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Abstract: Research reports using animal models of ischemic insults have demonstrated that oxcar-
bazepine (a carbamazepine analog: one of the anticonvulsant compounds) extends neuroprotective
effects against cerebral or forebrain injury induced by ischemia and reperfusion. However, research
on protective effects against ischemia and reperfusion cerebellar injury induced by cardiac arrest (CA)
and the return of spontaneous circulation has been poor. Rats were assigned to four groups as follows:
(Groups 1 and 2) sham asphyxial CA and vehicle- or oxcarbazepine-treated, and (Groups 3 and 4) CA
and vehicle- or oxcarbazepine-treated. Vehicle (0.3% dimethyl sulfoxide/saline) or oxcarbazepine
(200 mg/kg) was administered intravenously ten minutes after the return of spontaneous circulation.
In this study, CA was induced by asphyxia using vecuronium bromide (2 mg/kg). We conducted
immunohistochemistry for calbindin D-28kDa and Fluoro-Jade B histofluorescence to examine Purk-
inje cell death induced by CA. In addition, immunohistochemistry for 4-hydroxy-2-nonenal (4HNE)
was carried out to investigate CA-induced oxidative stress, and immunohistochemistry for Cu, Zn-
superoxide dismutase (SOD1) and Mn-superoxide dismutase (SOD2) was performed to examine
changes in endogenous antioxidant enzymes. Oxcarbazepine treatment after CA significantly in-
creased the survival rate and improved neurological deficit when compared with vehicle-treated
rats with CA (survival rates ≥ 63.6 versus 6.5%), showing that oxcarbazepine treatment dramati-
cally protected cerebellar Purkinje cells from ischemia and reperfusion injury induced by CA. The
salvation of the Purkinje cells from ischemic injury by oxcarbazepine treatment paralleled a dramatic
reduction in 4HNE (an end-product of lipid peroxidation) and increased or maintained the endoge-
nous antioxidant enzymes (SOD1 and SOD2). In brief, this study shows that therapeutic treatment
with oxcarbazepine after CA apparently saved cerebellar neurons (Purkinje cells) from CA-induced
neuronal death by attenuating oxidative stress and suggests that oxcarbazepine can be utilized as a
therapeutic medicine for ischemia and reperfusion brain (cerebellar) injury induced by CA.

Keywords: asphyxial cardiac arrest; cerebellar Purkinje cells; oxcarbazepine; oxidative stress;
antioxidant enzymes
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1. Introduction

The cerebellum plays important roles in motor control and may be involved in cogni-
tive functions such as language, attention and emotional control [1]. In particular, Purkinje
cells (as principal neurons), which are located between the molecular and granular cell
layers of the cerebellum, receive inputs from vestibular, sensory and motor structures to
allow for spatially and temporally exact movement [2]. It has been found that cerebellar
damage produces disorders in equilibrium, fine movement, posture and motor learning
in humans [3]. With regard to ischemia and reperfusion injury in these disorders, experi-
mental rodent models of transient whole-body ischemia and reperfusion injury induced
by cardiac arrest and the return of spontaneous circulation (CA/RoSC) have been estab-
lished to investigate whole-brain damage, including cerebellar damage. In particular, these
models have been used to investigate the mechanisms of injury, protection and/or therapy
in the cerebellum following CA/RoSC (transient whole-body ischemia) [4,5]. It has been
reported that Purkinje cells are killed following transient global brain ischemia induced by
CA/RoSC; however, the exact mechanism of Purkinje cell death is still unclear.

Researchers have reported that several antiepileptic drugs have beneficial effects
against various kinds of central nervous system (CNS) insults, such as ischemic stroke,
intracerebral hemorrhage and traumatic brain injury [6–9]. In addition, several stud-
ies in humans and experimental models have shown that certain antiepileptic drugs
(i.e., valproic acid, oxcarbazepine and topiramate) exhibit antioxidant effects by mod-
ulating antioxidant enzymatic activities [10]. Among the antiepileptic drugs, oxcarbazepine
(OXC; a carbamazepine analog), is one of the most commonly used anticonvulsant com-
pounds in epilepsy treatment [11]. It has been reported that the principal mechanism
of antiepileptic activity of OXC involves a blockage of voltage-gated sodium channels
(VGSC) [12], and it has been suggested that this mechanism contributes to attenuating cere-
bral ischemic injury [13]. In addition, OXC exerts beneficial effects by preventing the release
of extracellular glutamate and the alteration of recurrent depolarization [14]. Recently, the
neuroprotective effects of OXC against brain injury induced by ischemia and reperfusion
in the forebrain via activating the Nrf2 defense pathway have been demonstrated in a
gerbil model of transient forebrain ischemia [15]. However, the exact mechanism of OXC’s
neuroprotective effect against ischemic brain damage is still unclear.

