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Abstract: The clinical potential of Ginkgo biloba extract (GBE) in the prevention and/or treatment of
retinal degenerative diseases has been widely explored; however, the underlying molecular mech-
anism is poorly understood. Photoreceptor degeneration is the hallmark of retinal degenerative
diseases and leads to vision impairment or loss. In this study, the effect of GBE against white light
(WL) illumination-induced photoreceptor degeneration was investigated, as well as its underlying
mechanism. To evaluate the in vitro activity of GBE, analysis of cell viability, cell apoptosis, oxidative
stress, NOX (NADH oxidase) activity and mitochondrial membrane potential (MMP), as well as
Western blotting and transcriptome sequencing and analysis, were conducted. To evaluate the in vivo
activity of GBE, HE staining, electroretinography (ERG), Terminal-deoxynucleoitidyl transferase
(TdT)-mediated nick end labeling (TUNEL) assay and immunofluorescence analysis were conducted.
Our study showed that GBE treatment significantly attenuated WL illumination-induced oxidative
damage in photoreceptor 661W cells—a finding that was also verified in C57BL/6J mice. Further
molecular study revealed that WL illumination downregulated caveolin-1 (CAV-1) expression, in-
terrupted CAV-1-NOX2 interaction, re-located NOX2 from the cell membrane to the cytoplasm and
induced the formation of redoxosomes, which led to cell death. However, these cytotoxic events were
significantly alleviated by GBE treatment. Interestingly, CAV-1 overexpression showed a consistent
protective effect with GBE, while CAV-1 silencing impacted the protective effect of GBE against WL
illumination-induced oxidative damage in in vitro and in vivo models. Thus, GBE was identified to
prevent photoreceptor cell death due to CAV-1-dependent redoxosome activation, oxidative stress
and mitochondrial dysfunction resulting from WL illumination. Overall, our study reveals the
protective effect of GBE on photoreceptors against WL illumination-induced oxidative damage in
in vitro and in vivo models, which effect is mediated through the modulation of CAV-1-redoxosome
signaling. Our findings contribute to better understanding the therapeutic effect of GBE in pre-
venting photoreceptor degeneration in retinal degenerative diseases, and GBE may become a novel
therapeutic agent that is effective in reducing the morbidity of these diseases.

Keywords: Ginkgo biloba extract; photoreceptor degeneration; white light illumination; CAV-1—
redoxosome signaling

1. Introduction

Photoreceptors, the first-order retinal neurons, are essentially involved in visual
phototransduction, the dysregulation of which directly leads to impaired vision and/or
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blindness [1,2]. Photoreceptor degeneration is the main manifestation of many retinal
degenerative diseases, such as retinitis pigmentosa (RP) [3] and late-stage age-related
macular degeneration (AMD) [4]. Unfortunately, there are no proven therapies for photore-
ceptor degeneration; thus, prevention and/or slowdown of progression of photoreceptor
degeneration are considered as the primary approach to reduce the morbidity of retinal de-
generative diseases. It has been established that excessive light exposure is the main cause
of photoreceptor degeneration [5]. Long-term blue light exposure may result in elevated
oxidative stress and inflammation in the retinal pigment epithelium (RPE), increasing the
risk of photoreceptor degeneration [6,7]. Currently, inducible retinal degeneration via light
exposure has been widely adopted as the experimental approach in drug development
against photoreceptor degeneration [8,9]. Since bright white light (WL) exposure induces a
synchronized burst of photoreceptor degeneration in a large retinal area, it is considered
better to mimic the natural environment that allows molecular exploration in a controlled
fashion [10]. Oxidative stress is a primary consequence of WL-induced photoreceptor
degeneration; to explore new agents that can protect photoreceptors from oxidative stress
may be a clinical solution to treat retinal degenerative diseases [11,12].

It has been shown that oral administration of specific herbal medicines may delay the
progression of retinal degenerative diseases [13,14]. Gingko biloba extract (GBE), derived
from the leaves of Gingko biloba, is the most popular over-the-counter herbal medicine
in the world due to its superior antioxidant activity [15,16]. GBE has been shown to be
clinically active in the treatment of human neurological disorders, including Alzheimer’s
disease [17,18], Parkinson’s disease [19], multiple sclerosis [20] and vertigo [21]. However,
the clinical efficacy of GBE in the treatment of neurological diseases remains inconclusive.
Many factors, such as population sensitivity, disease severity, assessments used to measure
efficacy and doses, contribute to the variation in clinical outcomes [22,23]. In recent years,
the neuroprotective effect of GBE in retinal degenerative diseases has been investigated in
the laboratory as well as in clinical trials [24–26]. In a controlled double-blind trial, Fies
and Dienel et al. have demonstrated that GBE treatment for over 6 months could markedly
improve the vision of participants with dry senile macular degeneration [27]. It is well
known that flavonoids, terpenes and several other components enriched in GBE possess
antioxidative properties. Xie and Ranchon et al. have reported that intraperitoneal injection
of GBE can protect the retina from oxidative injury and partially inhibit photoreceptor
death [26,28]. However, the underlying mechanism of GBE’s cellular protective effect
against light-induced photoreceptor degeneration is poorly understood. In this study, we
extensively investigated the effect of extracts prepared from Ginkgo biloba dropping pills on
photoreceptors against WL-induced oxidative damage in in vitro (661W cells) and in vivo
(C57BL/6J mice) models.

