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Abstract: Coffee consumption positively influences colon health. Conversely, high levels of trypto-
phan metabolites such as skatole released from intestinal putrefactive fermentation in the presence of
excessive dietary animal protein intake, and gut microbiota alterations, may have several adverse
effects, including the development of colorectal cancer. Therefore, this study aimed to elucidate the
potential protective effects of coffee in the presence of different skatole levels. The results showed
that skatole exposure induced reduced cell viability and oxidative stress in the HT-29 human colon
cancer cell line. However, co-treatment of cells with skatole and coffee samples was able to reduce
ROS production (up to 45% for espresso) compared to cells not treated with coffee. Real-time PCR
analysis highlighted that treating HT-29 cells with skatole increased the levels of inflammatory cy-
tokines and chemokines TNF-α, IL-1β, IL-8, and IL12, whereas exposure to coffee extracts in cells
that were pretreated with skatole showed anti-inflammatory effects with decreased levels of these
cytokines. These findings demonstrate that coffee may counteract the adverse effects of putrefactive
compounds by modulating oxidative stress and exerting anti-inflammatory activity in colonocytes,
thus suggesting that coffee intake could improve health conditions in the presence of altered intestinal
microbiota metabolism.

Keywords: coffee; anti-inflammatory activity; ROS; skatole; chlorogenic acids; polyphenols

1. Introduction

Coffee is a highly popular beverage consumed throughout the centuries around
the world [1], and a rising volume of scientific data is supporting the apparent health
benefits of regular coffee consumption [2,3]. Coffee contains a large variety of relevant
bioactive molecules, such as alkaloids, fibers, melanoidins, and polyphenols, which appear
to be responsible for its pharmacological actions [4,5]. Several studies have reported that
the positive effects ascribed to coffee intake include protection against type 2 diabetes,
cardiovascular disease, and obesity, and as well as a wide range of cancer types [6].

It is well established that natural antioxidants have a protective effect against several
lifestyle-related diseases, including colon cancer, by efficiently reducing reactive oxygen
species (ROS) formation and preventing colonic inflammation [7–9]. Inflammation is
recognized as an immune response that is triggered by microbial infection or tissue damage
in humans [10]. As a result of this response, several pro-inflammatory cytokines are
released, including interleukin-12 (IL-12), IL-6, IL-1β, chemokine IL-8, tumor necrosis
factor-alpha (TNF-α), and interferon gamma (IFN-γ) [11]. Moreover, a variety of anti-
inflammatory cytokines are generated, such as IL-10 and IL-4 [12]. Furthermore, the
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increased formation of ROS may prompt tissue damage and inflammation of intestinal
mucosa, resulting in an higher risk of cancer development [13,14].

An ever-growing number of scientific surveys evidence the pivotal role of the intesti-
nal microbiota in many human functions, including nutrition digestion and absorption,
production of vitamins, and the modulation of innate immunity [15–19]. Intestinal micro-
biota converts dietary components, releasing a wide range of compounds that can have
either positive or adverse effects on the health of the host [20]. A large body of evidence
indicates that consumption of processed and red meat, and a high-fat diet, can be associated
with altered microflora fermentation processes and enhanced production of putrefactive
metabolites [21,22]. These compounds include indolic compounds such as 3-indoxyl sulfate
and 3-methyl-indole (also known as skatole) and originate from the microbial catabolism of
tryptophan [23,24]. Several investigations have found that high levels of these tryptophan
metabolites may lead to unhealthy outcomes, including hepatic coma [25], rheumatoid
arthritis [26], pulmonary edema [27], and schizophrenia [28,29]. In this context, although
much remains to be understood regarding the molecular effects of these compounds on gut
homeostasis, skatole has been linked to the progression and pathogenesis of inflammatory
bowel disease (IBD), and to the development of colorectal cancer [30–32]. As recently
reported in the literature, high skatole levels may exert pro-inflammatory properties [33,34].
Furthermore, Karlin et al. [35] reported that subjects with colorectal cancer excreted a
higher concentration of fecal skatole than subjects without cancer (p < 0.01), highlighting a
relationship between colorectal cancer and the level of fecal skatole.