Oxidative stress is a major contributor to ischemic brain injury [16,17]. Increasing
evidence has demonstrated that ischemia and reperfusion (such as transient ischemia)
in the brain trigger oxidative stress, which is caused by the overproduction of reactive
oxygen species (ROS) in the injured areas, leading to ischemic damage [18,19]. ROS at high
concentrations can be crucial mediators of damage to cellular components, including lipids,
proteins and nucleic acids. It has been reported that some VGSC-blocking antiepileptic
drugs possess powerful antioxidant properties and exert neuroprotective effects against is-
chemia and reperfusion brain injury in rodents [20–22]. To date, however, the effect of OXC
against cerebellar Purkinje cell death induced by CA/RoSC remains unclear. Therefore, in
this experiment, we attempted to investigate whether the therapeutic administration of
OXC after CA/RoSC in rats saves the cerebellar Purkinje cells from ischemia and reper-
fusion injury induced by CA/RoSC and whether CA/RoSC-induced oxidative stress is
related to the saving of the Purkinje cells from ischemia and reperfusion injury.

2. Materials and Methods
2.1. Animals and Experimental Protocol

Male Sprague-Dawley rats at ten weeks of age (body weight, 290–305 g) for use in this
experiment were obtained from the Experimental Animal Center of Kangwon National
University (Chuncheon, Gangwon, Korea). The rats were bred under pathogen-free condi-
tions with adequate temperature (approximately 23 ◦C) and humidity (approximately 60%).
The protocol of this experiment was approved (approval no. KW-200113-1) on 7 February
2020, by the ethical committee of Kangwon University (Institutional Animal Care and Use
Committee). The protocol referred to the “Current International Laws and Policies” from
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the “Guide for the Care and Use of Laboratory Animals” (The National Academies Press,
8th Ed., 2011).

2.2. Experimental Groups and OXC Treatment

A total of 175 rats were used for this study and were split into four groups, as follows:
(1) sham plus (+) vehicle group (n = 14) was given a sham CA/RoSC operation and treated
with vehicle (0.3% dimethyl sulfoxide/saline); (2) CA + vehicle group (n = 122) was given a
CA/RoSC operation and treated with vehicle; (3) sham + OXC group (n = 14) was given a
sham CA/RoSC operation and treated with 200 mg/kg of OXC; and (4) CA+OXC group
(n = 25) was given a CA/RoSC operation and treated with 200 mg/kg of OXC.

OXC (200 mg/kg; Sigma-Aldrich, St. Louis, MO, USA) was dissolved in 0.3% dimethyl sul-
foxide/saline as a vehicle and administered intraperitoneally at 10 min after CA/RoSC operation.

As shown in Table 1, the rats of each group either naturally died or were sacrificed for
this experiment. Seven rats in each sham group were sacrificed at zero hours and 2 days
after CA/RoSC to reduce the rat numbers, and seven rats in each CA group were sacrificed
at 12 h and one and two days after CA/RoSC.

Table 1. Actual numbers of surviving animals in each group according to time after CA/RoSC.

Hours after CA/RoSC

Groups 0 4 6 8 12 24 28 34 42 48

Sham + vehicle 14 a 7 7 7 7 7 7 7 7 7 a

Sham + OXC 14 a 7 7 7 7 7 7 7 7 7 a

CA + vehicle 122 116 b 95 c 89 b 70 a,d 44 a,e 31 b 17 f 11 b 7 a,g

CA + OXC 25 25 24 h 23 h 23 a 15 a,h 8 8 7 7a

a Seven animals were sacrificed and excluded in the calculation of cumulative survival rate; b Six animals were
dead; c 21 animals were dead; d 19 animals were dead; e 12 animals were dead; f 14 animals were dead; g two
animals were dead; h one animal was dead.