2. Materials and Methods
2.1. Chemicals and Reagents

Ginkgo Biloba extract (GBE), prepared from Ginkgo biloba dropping pills, was kindly
provided by Wanbangde Pharmaceutical Group Co., Ltd. (Wenling, China). Chemicals
such as MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), DAPI (dihy-
drochloride), mitoSOX, rhodamine123, NSC23766, VAS2870 and DMSO (dimethyl sulfox-
ide) were obtained from Sigma-Aldrich (St. Louis, MO, USA), ThermoFisher (Waltham,
MA, USA) and MedChemExpress (Shanghai, China). The following antibodies were ob-
tained from Santa Cruz Biotechnology (Dallas, CA, USA) or Abcam (Cambridge, MA,
USA): Bax (cat. no. ab32503), Bcl-2 (cat. no. ab196495), Caspase-3 (cat. no. ab184787),
CAV-1 (cat. no. ab32577), NOX2 (cat. no. sc-130543), p-SRC (cat. no. ab40660), SRC
(cat. no. ab133283), p-Vav2 (cat. no. ab86695), Vav2 (cat. no. ab52640), Rac1 (cat. no. ab155938)
and GAPDH (cat. no. sc-365062). The Rac1 activity assay kit (cat. no. STA-401-1) was
obtained from Cell Biolabs (San Diego, CA, USA). Other chemicals and reagents used in the
present study, unless otherwise specified, were obtained from Beyotime (Nantong, China)
and Sangon (Shanghai, China).
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2.2. Cell Line and WHITE Light Illumination

Cells from the 661W cell line were purchased from the American Type Culture Col-
lection (ATCC, Manassas, VA, USA). The 661W cell line is a mouse cone photoreceptor
cell line immortalized by expression of simian virus (SV) 40 T antigen (T-ag) driven by the
human IRBP (interphotoreceptor retinoid-binding protein) promoter. Cells were cultured
in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% (v/v) fetal bovine
serum (FBS) and 1% penicillin–streptomycin (P/S) at 37 ◦C in a humidified atmosphere
with 5% CO2. Cells were exposed to WL (450 nm) at a specific distance to maintain the
light intensity at 4000 lux. WL was produced by a light-emitting diode white light source
(OcuTech, Wuxi, China). For gene overexpression or silencing, pcDNA3.1-CAV-1 or CAV-1
siRNA was transfected using lipofectamine 2000 (Invitrogen, Waltham, MA, USA), ac-
cording to the manufacturer’s instructions. Forty-eight hours after transfection, cells were
harvested for molecular analysis.

2.3. Cell Viability and Apoptotic Assay

The MTT assay was used to determine cell viability. After treatment, MTT solution
(0.5 mg/mL, 100 µL) was added to the cell culture, which was further incubated for 3 h
at 37 ◦C. After removing the medium, DMSO (150 µL) was added to the cell culture for
10 min with gentle shaking. The absorbance was detected with a microstrip reader (Bio-
Rad Laboratories, Hercules, CA, USA) at 490 nm wavelength. Annexin V-FITC and PI
(propidium) double staining was used to determine cell apoptosis. After treatment, binding
buffer (300 µL) containing 10 µL of Annexin V-FITC and 10 µL of PI was added to the cell
culture and was further incubated for 15 min at 37 ◦C. The samples were then analyzed
with flow cytometry (BD Biosciences, Franklin Lakes, NJ, USA).

2.4. Oxidative Stress and NOX Activity Analysis

DCFH-DA (2,7-dichlorodihydrofluorescein diacetate) staining was used to assess
intracellular ROS generation. After treatment, DCFH-DA (10 µM) was added to the cell
culture, which was further incubated for 15 min at 37 ◦C. The intracellular ROS fluorescence
intensity was quantified by a fluorescence spectrophotometer (Molecular Device, San Jose,
CA, USA). A H2O2 detection kit (titanium sulfate colorimetry assay) was used to assess
intracellular hydrogen peroxide (H2O2) levels, according to the manufacturer’s instructions
(Solarbio, Beijing, China). A NADH oxidase (NOX) colorimetric assay kit was used to
assess NOX activity, with 2,6-dichlorophenol-indophenol (DCPIP) used as an artificial
electron acceptor, according to the manufacturer’s instructions (Solarbio, Beijing, China).

2.5. Mitochondrial Membrane Potential Analysis

Rhodamine123 (Rh123) staining was used to assess mitochondrial membrane potential
(MMP). This assay could measure mitochondrial membrane polarization in live cells. After
treatment, cells were stained with rhodamine123 (0.5 mg/mL, 2 µL) for 30 min at 37 ◦C.
The alternation of MMP level was determined with a fluorescence spectrophotometer
(Molecular Device, San Jose, CA, USA).

2.6. Western Blot Analysis

Cells were lysed with RIPA (radioimmunoprecipitation assay) lysis buffer and a BCA
(bicinchoninic acid) protein assay kit was used to assess protein concentrations. Protein
samples (25 µg) were subjected to 12% SDS-PAGE gels and then transferred onto PVDF
(polyvinylidene fluoride) membranes. The membranes were blocked with 5% non-fat
milk in PBS-T (phosphate buffered saline–Tween20) and then incubated with each primary
antibody (1:1000 dilution in PBS-T) at 4 ◦C overnight. Then, membranes were washed three
times and incubated with secondary antibodies. The protein bands were detected using an
ECL (efficient chemiluminescence) kit (Beyotime, Nantong, China). The density of each
target protein was normalized to that of GAPDH.
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2.7. Co-Immunoprecipitation Assay

The co-immunoprecipitation (Co-IP) assay was performed as previously described.
Cells were homogenized in IP (immunoprecipitation) lysis/wash buffer. Then, the super-
natants were collected upon centrifugation and added to anti-target antibody-cross-linked
Protein A/G Plus agarose (100 µL in 1 mL protein supernatant) and then incubated at 4 ◦C
overnight. Following that, nonspecific binding was eliminated by repeated washing with
IP lysis/wash buffer. Protein samples pulled down with agarose beads were then eluted in
1× Laemmli buffer, with heating at 55 ◦C for 30 min. Eluted protein samples were then
subjected to Western blot analysis using the indicated antibodies.