Coffee consumption has been linked to a lower incidence of colorectal cancer, possibly
due to the potent anti-inflammatory and antioxidant capacity of the active compounds in
coffee [36]. Scientific evidence has been reported that shows active compounds in coffee,
mainly caffeoylquinic acid (CQA) and dicaffeoylquinic acid (diCQA), have a protective
action against ROS formation and DNA damage in human cell models [37,38]. Researchers
conducting experimental studies in mice have reported that coffee reduced TNF-α in
adipose tissue and decreased the expression of IL-1B and IL-6 in serum [39,40]. In addition,
coffee compounds affect the homeostatic balance of intestinal microbiota, suppressing
the bacterial N-acetyltransferase activity [41,42]. Several in vivo and in vitro studies have
highlighted that coffee consumption is able to increase the Bifidobacterium spp. concentration
in the colonic stage, as opposed to that of Bacteroides and Clostridium spp., with well-known
positive effects, implying that coffee intake may have a prebiotic impact [43–45].

In a recent study, we identified and quantified the main bioactive compounds, in-
cluding polyphenols, present in three different kinds of coffee brews using an UHPLC-Q-
Orbitrap HRMS [46]. In our previous investigation, performed in the human colorectal
adenocarcinoma HT-29 cell line [47], we reported that coffee brews reduced the intracellular
ROS levels, probably due to their high content of bioactive compounds such as polyphenols.
Moreover, after simulated gastrointestinal (GI) digestion, coffee showed fewer cytotoxic
effects in the MTT test and a greater reduction in IL-6 levels than in the undigested samples.

Although the effects of coffee consumption on intestinal microbiota modulation have
been partly clarified, a more complete understanding is required to elucidate its protection
against colon cancer in presence of altered microbial fermentation processes. Hence, the
current study aimed to explore the potential anti-inflammatory and antioxidant properties
of different coffee samples in HT-29 cells exposed to various concentrations of skatole and
coffee extracts.

2. Materials and Methods
2.1. Sampling

Three different kinds of coffee brews were investigated in the present article: instant
coffee (n = 10), espresso (n = 10), and Americano coffee brews (n = 10). Instant coffee
powder/granule samples and medium-roasted coffee beans (Coffea arabica L.) were obtained
from local Italian markets. The coffee brews were prepared as described in our previous
work [46] and reported in the Supplementary Materials.
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2.2. In Vitro Gastrointestinal Digestion

In vitro GI digestion was performed on the three coffee brew samples under inves-
tigation to simulate the effects of human digestion using the protocol proposed by the
INFOGEST network, as used in our previous article [46]. The protocol employed is reported
in the Supplementary Materials.

2.3. Cell Culture

The human colorectal cancer cell line HT-29 from American Type Culture Collection
(ATCC, Manassas, VA, USA) was maintained in high glucose RPMI 1640 medium, supple-
mented with 10% heat-inactivated fetal bovine serum plus 4 mM glutamine, at 37 ◦C in a
humidified atmosphere containing 5% CO2. Cells were passaged by trypsinization when
reaching 70–80% confluence (all reagents were from Sigma-Aldrich, Saint Louis, MO, USA).
To avoid mycoplasma contamination, cells were routinely checked with a PCR Mycoplasma
Test Kit (AppliChem A3744, Darmstadt, Germany).

2.4. Cell Treatment

HT-29 cells were treated either with coffee samples (espresso, Americano, and instant
coffee brew) prepared in the cell culture medium at 0.250 and 0.500 mg/mL as previously
reported [47], or with different concentrations of skatole (#M51458-5G/Sigma-Aldrich,
Saint Louis, MO, USA) prepared from a 1 M DMSO stock solution in accordance with
previous studies [48]. Furthermore, co-treatment experiments were performed in HT-29
cells treated with the assayed coffee samples and different concentrations of skatole for 24 h.
Appropriate control cell cultures treated with the same amount of DMSO were included in
each experiment and maintained at a final concentration of DMSO (v/v) of under 0.5% in
the mock control. Cells were subsequently seeded to perform a cell viability assay, evaluate
the intracellular ROS level, and to extract total mRNA for real-time PCR analysis.

