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Abstract: As people are paying more and more attention to dental health, various dental treatment
procedures have emerged, such as tooth bleaching, dental implants, and dental restorations. However,
a large number of free radicals are typically produced during the dental procedures. When the
imbalance in distribution of reactive oxygen species (ROS) is induced, oxidative stress coupled
with oxidative damage occurs. Oral inflammations such as those in periodontitis and pulpitis
are also unavoidable. Therefore, the applications of exogenous antioxidants in oral environment
have been proposed. In this article, the origin of ROS during dental procedures, the types of
antioxidants, and their working mechanisms are reviewed. Additionally, antioxidants delivery in
the complicated dental procedures and their feasibility for clinical applications are also covered.
Finally, the importance of safety assessment of these materials and future work to take the challenge
in antioxidants development are proposed for perspective.

Keywords: antioxidants; antioxidant delivery; dental procedures; tooth bleaching; dental implants;
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1. Introduction

Since the 20th century, the prevention and treatment of oral diseases have made great
progress, and the occurrence of dental caries and oral inflammation have also dropped
significantly [1]. It is reported that many oral problems are related to an imbalance of
antioxidants and reactive oxygen species (ROS) in the body. In recent years, free radicals
have been found to be related to the occurrence and development of dental diseases, and
antioxidants have also been used in dental treatment [2].

Free radicals and ROS are the products of oxidative stress and have extremely oxidative
properties. The main sources of free radicals in the oral environment are considered as the
following: food (high fat, high calorie), alcohol and cigarettes, dental treatment (surgery,
laser, ultraviolet, etc.), dental materials (adhesive, composite resin, etc.), and periodontal
diseases [3]. The antioxidant capacity in the oral environment of each person is different.
Oxidative stress occurs when the body’s oxidative and antioxidant capacity is imbalanced
and favors oxidation, which is also the main cause of oral and dental diseases. When
reacting with antioxidants, free radicals will gain an electron and are converted into normal
molecules [4], thereby reducing damage to the body.

Antioxidants prevent free radicals from requesting electrons from normal cells, and
actively donate electrons to free radicals, thereby achieving the purpose of protecting nor-
mal cells. Antioxidants can also inactivate free radicals before they attack the body’s cells,
and they play a supporting role in the treatment of oral problems such as periodontitis [5].
In addition, some researchers found that the intake of antioxidants can effectively inhibit
the growth and reproduction of oral cancer cells [6,7]. Antioxidants are typically divided
into two types: endogenous and exogenous. Endogenous means that they can be produced
by the human body, including superoxide dismutase (SOD), catalase (CAT), and reduced
glutathione (GSH). Exogenous means that the human body cannot synthesize them. Com-
monly used exogeneous antioxidants are ascorbic acid (vitamin C), tocopherol (vitamin E),
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quercetin, tannic acid, and N-acetyl cysteine (NAC). The mechanisms of action and delivery
form of some exogenous antioxidants are shown in Table 1. A variety of delivery methods,
such as encapsulation and sol–gel technology, have emerged [8–10]. During the transition
process, the antioxidant might decompose due to its instability, leading to a decreased
effectiveness. Although an appropriate amount of ROS has a bactericidal effect, a large
number of decomposed antioxidants can adversely affect the treatment of diseases [11].
From this point, the biocompatibilities of current antioxidants also need to be addressed.

Table 1. Mechanism of action and delivery of some exogenous antioxidants.

Antioxidants Mechanism of Action Selected Delivery Form Ref.

Vitamin C
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This review focuses on the involvement of antioxidants in dental procedures, such as
dental bleaching, implants, and dental fillings. Types of antioxidants used to treat oxidative
stress induced by dental treatments and restorations are covered, and the mechanism of
action and delivery of antioxidants are also discussed. From the developmental perspec-
tive, the advantages and disadvantages of current antioxidants are evaluated, and future
challenges are also proposed.

2. Reactive Oxygen Species (ROS) and Oxidative Damage
2.1. ROS in Oral Environment

ROS refers to an extremely powerful oxidant that includes free radicals and nonradical
molecules [20]. In general, free radicals must be ROS, but ROS are not necessarily free
radicals [21]. The atomic orbitals of free radicals contain unpaired electrons, which are very
unstable and highly reactive.

ROS of physiological concentrations have positive effects [22]. In the medical field,
the active oxygen produced by photolysis, photocatalysis, and photodynamic therapy is
targeted for cancer therapy. In the dental field, an appropriate amount of ROS is used
for the treatment of periodontal diseases and antibacterial photodynamic therapy of root
canal disinfection. The hydrogen peroxide in tea and coffee is an example, which has a
preservative effect [23]. In addition, an appropriate amount of ROS is also used as a dental
bactericide for dental fillings [24]. Moderate amounts of free radicals are usually involved
in immune responses and metabolism in certain parts of the body [25].