2.8. Transcriptome Sequencing and Analysis

RNA samples were extracted and prepared for transcriptome sequencing. The cluster-
ing of samples was processed through the cBot Cluster Generation System, according to
the manufacturer’s instructions. After cluster generation, the library was sequenced using
the Illumina Hiseq platform and 125 bp/150 bp paired-end reads were generated. HTSeq
v0.6.0 was used to count the number of reads mapped to each gene. The FPKM (frangments
per kilo base per million mapped reads) for each gene was calculated based on gene length,
with read counts mapped individually. The transcriptome data have been uploaded to
the NCBI BioSample database (accession numbers: SAMN28986237, SAMN28986238 and
SAMN28986239). Genes with a fold-change of >2.0 and an adjusted p-value < 0.05 were
assigned as differentially expressed genes (DEGs). The main functions of DEGs were
analyzed by gene ontology (GO) analysis. The cluster Profiler R package (3.8.1) was used
to test the statistical enrichment of DEGs in KEGG pathways.

2.9. Animal and White Light Illumination

Animal ethics approval was obtained from the Laboratory Animal Ethics Committee of
Jiangsu Institute of Nuclear Medicine (Wuxi, China). Mice were raised in a 12 h light/dark
cycle of 5 lux with free access to food and water. For experiments, age-matched mice
(8–10 weeks old) were randomly assigned to three groups (n = 4 per group): non-light
damage, white light damage (WL) and white light damage with GBE treatment (GBE). Mice
in the WL group were exposed to 50,000 lux white light for 8 h per day/5 days (8 h/5 days),
which protocol was optimized based on the previous report of Natoli et al. considering
differences in spectral composition [29]. Mice of the GBE group were orally administered
with GBE (100 mg/kg body weight/day) for 5 days and then exposed to 50,000 lux WL
for 8 h/5 days with continuous GBE administration [30,31]. Pupils were dilated twice
daily at 8 am and 1 pm with a single drop of 1% atropine sulfate (8.3 mg of atropine). For
CAV-1 silencing, CAV-1 shRNA (AAV2-CAG-EGFP-mCAV-1-shRNA) was introduced in
C57BL/6J mice. Briefly, mice were anesthetized and AAV2 construct-containing solution
(final concentration of 1.8 × 1012 GC/mL) was administered (2 µL) through the sclera at a
45◦ angle into the vitreous. Animals were monitored and sacrificed at specified time points
as indicated.

2.10. Electroretinography (ERG)

LabScribe v3.0 software using Ganzfeld (ERG 2, Phoenix Research Labs, Pleasanton,
CA, USA) was used to record and analyze ERG response. After treatment, mice were
subjected to ERG analysis. Anesthesia and pupil dilation were performed, and the eyes
were kept moisturized using 0.5% hypromellose solution. Once the mice were sedated, the
reference and ground electrodes were inserted subcutaneously into the head at the midline
between the ears and tail, respectively. The positioning and alignment were performed ac-
cording to the manufacturer’s instructions (Ganzfeld, ERG 2, Phoenix Research, Pleasanton,
CA, USA). The procedure was conducted under normal light conditions (5 lux).
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2.11. HE Staining and TUNEL Assay

The retinal tissues were removed from formalin and dehydrated using a series of
increasing ethanol concentrations. Then, the tissues were cleared in xylene and embedded
in paraffin blocks. For HE (hematoxylin and eosin) staining, paraffin sample sections (4 µm)
were stained with hematoxylin (5 min) and then with eosin (2 min). All of the slides were
mounted using neutral resin. For the TUNEL assay, sample sections were processed for
TUNEL staining as previously reported [32]. In each region, the numbers of TUNEL+ cells
were quantified in increments of 500 mm along the full length of the retina.

2.12. Immunofluorescence Analysis

Cells or tissues selected for immunofluorescence analysis were incubated in 10% nor-
mal goat serum for 1 h at 37 ◦C. Then, the samples were incubated with primary antibodies
at 4 ◦C overnight. The samples were then washed and incubated with appropriate sec-
ondary antibodies conjugated with Alexa Fluor 488 or 594 for 4 h at room temperature.
Visualization of immunofluorescence and image acquisition was performed using a Nikon
A1 Confocal Microscope (Tokyo, Japan). DAPI (0.5 µg/mL) was used to stain the nuclei.

2.13. Statistical Analysis

Statistical analysis was performed using the SPSS 16.0 software package. All experi-
ments were repeated for three independent replications. Data for multiple experiments are
expressed as means ± SD. Statistical comparisons were conducted with the Student’s t-test
between two groups and one-way ANOVA followed by Tukey’s post hoc test among three
groups. p < 0.05 was accepted as statistically significant.