2.5. Analysis of Cell Viability

Cell viability was measured using a thiazolyl blue tetrazolium bromide (MTT) col-
orimetric method (Roche, Mannheim, Germany) following the procedure described by
Riccio et al. [49]. In brief, HT-29 cells were seeded onto 96-well plates at a density of
5.5 × 104 cells/mL in 100 µL cell suspension per well. After 24 h, cells were treated with
different skatole concentrations (250, 500, 750, 1000 µM) or with coffee samples (0.250 and
0.500 mg/mL) for 24 h. Then, 10 µL of MTT labeling reagent (Cell Proliferation Kit I;
Roche, Mannheim, Germany) was added to the cell culture. After 4 h of incubation at
37 ◦C to dissolve the MTT insoluble formazan crystals, 100 µL of detergent solubilization
buffer 1× (10% SDS in 0.01M HCl) was added to each well, according to the manufacturer’s
instructions. The absorbance was read at 570/690 nm using a Synergy H1 Hybrid Multi-
Mode Microplate Reader (BioTek, Winooski, VT, USA). The cell viability was calculated as
a percentage as follows: (absorbance of the experimental group/absorbance of the control
group) × 100.

2.6. Assessment of Intracellular ROS Production

The generation of intracellular ROS was measured using a spectrofluorometric test
using an H2DCF-DA (2′7′-dichlorodihydrofluorescein diacetate) fluorescent probe [50].
HT-29 cells were plated onto 96-well black plates at a density of 5.5 × 104 cells/mL in
100 µL cell suspension per well. Cells were treated with assayed coffee samples (0.250 and
0.500 mg/mL) or skatole (250 and 500 µM) for 24 h. In the positive control, ROS were
generated by incubating HT-29 cells with 100 µM of hydrogen peroxide (H2O2), followed
by H2DCF-DA incubation as previously described [47]. To evaluate the intracellular ROS
levels under challenging conditions, cells were pretreated with 250 or 500 µM of skatole
for 6 h and then treated with 0.250 or 0.500 mg/mL of coffee samples and skatole (250 or
500 µM) for an additional 18 h. After treatment, Dulbecco’s phosphate buffered saline
(DPBS) was used to wash the cells twice. The cells were then exposed to 10 µM of H2DCF-
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DA diluted in Hank’s Balanced Salt Solution (HBSS) for 20 min in the dark at 37 ◦C. The
extracellular dye was then removed from the cells by two washes with 1 × DPBS. The
fluorescence intensity was detected using a Synergy H1 Hybrid Multi-Mode Microplate
Reader (BioTek) at excitation/emission wavelengths of 485/538 nm. The percentage of
intracellular ROS was calculated as follows: (fluorescence intensity of the experimental
group/fluorescence intensity of the control group) × 100.

2.7. RNA Extraction

HT-29 cells were plated onto 6-well plates at a density of 1.5 × 105 cells/mL. Cells
were treated with skatole at a concentration of 250 µM for 24 h. In the positive control,
inflammation response was stimulated by incubating the HT-29 cells with 10 ng/mL of
LPS (Sigma Aldrich) [51,52]. In order to test inflammation in challenging conditions, cells
were pretreated with skatole (250 µM) for 6 h, and then treated in combination with the
assayed coffee samples (0.250 mg/mL) plus skatole (250 µM) for an additional 18 h. After
treatment, cells were trypsinized and harvested to perform total RNA extraction. Total
RNAs were extracted with QIAzol reagent (Qiagen, GmbH, Hilden, Germany) according
to the manufacturer’s protocol. RNA was checked for purity and stability using gel
electrophoresis and UV spectrometry. Absorption at 260 and 280 nm was measured, and
RNA quantity was calculated.

2.8. Real-Time PCR Analysis

Real-time PCR analysis was performed with 1 µg of RNA reverse-transcribed using
the iScript Reverse Transcription Supermix for RT-qPCR (Bio-Rad, Berkeley, CA, USA)
in a final volume of 20 µL, according to the manufacturer’s instructions. This mixture
was incubated at 42 ◦C for 3 min, and then at 95 ◦C for 3 min, and subsequently used
for real-time RT-PCR procedures on a CFX96 Real-Time System (Bio-Rad Laboratories,
Hercules, CA, USA).