However, when stimulated, excess ROS may cause oxidative stress and, thus, disease.
The most damaging radicals in the body include hydroxyl radicals, superoxide anion
radicals, hydrogen peroxide, oxygen singlet, hypochlorite, nitric oxide free radicals, and
peroxynitrite free radicals [4]. For an ROS, under aerobic conditions, a part of oxygen is
converted into superoxide anion radicals and hydroxyl radicals through electron transfer;
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another part of oxygen is converted into hydrogen peroxide through electron reduction
and accepts a proton. These highly reactive free radicals mainly damage deoxyribonucleic
acid (DNA), proteins, carbohydrates, and lipids in the nucleus and cell membranes [26].

Sources of free radicals in oral environments include normal metabolic processes
in the body and some external sources, including X-rays, ozone, smoking, and dental
treatments. Oral inflammation is the main source of inflammatory response and the
increase of ROS in oral tissues, gums, and saliva [25]. ROS are produced by phagocytic
cells, such as mitochondria, to fight microbial invasion. In this process, a large amount
of bactericidal superoxide anions can be produced, and the process of superoxide anion
elimination produces hydrogen peroxide [20]. While causing local damage to the oral
cavity, the free-radical-rich gingival fluid mixed with saliva stimulates the production
of ROS in other oral tissues [27]. Oxidative stress in the oral cavity is mainly related to
infection and inflammation of the gums and other soft tissues, but other factors may also
lead to oxidative stress. The sources of ROS are also relatively wide, mainly including
food, cigarettes, alcohol, dental materials, and drugs [3]. When drinking alcohol, the
amount of ethanol, acetaldehyde, and ROS in the oral environment will increase rapidly,
and after a period of time, acetaldehyde and ROS will remain at high concentrations [28].
Surprisingly, free radicals are produced at every stage of alcohol metabolism, including
alcohol dehydrogenase and mitochondrial enzymes, which oxidize to superoxide anion
radicals and hydroxyl radicals, respectively [29]. Whether it a chronic alcohol intake or one
dose, it will affect the homeostasis of the oral cavity, reduce the activity of enzymes, and
cause an increase in ROS [30,31]. There are thousands of toxic substances and hundreds
of pro-oxidants in cigarette smoke [32]. According to the research, burning of a cigarette
produces tar and smoke, 35 milliliters of cigarette smoke contains 1015 free radicals, and 1 g
of tar has 1017 [33]. These free radicals may further promote the production of oxidants in
saliva, change its proteins, and reduce the activity of antioxidant enzymes [34]. In addition,
it has been reported that high-fat, high-calorie-fed rats have increased ROS production
and reduced antioxidant barriers in the oral cavity [35]. The main source of ROS in the
oral environment is periodontitis. At the same time, the oral cavity is also exposed to ROS
produced by various dental materials, and some dental procedures, such as bleaching,
implants, fillings, crowns, veneers, orthodontics, and tooth extractions, may also produce
ROS (Figure 1).
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As people are paying more attention to dental health, various dental treatment proce-
dures are becoming popular, which also means that the sources of ROS are more extensive
than expected.
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2.2. Oxidative Stress and Oxidative Damage

Oxidative stress, the phenomenon of excess oxidants, is caused by an imbalance in the
production of free radicals in the antioxidant system [36]. Theoretically, oxidative stress can
be divided into basal, low-intensity, medium-intensity, and high-intensity oxidative stress
according to the content of oxidants [21]. Short-term oxidative stress may occur in tissue
loss such as trauma, infection, and heat damage. These damaged tissues produce increased
activity of phagocytic free-radical-generating enzymes, release free metal ions, destroy
epoxidation phosphorylated electron transport chain, and produce excessive ROS [4]. It
has already been proven that oxidative damage of cellular components such as proteins,
lipids, and nucleic acids may occur when ROS production increases or antioxidant capacity
decreases [37]. Oxidative stress corresponds to many diseases, including cardiovascular
disease, cancer, and various kinds of inflammation. Oxidation of the lipid component of
low-density lipoproteins is an important factor in atherosclerosis [38]. At the same time, a
large number of free radicals react with DNA, such as strand breaking base modification
and DNA protein cross-linking, and induce DNA damage, resulting in cell mutation
and cancer.