3. Results
3.1. GBE Attenuates Photoreceptor Degeneration in In Vitro and In Vivo Models Exposed to
WL Illumination

To investigate the effect of GBE on photoreceptor degeneration induced by WL illu-
mination, in vitro (661W cells—a mouse photoreceptor cell line displaying biochemical
features of cone cells) and in vivo models (C57BL/6J mice) were adopted. Then, GBE
pre-treatment was adopted for evaluating the preventive or early therapeutic effect of this
drug in retinal degenerative diseases. In 661W cells, WL illumination (4000 lux, 2 h) signifi-
cantly reduced cell viability (~0.5 folds of control) and induced cell apoptosis (~50 folds
of control), which was accompanied by the increased expression of pro-apoptotic Bax
protein and cleaved cell death mediator caspase-3 protein as well as reduced levels of
anti-apoptotic Bcl-2 protein. The pre-treatment with GBE (100 mg/L, 24 h) attenuated WL-
induced cytotoxicity and cell death and preserved the expression of the above-mentioned
proteins (Figure 1). In mice, WL illumination (50,000 lux for 8 h/5 days) significantly
impacted on retinal structure and function. HE staining showed that the inner and outer
nuclear layers of the retinas in the WL-induced group became thinner and that cells in
the retina were missing; however, GBE treatment with a concentration of 50 mg/kg/day
and above could potently relieve these phenotypes in WL-exposed mice (data not shown).
Thus, GBE at a concentration of 100 mg/kg/day was selected for the subsequent in vivo
experiments. ERG analysis showed that a- and b-wave amplitudes of the WL-induced
group were significantly decreased 0.5–2-fold, indicating the occurrence of photoreceptor
dysfunction. The TUNEL assay demonstrated that photoreceptor apoptosis occurred in the
WL-induced group. Importantly, GBE pre-treatment alleviated photoreceptor dysfunction
and apoptosis in WL-exposed mice (Figure 2).
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Figure 1. The effect of GBE on photoreceptor degeneration in 661W cells exposed to WL illumination.
Cells from the 661W cell line pre-treated with GBE (50 or 100 mg/L, 24 h) were exposed to WL
(4000 lux) for 2 h. (A) Cell viability upon WL treatment (2000, 4000 or 6000 lux) alone (left panel) and
with GBE pre-treatment (right panel) was assessed by MTT assay. (B) Cell apoptosis was analyzed
by Annexin V-FITC and PI double-staining assay. Representative images of cell apoptotic profiles
are shown in the left panel and the percentages of apoptotic cells in each group are summarized in
the right panel. (C) The expressions of apoptosis-related proteins (Bax, Bcl-2 and Caspase-3) were
evaluated by Western blotting (left panel). The densitometry analysis of protein expression is shown
in the right panel. ** p < 0.01 vs. Control, ## p < 0.01 vs. WL. WL: white light.
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Figure 2. The effect of GBE on photoreceptor degeneration in C57BL/6J mice exposed to WL
illumination. Mice were orally administered with GBE (100 mg/kg body weight/day for 5 days) and
then exposed to WL (50,000 lux) for 8 h/5 days with continuous GBE treatment. (A) Retinal structure
was illustrated by HE staining (upper panel) and retinal function was assessed by ERG analysis
(middle panel). The thicknesses of the INL and ONL layers are summarized in the bottom-left panel
and the amplitude of ERG is shown in the bottom-right panel. (B) Apoptosis of photoreceptors in
retinal tissues was evaluated by TUNEL staining (TUNEL: red fluorescence, DAPI: blue fluorescence).
** p < 0.01 vs. Control, ## p < 0.01 vs. WL. WL: white light, ERG: electroretinography, INL: inner
nuclear layer, ONL: outer nuclear layer.

3.2. GBE Alleviated Redoxosome-Dependent Oxidative Stress and Mitochondrial Dysfunction

To assess the molecular mechanism underpinning the cellular protective effect of GBE,
oxidative stress and mitochondrial function analyses were conducted. Our data showed
that WL illumination (4000 lux for 30 min or 24 h) significantly induced intracellular
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ROS, H2O2 generation and NOX activation and dysregulated mitochondrial function, as
shown by increased mitochondrial ROS and decreased MMP in 661W cells. However, GBE
pre-treatment (100 mg/L for 24 h) significantly attenuated WL-induced oxidative stress
and mitochondrial dysfunction (Figure 3A,B). In mice, WL illumination (50,000 lux for
8 h/5 days) markedly upregulated the expression of 8-OHdG (ROS marker) in photorecep-
tors (rhodopsin staining); however, GBE treatment (100 mg/kg/day for 10 days) attenuated
its expression in WL-exposed mice (Figure 3C). In addition, the role of redoxosomes in
GBE’s antioxidant effect was evaluated. In 661W cells, WL illumination (4000 lux for 1 h)
induced the phosphorylation of SRC tyrosine and Vav2 tyrosine, which, in turn, increased
the expression of active Rac1-GTP and led to NOX activation. The pre-incubation of Rac1
inhibitor (NSC23766, 80 µM, 6 h) or NOX inhibitor (VAS2870, 10 µM, 6 h) could effec-
tively protect the cells from WL-induced oxidative stress and mitochondrial dysfunction.
Since GBE attenuated redoxosome activation, this suggested that GBE likely alleviated
WL-induced oxidative stress and mitochondrial dysfunction in a redoxosome-dependent
manner (Figure 4).

3.3. GBE Reduces Redoxosome Activation by Influencing the Interaction of CAV-1 and NOX2

To investigate the regulators involved in redoxosome activation, bioinformatic analysis
and a co-immunoprecipitation assay were conducted. According to the bioinformatic analy-
sis, there were 21,437 differentially expressed genes (DEGs) identified when comparing the
WL group with the control group, among which, CAV-1 was significantly downregulated
in both in vitro (4000 lux for 2 h) and in vivo models (50,000 lux for 8 h/5 days) exposed to
WL. The co-immunoprecipitation assay showed that NOX2 was bound to CAV-1 in 661W
cells, and the downregulation of CAV-1 in the WL-induced group was accompanied by
the upregulation and relocation of NOX2 from the membrane to the cytoplasm as well
as the formation and activation of redoxosomes (SRC-Vav2-Rac1-NOX). However, the
pre-treatment with GBE (100 mg/L for 24 h) in WL-exposed cells (4000 lux for 2 h) reversed
the altered expression of both proteins, as well as the relocation of NOX2, and subsequently
blocked the formation of redoxosomes (Figure 5). In addition, CAV-1 silencing in 661W cells
prohibited the suppressive effects of GBE on redoxosome activation, oxidative stress and
mitochondrial dysfunction, suggesting that the impact of GBE on redoxosome activation
was likely mediated by modulating the expression of CAV-1 and influencing the interaction
of CAV-1 and NOX2 (Figure 6).