Primers for quantitative real-time PCR analysis are reported in Table 1 [53]. β-actin
mRNA was used as an endogenous control. Each real-time PCR experiment was performed
in triplicate in a 20 µL reaction mix containing 10 µL of 2× SsoAdvanced Universal SYBR
Green Supermix (Bio-Rad Laboratories), 0.38 µL of a 20 µM primer mix, and 6.6 µL of
cDNA (1/2 volume of RT-PCR product). The cycling conditions were set up as follows:
initial denaturation step at 98 ◦C for 30 s, followed by 40 cycles (95 ◦C for 15 s, 60 ◦C for
30 s). A calibration curve was calculated to assess the efficiency of the PCR, as previously
reported [54]. Real-time PCR reactions were performed using the CFX Opus 96 Real-Time
PCR System (Bio-Rad Laboratories) and CT values were obtained from automated threshold
analysis. Data were analyzed using CFX Manager 3.0 software (Bio-Rad Laboratories
GmbH, Munich, Germany) according to the manufacturer’s specifications, and a relative
quantification of gene expression was determined using the ∆∆CT method.

Table 1. Primer sequences used for quantitative Real-time PCR analysis.

Transcript Primer Sequence 5′-3′ Amplicon Size (bp)

TNF-α
For AGCCCATGTTGTAGCAAACC

134Rev TGAGGTACAGGCCCTCTGAT

IL-1β
For CATGGGATAACGAGGCTTATG

149Rev CCACTTGTTGCTCCATATCC

IL-8
For TGGCTCTCTTGGCAGCCTTC

238Rev TGCACCCAGTTTTCCTTGGG

IL-12
For TTCACCACTCCCAAAACCTGC

225Rev GAGGCCAGGCAACTCCCATTA

β-actin
For CGACAGGATGCAGAAGGAGA

160Rev CGTCATACTCCTGCTTGCTG
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2.9. Statistical Analysis

The experiments were carried out in triplicate and the results are provided as the
mean ± standard deviation (SD). A one-way analysis of variance (ANOVA) or two-way
ANOVA test was used to determine the statistical differences between the control and
treated cell groups. Where appropriate, Dunnett’s test and/or Student’s t-tests were
performed. The p-values of 0.05, 0.01, and 0.001 (*, **, and ***, respectively) were used to
determine the level of significance.

3. Results
3.1. Cell Viability in HT-29 Cells

The HT-29 cell viability after the exposure to the assayed coffee samples was inves-
tigated. Figure 1 shows the cell viability evaluated with an MTT assay after treatment
with different coffee extracts (0.250 and 0.500 mg/mL). The results highlighted that the
cells treated with the instant and Americano coffee samples at both assayed concentrations
(0.250 and 0.500 mg/mL), showed a significant dose-dependent increase in cell viabil-
ity (10% and 20%, respectively) compared to the mock control, whereas no significant
differences were observed between those treated with espresso coffee and the mock con-
trol. To exclude effects mediated by the digestion fluid, the blank control resulting from
in vitro digestion was analyzed by MTT assay and compared to untreated cells. The results
(Figure 1A–C) indicated no significant differences between the blank control and untreated
cells at 24 h of treatment. In addition, the cytotoxic effects of skatole treatment at different
concentrations (from 250 to 1000 µM) on HT-29 cells was investigated by MTT assay after
24 h exposure (Figure 1D). As shown in Figure 1D, the colorimetric assay indicated no
cytotoxicity effects in cells exposed for 24 h to skatole concentrations lower than 500 µM.
However, at higher concentrations (750 µM and 1000 µM) a dose-dependent decrease was
observed in cell viability, equal to 87% and 78% of that in untreated cells, respectively. Since
exposure to the lower doses of coffee extracts (0.250 mg/mL) or skatole (250 and 500 µM)
did not affect cell viability, these conditions were used for subsequent experiments.