In the course of dental procedures, oxidative stress and oxidative damage also occur. It
has been shown that periodontal inflammation is a direct result of increased ROS and oxida-
tive damage products in the oral cavity [25]. Except for the factors of alcohol consumption
and nicotine exposure, dental procedures such as implants, bleaching, and fillings also lead
to oxidative damages (Figure 2). When exogenous coupled with endogenous antioxidants
are utilized, free radicals are scavenged to reduce the oxidative damage. Periodontitis is
a chronic inflammation of periodontal tissue, which can lead to the loss of alveolar bone
or even tooth loss when it is serious, and oxidative stress is a part of the pathogenesis
of periodontal disease [39,40]. The usual treatment is to scrape the tissues related to root
gouging, which can successfully treat most periodontal diseases [41].
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Figure 2. Schematic diagram of ROS production and clearance during dental procedures.

As for the oxidative stress phenomenon generated in dental procedures, antioxidants
might be added to eliminate free radicals. Antioxidants are used to combat oxidative stress.
Working mechanisms of antioxidants mainly include two types: one is the chain-breaking
mechanism, that works through antioxidants to provide electrons to free radicals, so that
free radicals become stable molecular structures without damage to normal cells; the other
is to remove ROS or reactive nitrogen species (secondary antioxidants) by quenching chain-
initiating catalyst [4]. Therefore, appropriate antioxidants must be chosen according to the
species of free radicals. Among them, naturally extracted antioxidants are more popular.
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3. Antioxidants Used in Dental Procedures
3.1. Tooth Bleaching

Tooth colors and structures might be affected by foreign pigments or drugs such as
tobacco, tea, coffee, and so on. With the pursuit of aesthetics, tooth bleaching technology
has attracted more and more attention. Tooth bleaching is the use of chemical principles,
through the method of oxidative replacement by using oxidants, to replace the pigment
in the tooth surface in order to achieve the purpose of tooth whitening. At present, the
commonly used tooth bleaching agents are hydrogen peroxide and carbamide peroxide. In
addition to a variety of bleaching substances, light sources such as allografts, lasers, light
emitting diodes (LEDs), and ultraviolet lights can also be used to enhance bleaching [42].

Bleaching works by releasing ROS. The active ingredients of bleaching agents are
10–40% hydrogen peroxide or 10–22% carbamide peroxide [43], which whiten the tooth by
using chemicals to oxidize organic pigments within the tooth structure. In the presence
of metal ions such as iron ions, hydrogen peroxide can generate oxygen-derived free
radicals, hydroxyl radicals, which have strong oxidation capacities [44]. In the process
of tooth bleaching with hydrogen peroxide, hydroxyl radical plays the oxidative role.
Hydroxyl radical does not affect the inorganic tissue of dentin, but does attack the organic
components of dentin, thus achieving the purpose of whitening teeth [45]. As for carbamide
peroxide, it is first decomposed into hydrogen peroxide in the mouth, and the bleaching
mechanism is the same as described above. The heat generated by light sources is helpful
to further activate the bleaching agents, and better bleaching effect is able to be obtained
by better penetration of hydrogen peroxide into the tooth structure. However, deeper
penetration of hydrogen peroxide may not only infiltrate the enamel and dentin, but also
reach the dental pulp, which may lead to irreversible damage to tooth structures and pulp
cells [46]. Soares et al. [47] demonstrated that pulp cells exposed to a certain concentration
of bleaching gel were in a state of oxidative stress, the intensity of which was proportional
to the contact time between the bleaching gel and enamel. Additionally, dental bleaching
may cause tooth sensitivity and periodontal discomfort [48], and periodontal tissue damage
may further cause root absorption, resulting in trauma or developmental defects in the
cementum layer of the tooth neck [49]. If a nonvital tooth has been developed without
response to electric pulp test, its discoloration can be managed by an internal bleaching. A
clinical case report by Anugrahati et al. [50] demonstrated that the internal bleaching on
a nonvital tooth was the best option to restore the function and aesthetics of the original
tooth. At the same time, the hydroxyl radical is one type of oxygen-derived free radical and
is considered to be extremely oxidizing, which can destroy connective tissue components,
collagen, hyaluronic acid, etc. [51,52]. If hemoglobin is exposed to hydrogen peroxide, the
iron in the hemoglobin molecule reacts with hydrogen peroxide, which produces hydroxyl
radical (an oxygen-derived free radical), thereby destroying healthy hemoglobin [53].
Hydroxyl radicals are also able to alter DNA by strand breaks and damage cell membranes
by lipid peroxidation [54]. When composite bonding is performed immediately after
tooth bleaching, the bonding strength might be negatively affected [55]. The residue of
peroxide in the bleaching procedure inhibits the polymerization and curing of adhesive
resin materials [56]. The enamel pores and dentin can store peroxides, leading to a greatly
increased concentration of peroxides on the enamel surface, which further prevents the
complete curing of some resin materials and finally affects the effect of adhesive repair [57].