3.4. The Cytoprotective Effect of GBE on Photoreceptor Degeneration Is Exerted in a CAV-1
Dependent Manner

The involvement of CAV-1 in the antioxidative effect of GBE on photoreceptors was
further evaluated in in vitro and in vivo models with CAV-1 overexpression or CAV-1
silencing. In 661W cells, CAV-1 overexpression and gene silencing was achieved with a
CAV-1 expressing plasmid (pcDNA3.1-CAV-1) and CAV-1 siRNA transfection, respectively.
CAV-1 overexpression significantly restored cell viability (~1.5 folds) and prevented cell
apoptosis (~0.15 folds) in 661W cells exposed to WL, which was consistent with the effect of
GBE (Figure 7). In addition, CAV-1 silencing significantly interfered with the cytoprotective
effect of GBE in 661W cells exposed to WL (Figure 8). In mice, CAV-1 silencing was
achieved by the transfection of AAV2-CAV-1 shRNA. The gene silencing of CAV-1 was
verified by immunofluorescence staining and Western blot analysis. CAV-1 silencing in the
mice prohibited the protective effect of GBE on photoreceptors, which induced pronounced
retinal dysfunction and photoreceptor degeneration based on our assessment of retinal
structure and function, as well as photoreceptor cell apoptosis, as indicated by HE staining,
ERG analysis and TUNEL assay (Figure 9). These results indicated that GBE exerted its
cytoprotective effect in a CAV-1-dependent manner.
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Figure 3. The antioxidative effect of GBE in 661W cells and C57BL/6J mice exposed to WL illumination.
(A) Cells from the 661W cell line pre-treated with GBE (100 mg/L, 24 h) were exposed to WL (4000 lux)
for 30 min. The level of intracellular ROS was assessed by DCFH-DA staining (left panel) and that of
intracellular H2O2 was analyzed by titanium sulfate colorimetry (middle panel). The activity of NOX
was evaluated using DCPIP assay (right panel). (B) The 661W cells pre-treated with GBE (100 mg/L,
24 h) were exposed to WL (4000 lux) for 2 h. The level of mitochondrial ROS was assessed using
mitoSOX staining (left panel) and that of MMP was assessed using rhodamine123 staining (right panel).
(C) Retinal tissues from mice with the indicated treatments were co-stained with DAPI (blue fluorescence),
8-OHdG (an ROS marker—red fluorescence) and rhodopsin (green fluorescence). ** p < 0.01 vs. Control,
## p < 0.01 vs. WL. WL: white light, DCFH-DA: 2,7-dichlorodihydrofluorescein diacetate, DCPIP:
2,6-dichlorophenol-indophenol, mitoSOX: mitochondrial superoxide indicator, MMP: mitochondrial
membrane potential analysis, Rh123: rhodamine123, 8-OHdG: 8-Hydroxy-2′-deoxyguanosine, INL:
inner nuclear layer, ONL: outer nuclear layer.
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To investigate the regulators involved in redoxosome activation, bioinformatic anal-

ysis and a co−immunoprecipitation assay were conducted. According to the bioinformatic 
analysis, there were 21,437 differentially expressed genes (DEGs) identified when com-
paring the WL group with the control group, among which, CAV−1 was significantly 
downregulated in both in vitro (4000 lux for 2 h) and in vivo models (50,000 lux for 8 h/5 
days) exposed to WL. The co−immunoprecipitation assay showed that NOX2 was bound 
to CAV−1 in 661W cells, and the downregulation of CAV−1 in the WL−induced group was 
accompanied by the upregulation and relocation of NOX2 from the membrane to the 