2.3. CA/RoSC Operation

The CA/RoSC operation was performed according to previously published meth-
ods [23–25] with minor modifications. Briefly, as shown in Figure 1, the rats were anes-
thetized with 2–3% isoflurane (in oxygen and nitrous oxide: 33 and 67%, respectively) and
ventilated to maintain respiration using a ventilator for rodents (Harvard Apparatus, Hol-
liston, MA, USA). Mean arterial pressure (MAP) was monitored in the left femoral artery
using an MP150 blood pressure transducer (BIOPAC system, Goleta, CA, USA). Saturation
of percutaneous oxygen (SpO2), similar to peripheral oxygen saturation, was monitored
using a pulse oximeter (Nonin Medical Inc, Plymouth, MN, USA) connected to the left
foot. In addition, the electrocardiogram (ECG) was monitored using an ECG system (GE
Healthcare, Milwaukee, WI, USA) which was attached to the four limbs. Body temperature
was maintained at 37 ± 0.5 ◦C during CA/RoSC surgery. In this experiment, CA was
induced by asphyxia as follows: After five minutes of stabilization, vecuronium bromide
(2 mg/kg; Reyon Pharmaceutical Co., Ltd., Seoul, Korea) was injected via the femoral
vein. Immediately, both the anesthesia and mechanical ventilation were stopped, and the
endotracheal tube was removed from the ventilator. Asphyxial CA was defined when the
MAP was below 25 mmHg and the ECG was isoelectric [24,26]. Usually, asphyxial CA is
confirmed approximately three to four minutes after vecuronium bromide injection. After
five minutes of CA, cardiopulmonary resuscitation (CPR) was initiated by administering
epinephrine (0.005 mg/kg, i.v.; Dai Han Pharm, Seoul, Korea) and sodium bicarbonate
(1 mEq/kg, i.v.; Daewon Pham, Seoul, Korea) followed by mechanical chest compression
(rate, 300/min) and mechanical ventilation with 100% oxygen until the electrocardiographic
activity was shown and MAP reached 60 mmHg [27,28]. Once the rats were spontaneously
breathing (usually one hour after RoSC) and hemodynamically stable (usually two hours
after CPR), the arterial and venous catheters were cleared. After extubation, the rats were
moved to their cages and subcutaneously given isotonic saline (20 mL/kg/d) with 5%
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dextrose until they could drink and eat by themselves. In this experiment, sham rats were
given the same operation except for the CA/RoSC procedure.
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Figure 1. Experimental design and schedule for asphyxial cardiac arrest, cardiopulmonary resuscita-
tion (CPR) and RoSC performed in rats at designated times via the induction of CA, CA, CPR and
RoSC. OXC treatment was performed 10 min after RoSC. Sacrifice and analysis were performed at
12 h and one and two days after CA/RoSC.

2.4. Histofluorescence with Fluoro-Jade B (FJB)

To elucidate neuronal death (loss) in the cerebellum following CA/RoSC, Fluoro-Jade
B (FJB, a marker for neuronal degeneration) histofluorescence was used as previously
described [29]. First, in each group, cerebellar sections containing the vermis were taken
from rats (n = 7, respectively) at 12 h, one day, and two days after CA/RoSC. The rats were
anesthetized with pentobarbital sodium (50 mg/kg; JW Pharmaceutical, Seoul, Korea) and
transcardially perfused to collect and rinse their brains with 0.1 M phosphate-buffered
saline (PBS, pH 7.4), which were fixed with 4% paraformaldehyde thereafter (in 0.1 M
phosphate buffer (PB), pH 7.4). Then, the cerebellums were removed from the skulls and
immediately soaked in the same fixative for five hours. To create the sections, thereafter, the
cerebellar tissues were saturated to protect the brains from freeze damage with 30% sucrose
(in 0.1 M PB, pH 7.4) for eight hours. Finally, 30 µm coronal sections of the cerebellar
tissues were collected in a cryostat (Leica, Wetzlar, Germany). For FJB histofluorescence,
the cerebellar sections were immersed in 0.0004% FJB (Histochem, Jefferson, AR, USA)
on an SW-250S shaker (85 rpm; Gaon Science Co., Bucheon, Korea) for 35 min at room
temperature. The sections were washed with distilled water two times (for three minutes
each time), and were dried in a dry oven at 45 ◦C for seven hours. Finally, the cerebellar
sections were cleared by dipping in xylene and covered with dibutylphthalate polystyrene
xylene (DPX; Fluka, Milwaukee, WI, USA) and a coverglass.
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The evaluation of the change in FJB-positive cells (neurons) was performed as follows:
Ten cerebellar sections were selected in each rat with a 90 µm interval. FJB-positive cells
were observed using a BX53 epifluorescent microscope (Olympus, Tokyo, Japan), which
was equipped with a blue excitation light (wavelength from 450 to 490 nm). The digital
images of the FJB-positive cells were taken using cellSens Standard image capture software
(version, 1.4.1; Olympus, Tokyo, Japan), and the FJB-positive cells were counted in 240 µm2