During tooth bleaching, oxidative stress occurs in the mouth due to the residual
oxide caused by bleaching agents, causing damage to the human body, and also affecting
the bonding to teeth after bleaching. The proper use of sealer base is the most direct
approach to protect the periodontal area and limit the penetration to dental pulp. Even
if sealer base has been applied, there are still risks that bleaching agents induce negative
changes in tooth surfaces, such as reduction of microhardness, mineral loss, and surface
roughness, where the residue oxygen radicals and peroxides after bleaching are considered
as the main reason [58,59]. Antioxidants in saliva cannot remove these residual reactive
oxygen species in a short time, and more than two weeks are needed to eliminate the
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effect [60]. Therefore, the use of antioxidants in the bleaching process is very important
to neutralize the residual oxidants in the oral environment. Ascorbic acid is one of the
most commonly used antioxidants, and cannot be synthesized by humans. Ascorbic acid
mainly achieves the purpose of antioxidation by loosing two electrons and two protons to
form L-dehydroascorbic acid [12]. Applying 10% ascorbic acid to the tooth surface after
tooth bleaching is helpful to counteract the adverse effects of the adhesive bonding to the
enamel [61], and ascorbic acid may also play the roles of polymerization promoter and
co-initiator to have a positive effect on the adhesion of the composite resin to the tooth [62].
Garcia et al. [63] provided a one-year follow-up case report to further prove that immediate
bonding after bleaching is trustable in dental clinics by using sodium ascorbate gel to
avoid waiting time. However, a clinical trial by De Paula et al. [64] indicated that oral
administration of ascorbic acid (500 mg, three times daily) was not a feasible approach
to prevent bleaching-induced tooth sensitivity or reduce its intensity. Louzada et al. [65]
investigated the anti-inflammatory potential of carvedilol gel in the pulp of rats after
bleaching, where Carvedilol played the role of antioxidants. This histopathological study
proved the effectiveness of Carvedilol in minimizing the damage of hydrogen peroxide,
especially in deep resins of the dental pulp. Gupta et al. [66] assessed the antioxidant
property of 10% amla extract on bond strength and color stability of power-bleached teeth,
but, unfortunately, negative results were obtained. Vidhya et al. [18] reported another
natural antioxidant of grape seed extract (oligomeric proanthocyanin complexes (OPCs))
which had neutralization effect on excessive free radicals of bleached tooth, and the effect
was superior to ascorbic acid.The 5% OPCs and 10% ascorbic acid solutions had the ability
to remove free radicals, and the effectiveness was 50 times that of 10% ascorbic acid [67].
As a natural plant metabolite, it has been proven safe in various clinical applications
and dietary supplements as an antioxidant [68]. To improve the bioavailability of OPCs,
Tian et al. [19] proposed a solid self-double-emulsified drug delivery system (SDEDDS) to
deliver antioxidants. The double emulsification system is mainly composed of water-in-oil
emulsion and hydrophilic surfactant, which can protect it from degradation and make it
better absorbed by the small intestine [19,69].

3.2. Dental Implants

Periodontal disease leads to changes in the periodontal tissue, which in turn leads
to the destruction of the alveolar bone. If it is not treated in time, tooth loss might be the
consequence. Dental implantations are currently an effective method for the treatment
of tooth loss [70]. Biomaterials used to make dental implants include metals, ceramics,
carbons, polymers, and composites. Polymer materials are rarely used in implant dentistry
and were only used to manufacture shock-absorbing assemblies placed between the implant
and the superstructure [71]. As early as 1957, a Swedish surgeon studied bone healing and
regeneration, and found that bone could grow together with titanium (Ti), and it could
effectively be adhered to teeth without repulsion [72]. This also laid a foundation for the
development of titanium dental implants. Since 1992, with the development of modern
ceramics, ceramic surface treatments and ceramic-like elements have been incorporated
into implants to further enhance osseointegration [73]. The titanium dental implants have
attracted the most interest.