Figure 4. The influence of GBE treatment on redoxosome activation in 661W cells exposed to WL
illumination. (A) Cells from the 661W cell line pre-treated with GBE (100 mg/L, 24 h) were exposed
to WL (4000 lux) for 1 h. The expressions of redoxosome-related proteins were evaluated by Western
blot analysis (left and middle panel). The densitometry analysis of protein expression is shown in
the right panel. (B) The 661W cells pre-treated with Rac1 inhibitor (NSC23766, 80 µM, 6 h) or NOX
inhibitor (VAS2870, 10 µM, 6 h) were exposed to WL (4000 lux) for 30 min. The level of intracellular
ROS was assessed by DCFH-DA staining (left panel) and that of intracellular H2O2 was studied
using titanium sulfate colorimetry (middle panel). The activity of NOX was evaluated using DCPIP
as an artificial electron acceptor (right panel). (C) The level of mitochondrial ROS was measured with
mitoSOX staining (left panel). The level of MMP was assessed by rhodamine123 staining (right panel).
** p < 0.01 vs. Control, ## p < 0.01 vs. WL. WL: white light, DCFH-DA: 2,7-dichlorodihydrofluorescein
diacetate, DCPIP: 2,6-dichlorophenol-indophenol, mitoSOX: mitochondrial superoxide indicator,
Rh123: rhodamine123, N: NSC23766, V: VAS2870.
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exposed to WL (4000 lux) for 2 h, and the expression of CAV−1 was assessed by Western blot anal-
ysis (left panel). The relative expression of CAV−1 is shown in the middle panel. Retinal tissues from
mice with the indicated treatments were co−stained with DAPI (blue fluorescence), CAV−1 (red flu-
orescence) and rhodopsin (green fluorescence) (right panel). (C) The influence of GBE on NOX2 
expression is shown in the left upper panel; the densitometry analysis of protein expression is 
shown in the right upper panel. CAV−1−NOX2 interaction was evaluated by co−immunoprecipita-
tion (bottom−left panel). The protein lysate was pulled down by anti−CAV−1 antibody and then the 
samples were detected with anti−NOX2 antibody. The co−localization of CAV−1 (red fluorescence)
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Figure 5. The influence of GBE on CAV-1 expression and CAV-1-NOX interaction in 661W cells and
C57BL/6J mice exposed to WL illumination. (A) Transcriptome sequencing was performed on 661W
cells pre-treated with or without GBE (100 mg/L, 24 h) exposed to WL (4000 lux) for 2 h. Volcano plots
of the differentially expressed genes (DEGs) (left panel). Heatmap analysis of significantly changed
caveolae-related genes (middle panel). KEGG pathway enrichment analysis of caveolae-related
genes (right panel). (B) The 661W cells pre-treated with GBE (100 mg/L 24 h) were exposed to WL
(4000 lux) for 2 h, and the expression of CAV-1 was assessed by Western blot analysis (left panel).
The relative expression of CAV-1 is shown in the middle panel. Retinal tissues from mice with the
indicated treatments were co-stained with DAPI (blue fluorescence), CAV-1 (red fluorescence) and
rhodopsin (green fluorescence) (right panel). (C) The influence of GBE on NOX2 expression is shown
in the left upper panel; the densitometry analysis of protein expression is shown in the right upper
panel. CAV-1-NOX2 interaction was evaluated by co-immunoprecipitation (bottom-left panel). The
protein lysate was pulled down by anti-CAV-1 antibody and then the samples were detected with
anti-NOX2 antibody. The co-localization of CAV-1 (red fluorescence) and NOX2 (green fluorescence)
was indicated with immunofluorescence staining (right panel). ** p < 0.01 vs. Control, ## p < 0.01 vs.
WL. WL: white light, INL: inner nuclear layer, ONL: outer nuclear layer.
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staining (right panel). ** p < 0.01 vs. WL + GBE + CT. WL: white light, DCPIP: 2,6−dichlorophenol−in-
dophenol, mitoSOX: mitochondrial superoxide indicator, Rh123: rhodamine123 CT: 661W cells 
without CAV−1 silencing; KD: 661W cells with CAV−1 silencing. 

3.4. The Cytoprotective Effect of GBE on Photoreceptor Degeneration Is Exerted in a CAV−1 
Dependent Manner 

The involvement of CAV−1 in the antioxidative effect of GBE on photoreceptors was 
further evaluated in in vitro and in vivo models with CAV−1 overexpression or CAV−1 
silencing. In 661W cells, CAV−1 overexpression and gene silencing was achieved with a 
CAV−1 expressing plasmid (pcDNA3.1−CAV−1) and CAV−1 siRNA transfection, respec-
tively. CAV−1 overexpression significantly restored cell viability (~1.5 folds) and pre-
vented cell apoptosis (~0.15 folds) in 661W cells exposed to WL, which was consistent with 
the effect of GBE (Figure 7). In addition, CAV−1 silencing significantly interfered with the 
cytoprotective effect of GBE in 661W cells exposed to WL (Figure 8). In mice, CAV−1 

Figure 6. CAV-1 silencing attenuated the effect of GBE on redoxosome activation in 661W cells
exposed to WL illumination. (A) Cells from the 661W cell line with or without CAV-1 silencing were
pre-treated with GBE (100 mg/L, 24 h) and then exposed to WL (4000 lux) for 1 h. The expressions
of redoxosome-related proteins were assessed by Western blot analysis. (B) The 661W cells with
or without CAV-1 silencing were pre-treated with GBE (100 mg/L, 24 h) and then exposed to WL
(4000 lux) for 30 min. The level of intracellular ROS was assessed by DCFH-DA staining (left panel).
The level of intracellular H2O2 was assessed using titanium sulfate colorimetry (middle panel). The
activity of NOX was assessed using DCPIP assay (right panel). (C) The level of mitochondrial ROS
was assessed via mitoSOX staining (left panel) and that of MMP was assessed by rhodamine123
staining (right panel). ** p < 0.01 vs. WL + GBE + CT. WL: white light, DCPIP: 2,6-dichlorophenol-
indophenol, mitoSOX: mitochondrial superoxide indicator, Rh123: rhodamine123 CT: 661W cells
without CAV-1 silencing; KD: 661W cells with CAV-1 silencing.
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proteins (Bax, Bcl−2 and Caspase−3) were evaluated by Western blot analysis (left panel). The den-
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Figure 7. The effect of CAV-1 overexpression on photoreceptor degeneration in 661W cells exposed to
WL illumination. (A) The overexpression of CAV-1 was verified by Western blot analysis. Cells from
the 661W cell line overexpressing CAV-1 were exposed to WL (4000 lux) for 2 h. (B) Cell viability was
assessed by MTT assay. (C) Cell apoptosis was analyzed by Annexin V-FITC and PI double-staining
assay. Representative images of cell death profiles are shown on the left. The percentages of apoptotic
cells are summarized in the right panel. (D) The expressions of apoptosis-related proteins (Bax, Bcl-2
and Caspase-3) were evaluated by Western blot analysis (left panel). The densitometry analysis of
these proteins is shown in the right panel. ** p < 0.01 vs. WL + CT. WL: white light, CT: 661W cells
without CAV-1 transfection, TF: 661W cells with CAV-1 transfection.
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assay. (C) Cell apoptosis was analyzed by Annexin V−FITC and PI double−staining assay. Repre-
sentative images of cell apoptotic profiles are shown on the left. Percentages of apoptotic cells are 
summarized in the right panel. (D) The expressions of apoptosis−related proteins (Bax, Bcl−2 and 
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protein is shown in the right panel. ** p < 0.01 vs. WL + GBE + CT. WL: white light, CT: 661W cells 
without CAV−1 silencing, KD: 661W cells with CAV−1 silencing. 