of the Purkinje cell layer in the same area using Image J software (version 1.46; National
Institutes of Health, Bethesda, Rockville, MD, USA). The count of FJB-positive cells in each
group was conducted by averaging all numbers counted.

2.5. Immunohistochemistry

To examine the mechanisms of cell damage or death in the cerebellum after CA/RoSC,
according to our method as previously described [29], the cerebellar sections (which
were collected as described above) were examined using immunohistochemistry for anti-
calbindin D-28kDa (CBD-28k, a marker for cerebellar Purkinje cells), anti-4-hydroxy-
2-nonenal (4HNE, an end-product by lipid peroxidation) and anti-SOD1 and -SOD2
(endogenous antioxidant enzymes). In short, the cerebellar sections were blocked with 20%
normal goat serum (in 0.05 M PBS) and immunoreacted with primary rabbit anti-CBD-28k
(diluted 1:1100; Cell Signaling Technology, Danvers, MA, USA), mouse anti-4HNE (diluted
1:450; Alexis Biochemicals, San Diego, CA, USA), sheep anti-SOD1 (1:1500; Calbiochem,
Darmstadt, Germany) and sheep anti-SOD2 (1:1500; Calbiochem) at 4 ◦C for eight hours.
Next, the sections were reacted with biotinylated goat anti-mouse IgG (diluted 1:200;
Vector Laboratories Inc., Burlingame, CA, USA), goat anti-rabbit IgG (diluted 1:200; Vector
Laboratories Inc.) and goat anti-sheep IgG (diluted 1:200; Vector Laboratories Inc.), then
developed using Vectastain ABC (Vector Laboratories Inc., Burlingame, CA, USA). There-
after, the sections were visualized using 3,3′-diaminobenzidine tetrahydrochloride (DAB;
Sigma-Aldrich Co, St Louis, MO, USA) (in 0.1 M Tris-HCl buffer containing 0.1% H2O2,
pH 7.4) under microscopic observation. Once each immunoreaction was defined, the re-
action was immediately stopped by washing with 100 mM PBS (pH 7.4), and the sections
were dehydrated in graded ethyl alcohol (70, 80, 90, 95 and 100%) and cleared in xylene.
Finally, the cerebellar sections were covered with Canada balsam (Kanto Chemical Co., Inc.,
Tokyo, Japan) and a coverglass.

For the analysis of each immunoreactive (immunostained) structure, ten cerebellar
sections were selected in each rat with a 90 µm interval. In order to evaluate the CBD-
28k-immunostained cells in all four groups, CBD-28k-immunostained cells were captured
in the Purkinje cell layer (the middle layer of the cerebellar cortex) using an AxioM1
light microscope (Carl Zeiss, Göttingen, Germany) with a digital camera (Axiocam, Carl
Zeiss, Göttingen, Germany) connected to a PC monitor. The mean number of CBD-28k-
immunostained cells was obtained by the method mentioned above. In addition, to evaluate
4HNE, SOD1 and SOD2 immunoreactive structures in all four groups, the staining intensity
of 4HNE, SOD1 and SOD2 immunoreactivity was graded as follows: Images of each
immunoreactive structure were captured in all layers of the cerebellar vermis using the
AxioM1 light microscope (described above). Each image was digitized into an array of
512 × 512 pixels under 20× primary magnification. Each captured image was converted
to grayscale (eight bits; 0 to 255, range from black to white) to evaluate the intensity. The
optical density of each immunoreactive structure was calculated using Image J software
(version 1.46; National Institutes of Health, Bethesda, Rockville, MD, USA). The optical
density was presented as relative optical density (ROD; as a %, taking the sham + vehicle
group as 100%).

