemical antioxidants [119]. Resveratrol exerts
antioxidant properties by acting as a metal chelator, a free-radical scavenger, an NOS
activator, and a stimulator of antioxidant enzymes [119]. Accordingly, polyphenols have
been utilized to improve kidney health [120,121]. Although polyphenols have been reported
as a prophylactic therapy for neonatal hypoxia–ischemia [122], there is a relative scarcity of
human studies to support its benefits on fetal and neonatal kidney health.

Polyphenols can be grouped as flavonoids and nonflavonoids [119]. As a flavonoid
antioxidant, the use of quercetin in gestation was noted to protect adult rat progeny against
high-fat maternal-diet-induced renal programming and hypertension [123]. Another ex-
ample is epigallocatechin gallate. Its use in gestation and lactation moderated prenatal
dexamethasone-exposure-primed hypertension in a rat model [124].

Resveratrol is a naturally occurring nonflavonoid polyphenol [125]. Its antioxidant
effects include scavenging ROS and RNS, enhancing antioxidant enzymes, increasing
glutathione levels, upregulating NOS expression, etc. [126]. Several rat models of re-
nal programming, such as high-fructose diet [51], maternal ADMA administration [61],
adenine-induced CKD [66], bisphenol A exposure [70], and TCDD exposure [71], have
shown beneficial effects of resveratrol on renal outcomes in adult progeny. For example,
perinatal resveratrol therapy could protect offspring against renal programming, accompa-
nied by reducing renal 8-OHdG expression and increasing NO [66].

One major limitation of the clinical utility of polyphenols is low bioavailability [127].
Taking into account the interindividual variability and complexity of polyphenol phar-
macokinetics, future investigations are essential to better clarify the impacts of various
polyphenols on kidney health, especially in fetal and neonatal medicine.

4.5. N-Acetylcysteine

N-acetylcysteine (NAC) is a well-known plant antioxidant [128]. In addition, NAC is a
precursor to glutathione and an L-cysteine analogue that can be used for hydrogen sulfide
(H2S) synthesis [129]. The therapeutic role of NAC in neonatal kidney disease has been
shown in a rat sepsis model [130] and a porcine neonatal asphyxia model [131], despite
limited human studies in this regard.

A prior study showed that perinatal NAC therapy protected rat offspring against
maternal L-NAME-administration-induced renal programming, coinciding with the en-
hancement of renal H2S-generating enzyme expression and activity [60]. In another pre-
natal dexamethasone and postnatal high-fat diet model [76], the protective effect of NAC
against oxidative stress was associated with increased plasma glutathione level and the
upregulation of H2S-producing enzymes. Moreover, perinatal NAC therapy could avert
maternal suramin-administration-induced hypertension and oxidative stress in adult rat
progeny, which was involving increases of glutathione production, restoration of NO, and
augmentation of the H2S pathway [64].

4.6. Synthetic Antioxidants

Along with natural antioxidants, a few synthetic antioxidants have been utilized
in kidney diseases [87,88]. MitoQ, a coenzyme Q10 analogue, could reduce oxidative
stress by the suppression of superoxide production and lipid peroxidation [132]. A prior
study demonstrated that perinatal MitoQ treatment averted mouse adult offspring from
hypertension and reduced nephron numbers and kidney injuries in a maternal smoking
model [80]. Another example is dimethyl fumarate (DMF), a classical activator of nuclear
factor (erythroid-derived 2)-like 2 (Nrf2) [133]. In an antenatal dexamethasone exposure
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and postnatal high-fat diet model, the protective actions of DMF therapy were relevant
for the reduction of oxidative stress, which was represented by reductions in ADMA and
8-OHdG, as well as increasing NO [134].

Some synthetic antioxidants classified as SOD mimetics show therapeutic potential
for many disorders related to oxidative stress [135]. While the gestational use of the
SOD mimetic tempol was noted to reduce proteinuria and BP in adult spontaneously
hypertensive rat offspring [136], none of these synthetic antioxidants have been introduced
into clinical practice in neonatal medicine.