The process of dental implant implantation inevitably generates ROS. On one side,
ROS are required for cell signaling and normal metabolism. On the other hand, excessive
oxidative stress may lead to damage on DNA, ribonucleic acid (RNA), and proteins [74].
Tsarik et al. [75] reported that the oxide layer generated on the surface of titanium alloy
implant may reduce the corrosion potential of the metal, while friction would lead to the
rupture and corrosion of the titanium dioxide layer. From this point, the electrochemical
reaction would occur. A large number of titanium ions were generated at the anode, and
free radicals and hydrogen peroxide were generated as intermediate products. When
titanium dioxide is corroded, hydrogen peroxide generated by electrochemical reaction will
continue to react with titanium dioxide to form hydroxyl radicals [76]. Bressan et al. [77]



Antioxidants 2022, 11, 2492 7 of 17

analyzed the effects of titanium (Ti) particles on mesenchymal stem cells (MSCs) and
fibroblasts (FU), and the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide
(MTT) test was used to evaluate cell proliferation and generation of ROS. It was found
that titanium particles reduced the cell survival time and increased the generation of ROS.
Accompanied by oxidative stress, bone regeneration imbalance was induced. The process
of implant placement may lead Ti particles to enter the tissue and cause inflammation.
Therefore, tetracycline, doxycycline, chlorhexidine, hydrogen peroxide, and citric acid can
be used to remove excess Ti particles, among which hydrogen peroxide, citric acid, and
chlorhexidine are more effective [78]. In addition, Abdulhameed et al. [79] reported that
titanium dioxide nanoparticles (TiO2NPs) can induce oxidative stress, reduce osteogenesis,
and damage the antioxidant defense system. After placement of a dental implant, friction
and twisting can destroy the oxide layer on the surface, leading to an increase of ROS
and an inflammatory, such as peri-implant (PI), infection may occur (Figure 3) [70,80].
Antioxidants such as ascorbic acid, polyphenols, and vitamin E are choices for treatment.
PI and periodontal disease are manifested by soft tissue and bone damage, in which ROS
play an important role in cell transmission, maintenance, and proliferation [81]. Dental
implant materials are usually made of titanium or titanium alloys, and when exposed to
oxygen, a layer of titanium oxide forms on the tooth surface to protect it [82]. In homeostatic
conditions, ROS are involved in cellular maintenance, signal transduction, and repair of all
tissues. However, if excessive ROS are accumulated, it can lead to oxidative stress, resulting
in cellular damage and tissue destruction. Similarly, antioxidants protect immune cells by
converting free radicals into waste products affected by the destructive effects of ROS.
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Typically, a certain amount of ROS is already present before the implant is im-
planted [83]. Antioxidants have a protective effect on periodontal tissue and can neutralize
ROS to prevent tissue damage [84]. At present, antioxidants in the treatment of local
inflammatory reactions, such as periodontitis, usually quickly disappear with reactive
oxygen species and other free radicals. The lower treatment effect might correspond to the
antioxidants delivery. When the inflammation is serious, there are redness, swelling, bleed-
ing, wound split, and other conditions. Most of these antioxidants can be obtained from
diets and supplements, and supplements can be taken in addition to the diets mentioned
above [2]. Tannic acids are macromolecules consisting of a central glucose molecule linked
to 10 surrounding gallic acid units [85]. Thus, tannic acids have a large number of functional
groups but are still water-soluble and hydrolysable [86,87]. Huang et al. [88] modified the
Ti implant surface with Ag nanoparticles incorporating tannic acid/nanoapatite composite
coatings, and their antibacterial and antioxidative properties were highlighted. The slow
release of tannic acid in this study is favorable to the persistent antioxidative activity of the
dental implant. Maruyama et al. [89] investigated the effects of dentifrice containing green
tea catechins using a rat model, and up to 8 weeks of follow-up proved the efficacy of green
tea catechins to prevent periodontal inflammation by decreasing gingival oxidative stress.
Quercetin is a natural flavonoid [9], and is an antioxidant that has both anti-inflammatory
and antioxidant properties [90,91]. Catauro et al. [92] entrapped quercetin in a silica/poly(ε-
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caprolactone)-based hybrid material by a sol–gel route to use as novel dental implant, and
the hydrogen-bonded reactions between quercetin, silica, and polymer matrices were con-
sidered as the key to produce antiradical efficacy. Polyphenols are natural compounds with
antioxidant and antimicrobial properties and aromatic benzene rings containing multiple
hydroxyl groups [93,94]. The antioxidant activity of polyphenols scavenges free radicals by
supplying hydrogen atoms from hydroxyl groups in the phenolic ring [94]. Additionally,
polyphenols exert their antioxidant function through their ability to chelate iron and other
metal ions, thereby preventing the catalytic oxidation of hydrogen peroxide and superoxide
to hydroxyl radicals [95,96]. Polyphenolic compound curcumin can also lead to an increase
in the level of the antioxidant enzyme glutathione peroxidase, which reduces the ROS
level in cells [97]. Vitamin E is a common antioxidant with the highest concentration in
human mitochondria. The main mechanism of action of vitamin E is to interact with
superoxide in mitochondria, limit its formation, stabilize mitochondrial membrane, and
remove antioxidants that have been generated [98]. Vitamin E could be added to implant
formulas for antioxidative purposes, and a clinical study [99] indicated that adding low
concentrations of vitamin E (less than 0.1%) did not affect the physical and mechanical
properties and can prevent oxidation for up to 24 months post-implantation.