3.2. Intracellular ROS Levels in HT-29 Cells

The effect of skatole and the three types of assayed coffee samples on intracellular
ROS generation in HT-29 cells was examined after 24 h using a fluorometric test employ-
ing the specific dye H2DCF-DA. Cells treated only with H2O2 were used as a positive
control. The intracellular ROS level results are shown in Figure 2. The fluorescence in-
tensity (Figure 2A) decreased remarkably following coffee treatment at both 0.250 and
0.500 mg/mL concentrations, compared with the control group that received no coffee
treatment. Specifically, in cells treated with coffee extracts at 0.250 and 0.500 mg/mL,
the reduction in fluorescence intensity was 19% and 36.5% for instant coffee, 17.5% and
36% for Americano coffee, and 21.5% and 31.2% for espresso coffee, respectively. A blank
control resulting from in vitro digestion was also examined and compared to the mock
control to exclude side effects mediated by the digestion fluid, and it showed no significant
differences compared to the control cells (Figure 2A). In addition, the possible pro-oxidant
activity of skatole at non-toxic concentrations (250 and 500 µM) after 24 h of treatment was
investigated (Figure 2B), showing significantly increased intracellular ROS levels in cells
treated with skatole at 250 µM (13%) and 500 µM (8%) compared to the mock control (cells
treated only with DMSO).

In order to examine the antioxidant capacity of the assayed coffee samples, we used an
H2DCF-DA assay to evaluate the intracellular ROS levels in HT-29 cells after 24 h treatment
with skatole (250 and 500 µM) and the respective coffee treatments at 0.250 mg/mL. The
data obtained are shown in Figure 3. After stimulation with 250 µM of skatole (Figure 3A),
fluorescence intensity significantly decreased for all assayed coffee samples, at a rate of 28%
for instant coffee, 39% for Americano coffee, and 45% for espresso coffee. After stimulation
with 500 µM of skatole (Figure 3B), the fluorescence intensity decreased for all assayed
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samples at the following rates: 11% for instant coffee, 30% for Americano coffee, and 39%
for espresso coffee.
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Figure 1. Evaluation of cell viability in HT-29 cells. The effect of treatment with different types of
coffee extract: instant (A), Americano (B), and espresso (C), at 0.250 and 0.500 mg/mL on cell viability
was evaluated using the MTT assay after 24 h with respect to the mock control. The MTT test was
used to determine the impact of skatole treatment (D) on cell viability after 24 h at the concentrations
of 250, 500, 750, and 1000 µM compared with control cells (treated only with DMSO). The graph
represented the mean and SD of three separate experiments. * p-value ≤ 0.05 and *** p-value ≤ 0.001
compared to the control group (calculated as fold-change relative to control cells, arbitrarily set
at 100%).