Figure 8. CAV-1 silencing attenuated the cytoprotective effect of GBE on photoreceptor degeneration
in 661W cells exposed to WL illumination. The 661W cells with or without CAV-1 silencing were
pre-treated with GBE (100 mg/L, 24 h) and then exposed to WL (4000 lux) for 2 h. (A) The silencing
of CAV-1 was verified by Western blot analysis. (B) Cell viability was assessed by MTT assay. (C) Cell
apoptosis was analyzed by Annexin V-FITC and PI double-staining assay. Representative images
of cell apoptotic profiles are shown on the left. Percentages of apoptotic cells are summarized in
the right panel. (D) The expressions of apoptosis-related proteins (Bax, Bcl-2 and Caspase-3) were
evaluated by Western blot analysis (left panel). The densitometry analysis of each protein is shown
in the right panel. ** p < 0.01 vs. WL + GBE + CT. WL: white light, CT: 661W cells without CAV-1
silencing, KD: 661W cells with CAV-1 silencing.
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Figure 9. CAV−1 silencing attenuated the protective effect of GBE on photoreceptor degeneration in 
C57BL/6J mice exposed to WL illumination. (A) The silencing of CAV−1 in mouse retinas was veri-
fied by Western blot analysis (left and middle panels) and immunofluorescence staining (DAPI: blue 
fluorescence, CAV−1: red fluorescence, rhodopsin: green fluorescence) (right panel). (B) Mice with 
or without CAV−1 silencing were orally administered GBE (100 mg/kg body weight/day for 5 days) 
and then exposed to WL (50,000 lux) for 8 h/5 days with continuous GBE treatment. Retina structure 
was assessed by HE staining (left panel). Retina function was assessed by ERG analysis (middle 
panel). Photoreceptor apoptosis was assessed using TUNEL staining in the right panel (TUNEL: red 
fluorescence, DAPI: blue fluorescence). ** p < 0.01 vs. GBE + CT. WL: white light, INL: inner nuclear 
layer, ONL: outer nuclear layer, CT: Control, KD: CAV−1 silencing. 

4. Discussion 
GBE has retinal protective effects due to its potential to increase blood flow and plate-

let−activating factor antagonism and prevent membrane damage caused by free radicals. 
The beneficial effect of GBE on vision has been reported in clinical trials with AMD pa-
tients [25]. Up to now, the mechanistic study of GBE in relation to retinal degenerative 
diseases has mainly relied on in vitro findings. For instance, a recent study investigated 
the antioxidant effect of 19 natural compounds isolated from GBE on human retinal epi-
thelial pigmented (RPE) cells and found that rutin and procyanidin B2 are active com-
pounds with potential therapeutic value in protecting RPE cells from oxidative injury [24]. 
However, there is a lack of in vivo evidence to verify the antioxidative effect of GBE and/or 
its active ingredients in retinal degenerative diseases. 

Photoreceptor degeneration is a hallmark of retinal degenerative diseases and oxida-
tive stress is one of its primary risk factors. Thus, in the present study, we assessed the 
protective effect of GBE on photoreceptors exposed to WL illumination in in vitro and in 
vivo models. As to the data reported in the literature and our preliminary testing, we 
found that 4000 lux in cells and 50,000 lux in mice were the optimal light densities for 
effectively inducing photoreceptor injury and these were adopted for model construction 
and GBE evaluation in the current study [29]. Noteworthy, the GBE used in our study is 

Figure 9. CAV-1 silencing attenuated the protective effect of GBE on photoreceptor degeneration in
C57BL/6J mice exposed to WL illumination. (A) The silencing of CAV-1 in mouse retinas was verified
by Western blot analysis (left and middle panels) and immunofluorescence staining (DAPI: blue
fluorescence, CAV-1: red fluorescence, rhodopsin: green fluorescence) (right panel). (B) Mice with or
without CAV-1 silencing were orally administered GBE (100 mg/kg body weight/day for 5 days)
and then exposed to WL (50,000 lux) for 8 h/5 days with continuous GBE treatment. Retina structure
was assessed by HE staining (left panel). Retina function was assessed by ERG analysis (middle
panel). Photoreceptor apoptosis was assessed using TUNEL staining in the right panel (TUNEL: red
fluorescence, DAPI: blue fluorescence). ** p < 0.01 vs. GBE + CT. WL: white light, INL: inner nuclear
layer, ONL: outer nuclear layer, CT: Control, KD: CAV-1 silencing.

4. Discussion

GBE has retinal protective effects due to its potential to increase blood flow and platelet-
activating factor antagonism and prevent membrane damage caused by free radicals. The
beneficial effect of GBE on vision has been reported in clinical trials with AMD patients [25].
Up to now, the mechanistic study of GBE in relation to retinal degenerative diseases has
mainly relied on in vitro findings. For instance, a recent study investigated the antioxidant
effect of 19 natural compounds isolated from GBE on human retinal epithelial pigmented
(RPE) cells and found that rutin and procyanidin B2 are active compounds with potential
therapeutic value in protecting RPE cells from oxidative injury [24]. However, there is a lack
of in vivo evidence to verify the antioxidative effect of GBE and/or its active ingredients in
retinal degenerative diseases.