At present, antioxidants in the treatment of local inflammatory reactions, such as
periodontitis, usually quickly disappear with ROS and other free radicals. The lower
treatment effect might correspond to the antioxidants delivery. Ozawa et al. [100] reported
a new material in which hydrogels containing nitrogen oxide radicals were injected into
experimental rat models with PI and in vitro osteoblasts. These hydrogels can reduce the
presence of ROS, inhibit hydrogen peroxide and lipid peroxidation, and can increase the
retention time of antioxidants during treatment. After injection, the gel was assembled
by nanoassembly, and the micelles containing nitroxide radicals were partially decom-
posed [13]. These redox nanoparticles usually remove extracellular ROS without affecting
the normal cellular reactions. Therefore, the delivery of antioxidants by gel encapsulation is
worth studying for the treatment of oxidative stress conditions such as periodontal diseases
caused by dental implants.

3.3. Dental Restorations

Dental filling materials have been widely used as a means of dental restoration in
recent years, mainly aimed at repairing teeth damaged by dental caries or trauma. There
are three main types of filling materials, which are amalgam, dental resin composites, and
glass ionomer cement (GIC) [101].

3.3.1. Dental Amalgam

Dental amalgam is one of the most widely used restorative materials in dentistry.
Despite the continuous progress in the development of dental fillings, amalgam is still
widely used due to its durability, low price, easy use, and other advantages [102]. However,
there are still many disputes about the use of amalgam: the continuous release of mercury
vapor in dental amalgam, the possible formation of organic mercury in the mouth, the
impact of mercury exposure on human cell gene regulation, and the relationship between
amalgam and Alzheimer’s disease, Parkinson’s disease, and other diseases [103]. The
alloys currently used are 40 to 70% silver, 12 to 30% tin, and 12 to 24% copper. It may also
include 0–4% indium, 0.5% palladium, and more than 1% zinc. Zinc prevents the oxidation
of other metals in the alloy during manufacturing. The powder alloy is mixed with liquid
mercury, then soft amalgam putty is poured into the alveolar bone to cure. Cured amalgam
fillings are cheaper, stronger, and last longer than other types [103].

Mercury penetrates into the brain through the oral area and accumulates in the brain,
thereby affecting the central nervous system [103]. Mercury in amalgams is responsible
for the redox imbalance in the system. Mercury in amalgams usually exists in various
oxidation states (Hg+ and Hg2+) and is prone to react with cysteine and glutathione to
form sulfide, which is methylated by bacteria to form highly toxic methylmercury (MeHg)
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or dimethyl mercury (Me2Hg) and organic compounds [104]. The catalytic oxidation of
mercury has also been the focus of attention. Similar to other metal ions, mercury interacts
with most sulfhydryl (-SH) groups and produces living ROS, such as superoxide anion,
hydrogen peroxide, and hydroxyl radical, thus inducing oxidative damage in tissues.
Pizzichini et al. [105] conducted a clinical study towards the release of mercury from dental
amalgam, and they found a significant negative correlation between total antioxidant
activity (TAA) and mercury levels in females but not males. Another clinical study, by
Lindh et al. [106], suggested that the metal exposure from dental amalgam did cause
ill health, and the removal of dental amalgam coupled with antioxidant therapy were
supportive to improve the quality of life in patients.

Amalgam restorative systems currently in use typically include encapsulated and
predosed presentations, which are applied with isolation of the tooth by means of a
rubber dam both for insertion and removal. Couple with the high-powered suction during
operation, the possible toxic effect of amalgam is actually very limited. As for the potential
mercury release and induced oxidative stress, an appropriate application of antioxidants is
necessary. Cysteine, homocysteine, and GSH play the role of antioxidants in the body, and
GSH maintains the oxidative balance of cells by quenching free radicals. As an important
defense against oxidative stress, GSH increases the antioxidant capacity of mitochondria
and protects mitochondria by resisting lipid peroxides produced by hydrogen peroxide,
hydroxyl radicals, and mercury [107]. Due to the poor selectivity of GSH, it may not only
remove toxic ions, but also eliminate the ions necessary for the human body.