3.3. Anti-Inflammatory Effects of Coffee Extracts on Cytokine mRNA Expression Levels in
HT-29 Cells

Real-time PCR analysis was performed to investigate the expression levels of mRNAs
encoding the pro-inflammatory cytokines and chemokines TNF-α, IL-1β, IL-8, and IL12
in HT-29 cells under challenging conditions. In accordance with the literature [5,9], cells
treated only with LPS were used as a positive control. Our data showed that cells treated
with 250 µM of skatole for 24 h led to a significant up-regulation of TNF-α, IL-1β, IL-8, and
IL-12 (1.61-, 3.07-, 1.92-, and 2.17-fold changes with respect to the mock control, respectively)
(Figure 4). On the other hand, co-treatments with coffee extracts counterbalanced the pro-
inflammatory effects mediated by skatole by down-modulating the expression of the
analyzed cytokines to values almost comparable with the mock control. In particular, the
mRNA expression levels of TNF-α (Figure 4A), IL-1β (Figure 4B), IL-8 (Figure 4C), and
IL-12 (Figure 4D) were found to be significantly decreased when the cells were co-treated
with espresso coffee (0.84-, 1.08-, 0.64-, and 0.55-fold changes with respect to the mock
control, respectively). However, the levels of IL-8 (Figure 4C) and IL-12 (Figure 4D) were
found to be markedly decreased in cells co-treated with instant coffee (1.13- and 1.19-fold
changes with respect to the mock control, respectively), and IL-12 levels (Figure 4D) also
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decreased considerably upon co-treatment with Americano coffee (a 1.31-fold change with
respect to the mock control).
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Figure 2. Evaluation of intracellular ROS level in HT-29 cells. The effect on the generation of
intracellular ROS levels after treatment with a blank control (resulting from in vitro digestion) and
the different types of coffee extract (instant, Americano, and espresso) at 0.250 and 0.500 mg/mL was
evaluated using the H2DCF-DA assay after 24 h of treatment, and compared with the mock control
(untreated cells) (A). The effect of skatole treatment (B) on the production of intracellular ROS was
estimated by fluorometric assay after 24 h at the concentrations of 250 and 500 µM and compared
to the control cells (treated with DMSO only). Cells treated only with H2O2 were used as a positive
control. The graphs represent the mean and SD of three separate experiments. * p-value ≤ 0.05,
** p-value ≤ 0.01 and *** p-value ≤ 0.001 compared to the control group (calculated as fold-change
relative to control cells, arbitrarily set at 100%).
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Figure 3. Evaluation of intracellular ROS levels under challenging conditions in HT-29 cells. The effect
of treatment with different types of coffee extract (instant, Americano, and espresso) at 0.250 mg/mL
after skatole treatment of 250 µM (A) and 500 µM (B) on the production of intracellular ROS levels
was determined by H2DCF-DA assay after 24 h of treatment, and compared to the mock control.
Cells treated only with H2O2 were used as a positive control. The graphs represent the mean
and SD of three separate experiments. * p-value ≤ 0.05, ** p-value ≤ 0.01 and *** p-value ≤ 0.001
compared to untreated control (calculated as fold-change relative to control cells, arbitrarily set at
100%). ## p-value ≤ 0.01 and ### p-value ≤ 0.001 skatole versus coffee treatment.
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Figure 4. Evaluation of mRNA expression levels in HT-29 cells. The effect of treatment with the
different types of coffee extract (instant, Americano and espresso) at 0.250 mg/mL after stimulation
with 250 µM skatole on the expression level of TNF-α (A), IL-1β (B), IL-8 (C), and IL12 (D) was
performed using real-time PCR analysis after 24 h of treatment, and compared to the control group.
Cells treated only with LPS were used as a positive control. The graph represented the mean and SD
of three separate experiments. * p-value ≤ 0.05, ** p-value ≤ 0.01 and *** p-value ≤ 0.001 compared
to untreated control. # p-value ≤ 0.05, ## p-value ≤ 0.01 and ### p-value ≤ 0.001 skatole versus
coffee treatment.

4. Discussion

The main goal of the current study was to assess the potential protective effect of coffee
against pro-inflammatory and pro-oxidant conditions triggered by putrefactive compounds
released in the presence of an altered intestinal microbiota through the HT-29 human colon
cancer cell line model. Due to its ability to express characteristics of mature intestinal cells,
the human colon adenocarcinoma cell line HT-29 is effectively used not only to study the
biology of human colon cancers, but is also attracting particular attention in studies on
food digestion and bioavailability [55]. Notwithstanding the presence of several scientific
investigations in the literature with regard to the positive effects of coffee intake on the
prevention of colon cancer [56–59], there is still scarce knowledge concerning the potential
anti-inflammatory and antioxidant properties of coffee in the presence of the putrefactive
compounds that could be released in gut dysbiosis conditions.



Antioxidants 2022, 11, 2458 9 of 13

In the present work, in order to mimic the effect of oral, gastric, and intestinal digestion,
the INFOGEST protocol was followed [60]. This procedure is widely regarded as one of
the most effective protocols to simulate the natural digestion process. In vitro intestinal
models represent the gold standard in such investigations; in fact, they can rapidly provide
useful information on the impact of food components on health status [61]. Despite the
fecal inoculum method representing the most appropriate protocol to replicate in vitro
colonic digestion, an increasing number of studies have reported that the combination of
bacterial enzymes, such as Pronase E and Viscozyme L, represents a suitable alternative to
reproducing intestinal fermentation [62–67].

In summary, we initially tested the cytotoxicity of skatole on HT-29 cells. The concen-
tration range of skatole chosen to conduct the study ranged from 250 to 1000 µM based on
previous studies reporting 1000 µM as the maximum skatole concentration found in human
feces [48]. Our data revealed that HT-29 cell viability was affected in a concentration-
dependent manner at the higher skatole concentrations tested (750 and 1000 µM), with a
significant reduction in cell viability compared to control cells (87% and 78%, respectively).
Kurata et al. [48] evaluated the effects of different skatole concentrations on cell viability
using Caco-2 cells, another human colon cancer cell line, showing that skatole promoted
apoptosis in these cells in a dose-dependent and time-dependent manner. Their in vivo
studies demonstrated that urinary skatole levels in patients significantly decreased after
the consumption of probiotic formulations containing Bifidobacterium spp. and Lactobacillus
spp. [24].