2.6. Statistical Analyses

All data obtained here were statistically analyzed using SPSS 18.0 (SPSS, Chicago,
IL, USA) and are displayed as means ± standard error of the mean (SEM). Using Kaplan–
Meier statistics and the log-rank test, the survival rate was analyzed. MAP and SpO2
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were compared using one- and two-way analyses of variance (ANOVA). The statistical
differences among all four groups were assessed by a post hoc Tukey test. The differences
were regarded as statistically significant at a p-value under 0.05.

3. Results
3.1. Physiologic Variables and Survival Rate after CA/RoSC

CA/RoSC was confirmed by MAP and SpO2 in all four groups (sham + vehicle, CA +
vehicle, CA/RoSC and CA + OXC groups) (Figure 2A,B). The MAP and SpO2 were altered,
just as we expected in accordance with the experimental protocol. The survival rate in each
group, as shown in Figure 2C, was calculated by the Kaplan–Meier analysis two days after
CA/RoSC. The survival rate in the sham + vehicle and sham + OXC groups was 100%; however,
the survival rate in the CA + vehicle and CA + OXC groups was 6.5 and 63.6%, respectively.
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Figure 2. Physiological variables in all four groups. The MAP (A) and SpO2 levels (B) were measured
during CA, CPR and RoSC. The bars indicate the means ± SEM. (C) The cumulative survival rate of
the animals in all four groups after CA/RoSC using Kaplan–Meier analysis two days after CA/RoSC.

3.2. Salvation of Cerebellar Purkinje Cells by OXC
CBD-28k Immunohistochemistry and FJB Histofluorescence

To examine the damage or death of Purkinje cells, which are located in the middle
layer of the cerebellum, after CA/RoSC, the vermis of the cerebellum was examined
using immunohistochemistry for CBD-28k (a marker for cerebellar Purkinje cells) and
histofluorescence with FJB (a marker for neuronal degeneration) (Figure 3).

In the sham + vehicle group, Purkinje cells were stained with CBD-28k (Figure 3Aa,Ae),
and no FJB-positive Purkinje cells (FJB-Purkinje cells) were found (Figure 3Ca,Ce). In the CA +
vehicle group, a significant change in the numbers of CBD-28k-immunoreactive Purkinje cells
(CBD-28k-Purkinje cells) was not shown at 12 h after CA/RoSC (Figure 3Ab,B); however, at
this time, some FJB-Purkinje cells were detected (Figure 3Bb,D). One day after CA/RoSC, the
number of CBD-28k-Purkinje cells was significantly decreased (Figure 3Ab,B), and the number
of FJB-Purkinje cells was significantly increased (Figure 3Bb,D). Two days after CA/RoSC,
the number of CBD-28k-Purkinje cells was more significantly reduced (20.2% of the sham +
vehicle group), and the number of FJB-Purkinje cells was more significantly increased (2125.0%
of the CA + vehicle group at 12 h after CA/RoSC) (Figure 3Ad,B,Cd,D).
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3.3. Changes in 4HNE-Immunoreactive Structures by OXC 

To examine changes in lipid peroxidation in the cerebellar vermis of the four groups, 

4HNE (an end-product by lipid peroxidation)-immunoreactive structures (i.e., 4HNE-

structures) were examined by immunohistochemistry (Figure 4). 

Figure 3. (A,C) CBD-28k immunohistochemistry (A) and FJB histofluorescence (C) in the cerebellar
vermis of the sham + vehicle (Aa,Ca). The CA + vehicle (Ab–d,Cb–d), sham + OXC (Ae,Ce) and CA +
OXC (Af–h,Cf–h) groups at 12 h and one and two days after CA/RoSC. In the CA + vehicle group,
the numbers of CBD-28k-Purkinje cells are apparently reduced (arrows) in the Purkinje cell layer
(PCL) two days after CA/RoSC, and FJB-cells are apparently increased (arrows) in the PCL at 12 h
after CA/PCR. In the CA + OXC group, CBD-28k- and the number of FJB-Purkinje cells are markedly
saved and reduced, respectively, two days after CA/RoSC. GCL, granular cell layer; MCL, molecular
cell layer. Scale bar = 50 µm. (B,D). Numbers of CBD-28k-Purkinje cells (B) and FJB-Purkinje cells
(D). The bars determine the means ± SEM (n = 7, respectively; *p < 0.05 versus sham, † vehicle group;
# p < 0.05 versus CA, † vehicle group).