5. The Gap between Animal Models and Clinical Reality

In patients with CKD, oxidative stress is present in the early stages of CKD and
is more exacerbated in the end stages of kidney disease. Accordingly, the exogenous
intake of antioxidants has repeatedly been shown to suppress oxidative stress in CKD
patients [137,138]. However, none of these antioxidants are recommended in therapeutic
guidelines for CKD. While preclinical studies using animals have highlighted antioxidant
strategies as an attractive approach to kidney health, their efficacy still awaits validation in
clinical reality. It is, however, important to know the correct antioxidant and the correct
therapeutic dose to obtain direct benefits for the human body and to not only show ben-
eficial effects in animal studies. Further studies in large cohorts of pregnant women are
required to establish causality between perinatal antioxidant supplementation and clinical
hard endpoints of renal outcomes in their children.

In view of the difficulties of recruiting pregnant women and neonates for human
research, the use of breastmilk as an antioxidant strategy might be a good start. It is well
known that breastmilk has a powerful antioxidant composition [139]. Given that the World
Health Organization recommends exclusive breastfeeding for the first 6 months [140], the
antioxidant protection provided by breastfeeding against renal programming is a significant
issue that warrants further study.

Another concern is the safety of antioxidant supplements. Several antioxidants might
provoke oxidative stress due to their pro-oxidative properties [141]. For example, vitamin
E is known not only as a potent antioxidant, but also as a harmful pro-oxidant. If there is
not enough vitamin C for its regeneration, vitamin E becomes a radical when reacting with
ROS [142]. Additionally, controversy around antioxidants is due to their capacity to act as
pro-oxidants depending on concentration. Therefore, there is only scientific evidence that
antioxidants should be supplemented solely in cases where oxidative stress is identified.

Oxidative damage in kidneys can be determined in animal models, while human stud-
ies are limited in this regard, especially in fetuses and neonates. Accordingly, antioxidant
therapies may cause unexpected damage to health, as they might reach healthy tissues that
have not experienced oxidative stress damage, as well as the targeted organs of the kidneys.
The balance between antioxidants and ROS or RNS should be optimal, as antioxidant
extremes, namely antioxidative stress, are all damaging [143].

Regardless of recent advances in developing biomarkers of oxidative stress, most of
these have not yet been assessed in the context of the early prediction of adult-onset kidney
diseases. Currently, an ideal oxidative stress biomarker for kidney disease does not exist,
and overlaps between biomarkers are a reality [144]. A panel of biomarkers that covers
the pathogenic process of kidney disease identified in animal studies might optimize the
specific value of each biomarker [145]. Therefore, the introduction of a panel of oxidative
stress biomarkers correlating with the extent of kidney damage for the early identification
of at-risk fetuses and neonates is a practical way to bridge the gap between animal models
and clinical practice. Considering the rapid development of liquid biopsy technology with
respect to kidney diseases [146], the application of liquid biopsies in the rapid diagnosis of
oxidative-stress-related kidney disease should become more prominent.
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6. Conclusions and Future Perspectives

Kidney health can be improved via oxidative-stress-targeting strategies, from preg-
nancy to the infantile stage [45]. First, promoting an optimal prenatal environment to
minimize early-life risk factors may not only promote optimal fetal development, but
may even avert oxidative-stress-mediated damage to developing kidneys. Second, several
antioxidant strategies have revealed promising data in animal models, and their efficacy
needs future translation into human investigations. More importantly, additional studies
are required to determine the correct antioxidant with the correct dosage to avert oxidative-
stress-induced renal programming. Lastly, since oxidative stress is the major pathogenic
mechanism behind renal programming, the development and validation of reliable oxida-
tive stress biomarkers correlating with kidney damage and the early identification of at-risk
fetuses and neonates is urgently required in pediatric care.
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