On the other hand, no cytotoxicity effects were detected in HT-29 cell analysis for
espresso coffee samples, but in contrast, a minimal increase in cell viability, up to 20%,
was shown for instant and American coffee samples. Moreover, our data suggest that
all the assayed coffee samples had an important effect in suppressing ROS formation
in HT-29 cells, owing to their antioxidant activity. At the lowest assayed concentration
(0.250 mg/mL), the espresso coffee sample appeared to exert a greater reduction in ROS
levels than the other coffee brew samples. Moreover, the results highlighted that even at
low concentrations (250 and 500 µM), skatole was able to induce an increase in intracellular
ROS levels, in particular, at 250 µM of skatole the ROS levels increased by 13%, while at
500 µM of skatole the ROS levels increased by 8%, compared to a control. The data showed
that skatole treatment represents a demanding setting for oxidative stress, which promotes
raised intracellular ROS levels in HT-29 cells. Interestingly, data obtained in the present
scientific study demonstrated that the treatment of HT-29 cells with different types of coffee
samples in the presence of skatole significantly decreased the production of ROS compared
to untreated cells. Among the different kinds of coffee brews tested, espresso showed
the most effective antioxidant activity, reaching a 45% decrease in ROS compared with
untreated cells.

In this study, the expression of genes linked to inflammation was also examined. The
results showed that skatole exposure triggered an increased expression of pro-inflammatory
cytokines and chemokines TNF-α, IL-1β, IL-8, and IL12 in HT-29 cells. These findings
are consistent with the literature, which suggests that skatole may have pro-inflammatory
effects and reports that this tryptophan metabolite may play a role in the development of
colorectal cancer and in the progression and pathogenesis of IBD [68–70]. Moreover, our
data clearly indicated that all three types coffee studied exhibit anti-inflammatory activity
by decreasing the expression levels of cytokines in cells that were pretreated with skatole.

In this context, it has to be highlighted that espresso coffee showed both the highest
antioxidant and anti-inflammatory properties among the coffee brews tested. Notably, a
possible explanation for these findings could be related to one of our previous investiga-
tions, in which we reported that the espresso coffee sample shows a higher polyphenolic
content than the other studied coffee samples, as analyzed using a UHPLC-Q-Orbitrap
HRMS [46]. CGAs were the predominant polyphenols quantified in the coffee samples,
notably the three CQA isomers, which accounted for 66% to 71% of the total polyphenols.
As reported by scientific evidence [71,72], CGAs exert a strong antioxidant activity and
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inhibit the expression of inflammatory factors. Therefore, these results may partly explain
the improved reduction in ROS levels and the enhanced anti-inflammatory activity found
after treating HT-29 cells with espresso samples in the presence of skatole, indicating that
the higher level of polyphenols detected in espresso coffee samples may play an important
role in limiting the formation of ROS by exerting anti-inflammatory effects in the presence
of putrefactive compounds.

5. Conclusions

In summary, our data indicate that direct treatment with skatole induced cytotoxicity
in the HT-29 human colon cancer cell line in a concentration-dependent manner, result-
ing in a significant reduction in cell viability with respect to control cells. Moreover, the
simultaneous treatment of HT-29 cells with coffee and skatole was able to decrease ROS
production compared to control cells. Furthermore, HT-29 cells treated with skatole showed
increased expression levels of the pro-inflammatory cytokines and chemokines TNF-α,
IL-1β, IL-8, and IL12. Finally, our data demonstrate that all three types of coffee analyzed
exhibited anti-inflammatory activity by hampering the up-regulation of pro-inflammatory
cytokines induced by skatole exposure. These findings highlight that coffee could exert
anti-inflammatory activity and mitigate oxidative stress in the presence of high levels of pu-
trefactive compounds, suggesting that coffee consumption may improve health conditions
by modulating the risk of colorectal inflammation.
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