In the sham + OXC group, the distribution of CBD-28k-Purkinje cells was similar to
that found in the sham + vehicle group (Figure 3Ae,B), and no FJB-Purkinje cells were
found (Figure 3Be,D). In the CA + OXC group, the number of CBD-28k-Purkinje cells
was similar to that of the sham + vehicle group at 12 h after CA/RoSC and, at this time,
FJB-Purkinje cells were rarely detected (Figure 3Af,B,Cf,D). One day after CA/RoSC, the
number of CBD-28k-Purkinje cells was slightly low compared with the sham + vehicle
group (Figure 3Ac,B), and the number of FJB-Purkinje cells was significantly decreased
compared with that found in the corresponding CA + vehicle group (Figure 3Bc,D). Two
days after CA/RoSC, the loss of CBD-28k-Purkinje cells was 85.5% of the sham + vehicle
group (Figure 3Ah,B), and the percentage of FJB-Purkinje cells was 17.1% of the CA +
vehicle group two days after CA/RoSC (Figure 3Ch,D).

3.3. Changes in 4HNE-Immunoreactive Structures by OXC

To examine changes in lipid peroxidation in the cerebellar vermis of the four groups,
4HNE (an end-product by lipid peroxidation)-immunoreactive structures (i.e., 4HNE-
structures) were examined by immunohistochemistry (Figure 4).
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Figure 4. (A) 4HNE immunohistochemistry in the cerebellar vermis of the sham + vehicle (Aa), CA +
vehicle (Ab–d), sham + OXC (Ae) and CA + OXC (Af–h) groups at 12 h and one and two days after
CA/RoSC. The 4HNE-structures, such as Purkinje cells and their dendrites, are shown in the Purkinje
cell layer (PCL) and molecular layer (ML) of the sham + vehicle group. In the CA + vehicle group,
4HNE immunoreactivity is markedly increased at 12 h and one day after CA/RoSC and decreased
(arrows) two days after CA/RoSC. In the CA + OXC group, 4HNE immunoreactivity is not significantly
altered after CA/RoSC. GCL, granular cell layer. Scale bar = 50 µm. (B) Relative optical density (ROD),
as a %, compared with the sham + vehicle group (100%). The bars indicate the means ± SEM (n = 7,
respectively; * p < 0.05 versus sham + vehicle group; # p < 0.05 versus CA + vehicle group).

In the sham + vehicle group, the 4HNE-structures, such as Purkinje cell bodies and
their dendritic trees, were found in the cerebellar vermis with Purkinje cells comprising
the Purkinje cell layer (Figure 4Aa). In the CA + vehicle group, the immunoreactivity
of 4HNE-structures was significantly increased at 12 h after CA/RoSC (Figure 4Ab,B)
and maintained one day after CA/RoSC (Figure 4Ac,B). Two days after CA/RoSC, the
immunoreactivity of 4HNE-structures was significantly decreased (75.4% of the sham +
vehicle group) (Figure 4Ad,B).

In the sham + OXC group, the immunoreactivity of 4HNE-structures was similar
to that shown in the sham + vehicle group (Figure 4Ae,B). In the CA + OXC group, the
immunoreactivity of 4HNE-structures was slightly high at 12 h and one day after CA/RoSC
compared with the sham + vehicle group. Two days after CA/RoSC, the immunoreactivity
of 4HNE-structures was a little high (127.2% of sham + vehicle group) compared with that
evaluated in the sham + vehicle group (Figure 4Af–Ah,B).

3.4. Changes in SOD1- and SOD2-Immunoreactive Structures by OXC

To examine changes in SOD1 and SOD2 (as endogenous antioxidant enzymes) in
the cerebellar vermis of the four groups, SOD1- and SOD2-immunoreactive structures
(i.e., SOD1- and SOD2-structures) were evaluated using immunohistochemistry with SOD1
and SOD2 antibodies (Figure 5).

In the sham + vehicle group, SOD1- and SOD2-structures were principally shown in
the Purkinje cells (Figure 5Aa,B,Ca,D). In the CA + vehicle group, the immunoreactivities
of SOD1- and SOD2-structures were gradually reduced with time after CA/RoSC, showing
56.3 and 41.2% of SOD1 and SOD2 immunoreactivity one day after CA/RoSC, respectively,
and 34.6 and 24.8% two days after CA/RoSC, respectively (Figure 5Ab–d,B,Cb–d,D).