Antioxidants such as vitamin C, vitamin B complex, vitamin E, and niacin are usually
taken to supplement the treatment [106]. Fisk et al. [108] investigated the correlation of den-
tal amalgam restorations supported by antioxidant therapy (vitamin B complex, vitamin C,
vitamin E, and sodium selenite), and the systemic route was proved to be effective. Vitamin
C as an antioxidant is discussed here. The antioxidant effect of vitamin C is manifested
in the rapid reaction with O2

−, HOO·, and OH to produce semi-dehydroascorbic acid,
and can also restore the prototype of oxidized vitamin E [109] (Figure 4). Because a large
amount of vitamin C may cause damage to the stomach and intestines, excess vitamin C is
excreted with body fluids. Vitamin C has the advantages of antioxidation and antiaging,
but the sustainability of vitamin C in light, oxygen, and heat is very low. In order to extend
the shelf life of vitamin C, encapsulation technology is used to wrap it. Common pack-
aging materials include liposomes, nanoparticles, and microcapsules [110]. Additionally,
according to Gallusi et al. [111], dental amalgam was not as toxic as expected, and human
clinical studies have shown no increased risk for systemic diseases or conditions compared
with composite restorations. Therefore, a systemic route is applicable for the delivery
of antioxidants.
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In practical clinical applications, the uses of dental amalgams are controversial at
present. The Norwegian Ministry of Environment banned the use of amalgam on January
2008, but the Scientific Committee of European Commission did not follow this ban be-
cause all available direct restorative materials have drawbacks and potential biological side
effects. Alkhudhairy [112] investigated the attitudes of dental practitioners working in
Riyadh, Saudi Arabia, towards the use of dental amalgam, and the results were strongly
gender-dependent. Male participants did not oppose the use of amalgam in their clinical
practices, and did not consider it an occupational risk factor. However, female participants
held significantly different options to those of males. Joshi et al. [113] limited their studies to
males, and investigated the mercury level difference between dentists and nondental health
professionals. No relationship was found between these two groups, and consumption of
saltwater fish was considered as the primary exposure factor. A clinical report by Broad-
bent et al. [114] demonstrated that the decreased use of dental amalgam has been a global
trend despite having no official policy. The tooth-colored direct restorations, particularly
composites, have become the most frequently used filling materials in dental clinics.

3.3.2. Dental Resin Composites

In the last century, composite resin was introduced into dental repair as a filling
material, such as for caries, and tooth structure damaged by erosion or fracture [115].
Resin composites are also widely used because of their good compressive strength and
aesthetic properties. Dental resin composites are usually composed of two parts, a small
part of polymerizable free radicals and a large part of inorganic fillers, which mainly
include quartz, ceramics, and silica [116]. Commonly used monomers are 2-hydroxyethyl
methacrylate (HEMA), bisphenol A-glycidyl methacrylate (Bis-GMA), and co-monomer
triethylene glycol dimethacrylate (TEGDMA) [117]. These fillers and monomers are mixed
in a certain proportion, and a certain initiator is added. After heat or light irradiation,
they can be solidified. Finally, after grinding and polishing, the tooth repair is completed.
However, the composite resin has potential toxicity in the process of polymerization and
release, and some added compounds, such as monomers and initiators, may produce a
certain amount of free radicals, and even lead to oxidative stress [118].

The polymerization process of composite resin is typically incomplete. The monomer
HEMA released from the resin restorations may interact with living tissues in the oral
environment, producing cytotoxicity, and the immune cell response and the function
of odontoblast cells may be affected (Figure 5). It was also reported that apoptosis of
odontoblast-like cells, undifferentiated pulp cells, or macrophages in mice repaired with
composite resins depended on the degree of adhesion resin polymerization [119,120]. In
addition, a low degree of conversion causes the unpolymerized monomers to be released
into the oral environment, which may reduce the mechanical properties of the composite
and accelerate the degradation. The generation of free radicals and ROS when applying
dental composite materials is mainly related to the induction of monomers in the composite
materials [119]. Methacrylate in dental resin may lead to the consumption of GSH, but
NAC generated by GSH may alleviate this situation. Schweikl et al. [119] demonstrated
that resin monomer damages mitochondria, consumes the antioxidant glutathione in
cells, reduces its free radical scavenging ability, increases the production of ROS, and
accelerates oxidative damage. Among them, epoxy resins and acrylic monomers are listed
as important occupational sensitizers and have the potential of cross-reaction [119]. By
2021, the European Food Safety Authority (EFSA) had reduced the tolerable daily intake
of bisphenol A to 0.04 ng/kg. If the amount of exposure is too high, it may lead to tooth
sensitivity in clinic and even affect the health of the body [121]. When concentrations
reach a certain amount, the composition of the composite may alter cytokine secretion in
human monocytes. Recent studies also found that camphorquinone (CQ), as an initiator of
composite resins, is also considered to be a compound that produces ROS. In addition, the
use of ultraviolet curing in composite resin restoration is also an aspect in the production
of ROS.
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Antioxidants have been considered when using dental resin composites. It has been
proven that antioxidant-added binders produce less ROS and are correspondingly less
toxic [122]. Antioxidant polymers with molecules of natural antioxidants (e.g., quercetin
and curcumin) have also been synthesized for attenuating material-induced oxidative
stress [123]. GSH and NAC are antioxidants responsible for the reduction of DNA damage
caused by CQ oxidation at relatively higher concentrations. The addition of NAC in resin-
based materials favors the formulation of a new material in which the intrinsic cytotoxicity
of the resin was potentially detoxified [124]. Flavonoids are powerful antioxidants that can
scavenge free radicals in the body and have antibacterial and disinfectant properties.