Photoreceptor degeneration is a hallmark of retinal degenerative diseases and oxida-
tive stress is one of its primary risk factors. Thus, in the present study, we assessed the
protective effect of GBE on photoreceptors exposed to WL illumination in in vitro and
in vivo models. As to the data reported in the literature and our preliminary testing, we
found that 4000 lux in cells and 50,000 lux in mice were the optimal light densities for
effectively inducing photoreceptor injury and these were adopted for model construc-
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tion and GBE evaluation in the current study [29]. Noteworthy, the GBE used in our
study is a previously verified preparation obtained through alcohol extraction from Gingko
biloba dropping pills followed by purification with a macroporous resin column [33]. This
preparation meets the standard quality indexes accepted worldwide: flavonoid glycosides
≥ 24%, terpene lactones ≥6%, ginkgolic acids ≤5 or 10 ppm [34]. We found that WL illu-
mination significantly triggered photoreceptor degeneration and retina structure damage
via induction of oxidative stress and mitochondrial dysfunction. More importantly, GBE
pre-treatment could attenuate such phenotypes in 661W cells and mice exposed to WL
(Figures 1–3).

Caveolae, 50 to 100 nm flask-shaped invaginations of the plasma membrane, function
in membrane trafficking, membrane lipid composition maintain and cell signal transduc-
tion [20]. CAV-1 is the major component of caveolae and is responsible for modulating
a wide range of cellular events, such as proliferation, lipid metabolism, cellular tracking
and signal transduction [35,36]. Recently, the role of CAV-1 in the retina has been widely
investigated. Gu et al. reported that loss of CAV-1 causes blood–retinal barrier breakdown,
venous enlargement and mural cell alteration [37]. Li et al. showed that loss of CAV-1
impairs retinal function due to disturbance of the subretinal microenvironment [38]. The
important role of CAV-1 has also been identified in retinal degenerative diseases; however,
its role in photoreceptor degeneration remains unclear. Our study showed that CAV-1
was significantly downregulated in in vitro and in vivo models exposed to WL, leading to
photoreceptor degeneration. GBE pre-treatment could recover the impaired expression of
CAV-1 (Figure 5). We identified that CAV-1 is highly expressed in the outer nuclear layer
(ONL), outer segments (OS) and RPE in the retina, which is in contrast to the report of
Li et al. [38]. Notably, Dean et al. revealed that CAV-1 is an authentic component of OS by
subcellular fractionation [39], which may be because of the abundance of detergent-resistant
membranes (DRMs) in OS, and CAV-1 is known to be one of the main components in DRMs.
CAV-1 binds to numerous proteins via its scaffolding domain including NADPH oxidases
(NOXs). In endothelial cells, CAV-1 is a negative regulator of NOX function by direct
binding with NOX2 and NOX5 [40]. In human vascular smooth muscle cells, disrupting
CAV-1 signaling triggers NOX-specific redox signaling and subsequent oxidative stress [41].
In addition, NOXs contribute to the formation and activation of redoxosomes, a fledgling
area of cellular signaling through superoxide-producing endosomes. Redoxosome activa-
tion includes SRC kinase-dependent Vav2 tyrosine phosphorylation, Rac1-GTP activation
and activation of NADPH oxidase [42]. In this study, CAV-1 downregulation in the WL
group resulted in the upregulation and relocation of NOX2 from the membrane to the
cytoplasm as well as the formation and activation of redoxosomes, which led to oxidative
stress, mitochondrial dysfunction and photoreceptor cell apoptosis (Figure 4). However,
GBE pre-treatment could significantly reduce the formation of redoxosomes via upregu-
lating CAV-1 in in vitro and in vivo models (Figure 6), indicating that the antioxidative
effect of GBE on photoreceptors against WL is involved in modulating CAV-1–redoxosome
signaling. Thus, targeting CAV-1–redoxosome signaling might become a novel therapeutic
target in the treatment of retinal degenerative diseases. Our further study revealed that the
overexpression of CAV-1 could protect photoreceptors from oxidative damage resulting
from WL exposure (Figure 7), while CAV-1 silencing largely prohibited the cytoprotective
effect of GBE in both in vitro (Figure 8) and in vivo models (Figure 9). These findings
confirmed the involvement of CAV-1 in the cytoprotective effect of GBE on photoreceptors
against WL-induced oxidative damage.

Notably, the pharmacokinetic evaluation of GBE in mouse retinas has not been estab-
lished at present and there is no accepted standard for the standardization of the plasma
level of GBE yet. Future research is warranted to investigate ocular concentrations of
GBE in systemic administration to indicate the therapeutic range of GBE in protecting
photoreceptor degeneration; however, this is beyond the scope of the current study.
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5. Conclusions

Overall, this study has demonstrated the neuroprotective effect of GBE against WL-
induced photoreceptor degeneration in in vitro and in vivo models, which effect is dependent
on CAV-1 and likely mediated through regulating its downstream redoxosome signaling
(Figure 10). This pilot study provides critical information on the pathogenesis of photore-
ceptor degeneration leading to retinal degenerative diseases and forms a basis for potential
clinical applications of GBE in preventing such diseases. In addition, future study is needed
concerning the clinical effect of GBE on patients with retinal degenerative diseases.
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Figure 10. The proposed molecular mechanism of the effect of GBE on WL illumination-induced
photoreceptor degeneration.
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