In the sham + OXC group, the immunoreactivity of SOD1 and SOD2 was similar
to that of the sham + vehicle group (Figure 5Ae,B,Ce,D). In the CA + OXC group, SOD1
immunoreactivity was significantly increased (119.7 and 131.1%, respectively, of the sham
+ vehicle group) compared with the sham + vehicle group at 12 h and one day after
CA/RoSC. In addition, SOD2 immunoreactivity in the CA + OXC group was slightly
increased compared with the sham + vehicle group at 12 h and one day after CA/RoSC
(Figure 5Af–h,B,Cf–h,D).
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Figure 5. (A,C) SOD1 and SOD2 immunohistochemistry in the cerebellar vermis of the sham + vehicle
(Aa,Ca), CA + vehicle (Ab–d,Cb–d), sham + OXC (Ae,Ce) and CA+OXC (Af–h, Cf–h) groups at 12 h
and one and two days after CA/RoSC. In the sham + vehicle group, SOD1- and SOD2-structures are
Purkinje cells located in the Purkinje cell layer (PCL). In the CA + vehicle group, SOD1 and SOD2
immunoreactivities are gradually decreased after CA/RoSC and are very low (arrows) two days
after CA/RoSC. In the CA + OXC group, SOD1 and SOD2 immunoreactivities are not significantly
different from those shown in the sham + vehicle group. GCL, granular cell layer; ML, molecular
layer. Scale bar = 50 µm. (B,D) Relative optical density (ROD), as a % compared with the sham +
vehicle group (100%), of SOD1- (B) and SOD2- (D) structures. The bars indicate the means ± SEM
(n = 7, respectively; * p < 0.05 versus sham + vehicle group; # p < 0.05 versus CA + vehicle group;
† p < 0.05 versus CA + OXC group).

4. Discussion

In the brain, specific areas or structures are selectively injured after a transient ischemic
episode (ischemia and reperfusion injury), and the topographical heterogeneity of ischemic
damage has been described as “selective vulnerability of the brain” [30,31]. It has been
reported that the cerebellum, which is involved in the maintenance of balance and posture, the
coordination of voluntary movements, motor learning and cognitive functions, is sensitive to
ischemic insults indicated by the damage or death (loss) of Purkinje cells [4,32,33]. Cerebellar
Purkinje cells, as principal cells in the cerebellum, play critical roles in motor coordination,
cognition and learning [34,35].

The loss of cerebellar Purkinje cells after CA/RoSC can contribute to neurologic
dysfunction, including post-hypoxic myoclonus [32,36]. A rat model of asphyxial CA/RoSC
developed whole-body ischemia and reperfusion injury [4,5,37]. This technique depends
on chemical paralysis and ventilation cessation in order to induce circulatory arrest, and it
is reproducible and reliable for the study of whole-body ischemia and reperfusion injuries.
Brasko et al. (1995) reported that over 60% of cerebellar Purkinje cells died within seven
days following 10 min of CA in rats [26]. Additionally, Welsh et al. (2002) demonstrated
that cerebellar Purkinje cells died easily, with up to 47% having died within 10.5 min of
whole-brain ischemia in rats [20]. Recently, Quillinan et al. (2015) reported that about 24%
of cerebellar Purkinje cells were lost within 24 h after eight minutes of CA in mice [27].
In addition, Cho et al. (2019) showed that, in rats, cerebellar Purkinje cells were positive
for CBD-28k antibody and the CBD-28k-Purkinje cells were significantly decreased within
two days after asphyxial CA/RoSC, showing that many FJB-Purkinje cells were observed
from 12 h to one day after CA/RoSC [38]. In our present study, cerebellar Purkinje cells



Antioxidants 2022, 11, 2450 10 of 13

died quickly after five minutes of CA/RoSC, and most Purkinje cells were lost two days
after CA/RoSC. Taken together, it is likely that the death (loss) of cerebellar Purkinje cells
following CA/RoSC occurs within two days after the insult.

Recently, Ahn et al. (2019) reported that pre- and post-treatment with OXC exerted
neuroprotective effects in the hippocampus of a gerbil model of transient global cerebral
ischemia, showing that OXC saved hippocampal pyramidal neurons from ischemic in-
jury [39]. To date, few studies have reported the therapeutic effects of OXC on ischemic
injury in the cerebellum induced by CA/RoSC. Here, we investigated the therapeutic
effects of OXC on cerebellar Purkinje cell death following asphyxial CA/RoSC in rats and
found that post-treatment with OXC (200 mg/kg) successfully saved cerebellar Purkinje
cells from death induced by CA/RoSC (whole-body ischemia and reperfusion). Our results
strongly suggest that cerebellar Purkinje cell death induced by CA/RoSC can be protected
by OXC post-administration when taken together.