Vitamin E is a common antioxidant, with the highest concentration in human mito-
chondria. Vitamin E also has the function that other antioxidants do not have, namely,
regulating the activity of related enzymes. It can inhibit the activity of protein kinase C
and inhibit the production of monocytes [125]. The absorption of vitamin E is mainly in
the small intestine. Since direct oral administration may destroy the strong acid in the
stomach and lose its activity, a functional ingredient delivery system is needed to retain
its activity and improve stability [14]. Zhang et al. [15] mentioned a new oral delivery-
responsive intelligent hydrogel in their research a few years ago. It forms a spatial network
structure through macromolecules and can change its performance through environmental
conditions or interface reactions [126]. Carboxymethyl starch is used as the carrier material,
and the carboxyl group on the starch macromolecule is related to the hydration, swelling,
and solubilization of the delivery carrier [14]. Another material of the hydrogel is xanthan
gum, which is acid-resistant and antienzymatic. Research has shown that xanthan gum
is helpful to delay the release, making vitamin E stay longer [127]. The microcapsules
containing vitamin E were prepared by spray-drying the mixture of carboxymethyl starch
and xanthan gum, and are able to reach the upper part of the small intestine and improve
the bioavailability and efficiency of vitamin E [14].

3.3.3. Glass-Ionomer Cement (GIC)

GIC is a dental translucent cement, which is the product of the reaction of ion-leachable
glass and polyacrylic acid aqueous solution [128]. In terms of performance, although it
is not as perfect as resin composite material, it has a wider clinical application because
it can control the performance according to changing the ratio [129]. The advantages of
GIC are strong adhesion with teeth, low risk of tooth corrosion, and more realistic and
beautiful color [130]. GICs are widely used in artificial crowns, orthodontic brackets, and
cavity liner [131]. In order to further improve the mechanical strength, resin-modified
GIC (RMGIC) was developed, and can be photocured by adding monomers [132]. The
monomers used here are typically bis-GMA and HEMA [133]. The monomers added in
RMGICs are the main source of free radicals, which may cause certain oxidative damages.
When resin components, such as monomers and initiators, are added to the traditional
GIC formula, the residual HEMA monomer easily spreads through the dentin tubules to
the pulp cells, stimulating the production of free radicals. Meanwhile, the antibacterial



Antioxidants 2022, 11, 2492 12 of 17

substance fluoride added to the GIC will also bring certain cytotoxicity, which may cause
pulp damage [134]. The clinical manifestations are pain when the teeth are irritated by
heat and cold, or bleeding gums. Generally, vitamin E is used as an antioxidant, and its
mechanisms of action and delivery are similar to those of the dental resin composites.

4. Conclusions and Perspective

As people are paying more and more attention to oral health, the details about dental
procedures are also growing. This has greatly improved people’s oral conditions and
promotes the innovation and progress of dental materials. This article focused on the
applications of antioxidants in dental procedures. For each dental procedure, the types of
antioxidants used in dental treatment, the mechanism of action, and delivery of various
antioxidants were reviewed. The challenges and safety assessment of these materials in the
current field were also discussed.

In various dental procedures, antioxidants are highlighted for their significance in the
process of scavenging free radicals and repairing damaged cells. However, determining
how to select the most appropriate antioxidant according to a certain type of free radicals
generated in dental procedures, how to deliver these antioxidants to maximize their effec-
tiveness, and how to balance their toxicity and bioavailability still need further studies.
Additionally, scientific trials that support the widespread use of various antioxidants in
dental clinics are of limited validity. Future works focused on antioxidants delivery and
bioavailability assessment are highly recommended. It is also urgently necessary to conduct
clinical studies, especially the long follow-up period studies in dental clinics, to further
confirm the appropriate antioxidative approach for human usage. The explorations of
advanced applications of antioxidants in the dental field are still underway.
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