Amassing evidence has shown that ischemia and reperfusion in the brain elicit ox-
idative stress through the overproduction of ROS, leading to ischemic brain injury. The
overproduction of ROS is especially meaningful in the pathogenesis of ischemia and reper-
fusion injury, particularly after reperfusion [40–42]. The overproduction of ROS is able to
cause direct damage to cellular components, such as nucleic acids, lipids and proteins in
ischemic tissues, leading to cell damage or death [43,44]. Lipid peroxidation is the primary
pathophysiological mechanism implicated in ischemic brain injury [43]. In our current
study, 4HNE (an end-product of lipid peroxidation) immunoreactivity was significantly
increased in the Purkinje cells at 12 h and one day after CA/RoSC. In a gerbil model of
ischemia and reperfusion in the forebrain, it was reported that 4HNE immunoreactivity
was dramatically enhanced in pyramidal neurons (as the principal neurons) located in the
hippocampal CA1 region one day after ischemia was dramatically increased [45]. Collec-
tively, these results suggest that lipid peroxidation by ROS may contribute to cerebellar
Purkinje cell death following CA/RoSC in rats, but the mechanism of Purkinje cell death
needs more precise study than the present information. In this study, therapeutic treatment
with OXC after CA/RoSC significantly decreased 4HNE immunoreactivity in the cerebellar
Purkinje cells that suffered an ischemic injury. In this regard, it seems that the attenuation
of CA/RoSC-induced lipid peroxidation in cerebellar Purkinje cells by OXC treatment
contributes to the protection of the cerebellar Purkinje cells from CA/RoSC injury.

In addition, the mechanisms of neuronal defense against oxidative stress have been re-
ported to involve antioxidant systems [46]. SOD, one of the enzymatic antioxidants present
in all oxygen-metabolizing cells, reacts with superoxide radicals to form H2O2 and plays
crucial roles in maintaining low oxidant levels and redox homeostasis in cells and tissues
through scavenging the oxidants [47,48]. In the case of ischemia and reperfusion injury in
the brain, researchers have demonstrated that SOD is actively involved in neuroprotection
after ischemic insults [44,49]. In this regard, it has been reported that various drugs with
antioxidant effects can meaningfully protect brain neurons from ischemic insults [50,51].
For example, Cho et al. (2019) showed that melatonin, which is primarily known in animals
as a hormone released at night from the pineal gland located in the brain, significantly pro-
tected cerebellar Purkinje cells from ischemia and reperfusion injury induced by CA/RoSC,
thereby demonstrating that melatonin treatment dramatically enhanced SOD1 and SOD2
expression using Western blot and immunohistochemical approaches [38]. In our present
study, the immunoreactivities of SOD1 and SOD2 were detected in the cerebellar Purkinje
cells of the sham + vehicle group, and in the CA + vehicle group, the two immunore-
activities were gradually and significantly decreased after CA/RoSC. However, in the
CA + OXC group, the SOD1 immunoreactivity was apparently enhanced at 12 h and one
day after CA/RoSC; SOD2 immunoreactivity was slightly increased and was maintained
after CA/RoSC. These results collectively suggest that the enhancement or maintenance of
antioxidant activity in ischemic brain cells or tissues can be beneficial for neuronal survival
after ischemia and reperfusion injury.
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5. Conclusions

In brief, the therapeutic administration of OXC after CA/RoSC significantly increased
the survival rate of the animals (≥63.6%) compared with vehicle-treated rats with CA/RoSC
(6.5%), showing that OXC treatment saved cerebellar Purkinje cells (principal neurons)
from ischemia and reperfusion injury induced by CA/RoSC. In the ischemic Purkinje
cells, 4HNE expression was significantly enhanced, and SOD expressions were markedly
reduced, but the OXC treatment for rats with CA/RoSC inhibited the increase in 4HNE
and enhanced or maintained SOD expression in the ischemic Purkinje cells. Taken together,
we suggest that OXC can be developed as a therapeutic approach for injuries induced by
ischemia and reperfusion, including injury by CA/RoSC.
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