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Abstract: Hydroxycinnamoyl-quinic acids (HCQAs) are polyphenol esters formed of hydroxycin-
namic acids and (-)-quinic acid. They are naturally synthesized by plants and some micro-organisms.
The ester of caffeic acid and quinic acid, the chlorogenic acid, is an intermediate of lignin biosynthesis.
HCQAs are biologically active dietary compounds exhibiting several important therapeutic proper-
ties, including antioxidant, antimicrobial, anti-inflammatory, neuroprotective, and other activities.
They can also be used in the synthesis of nanoparticles or drugs. However, extraction of these com-
pounds from biomass is a complex process and their synthesis requires costly precursors, limiting the
industrial production and availability of a wider variety of HCQAs. The recently emerged production
through the bioconversion is still in an early stage of development. In this paper, we discuss existing
and potential future strategies for production of HCQAs.

Keywords: hydroxycinnamoyl-quinic acids; chlorogenic acid; antioxidants; extraction; synthesis;
biosynthesis by engineered micro-organisms

1. Introduction

HCQAs (Table 1) are mostly produced in plants by ester formation of a hydroxycin-
namic acid (primarily p-coumaric, caffeic, ferulic and sinapic acids) with a (-)-quinic acid
from the phenylpropanoid pathway, and they are linked with lignin synthesis [1]. They
belong to a large and diverse group of phenolic compounds, often termed as chlorogenic
acids [2]. The extended list of chlorogenic acids, which contains approximately 400 com-
pounds [2], also encompass several derivatives and isomers of quinic acid, including
shikimic acid, its epimers, 4-deoxy-, muco-, methyl- and butyl-quinic acids esterified with
hydroxycinnamic and hydroxybenzoic acids or some of their derivatives. The nomenclature
and trivial names of compounds of chlorogenic acids are rather complicated and they are
explained in [3].

Here, we primarily focus on the HCQAs (Table 1). Amongst these, the most abundant
and important compound is 5-caffeoylquinic acid (5-CQA), often referred to as chlorogenic
acid. In 2018, the market size of 5-CQA was 130 million and it is expected to reach
150 million US$ by 2025 [4].

Over the last decade, a wide interest in HCQAs has been reflected by an exponentially
growing number of scientific publications (Figure 1). However, the main focus has been on
HCQAs extraction from plants and to some extent on their chemical synthesis, whereas
studies on microbial production of these acids have been limited.

HCQAs are used in pharmaceuticals, cosmetics, foods due to their therapeutic proper-
ties, such as antioxidant [5], anticancer [6], antimicrobial [7,8], antiobesity [9], hepatopro-
tective [10], antiviral and anti-inflammatory [11], antihypertensive [12] and neuroprotec-
tive [13]. The hydroxycinnamoyl moiety in these compounds determines the antimicrobial
activity [14,15]. The strength of this property increases with the number of these moieties
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in the molecule. HCQAs exhibit antimicrobial activity against many bacteria, including
Enterococcus faecium, Escherichia coli and others [16]. However, some cider yeasts (Lactobacil-
lus collinoides, Lactobacillus paracollinoides) [17,18], fungi (Aspergillus niger C23308, Fusarium
graminearum [19,20], Fusarium culmorum and Fusarium graminearum sensu stricto [21]) and
lactic acid producing bacteria (Lactobacillus johnsonii NCC 533) [17,22] are resistant to 5-CQA
due to their ability to catabolize this compound.

Table 1. The principal chemical structure of HCQAs.
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5-CQA has been found to be useful for diverse applications. Recently, it has been
shown to have potential to counteract SARS-CoV-2 by reducing viral attachment to the
host cell-surface heat shock protein A5 (HSPA5) [23]. 5-CQA stimulates short-chain fatty
acid production in bacteria. The fermentation products of this acid stimulate the prolif-
eration of Bifidobacterium spp. causing the decreased ratio between Firmicutes and Bac-
teroidetes [24]. The final compounds formed from 5-CQA and other HCQAs are hippuric
acid and 3-hydroxyhippuric acid, which are used as non-specific biomarkers for polyphenol
uptake or metabolism [25–27].

Moreover, 5-CQA has found applications in the synthesis of metals’ nanoparticles
as a reducing and stabilizing agent [28,29]; in the production modification of carbon
ceramic electrode for NADH detection [30]; in red food dye preparation from coupling
of tryptophan and 5-CQA [31]; and the preservation of food by preparing the edible
coating with chitosan [32]. This compound is also referred to as the major compound
from instant coffee extract responsible for graphene green production from graphite and
functionalization [33]. 5-CQA is considered as the precursor of caffeic and quinic acids,
which may be obtained via hydrolysis reactions during extraction from plant material [34].

Importantly, the derivatives of HCQAs are also widely researched for their potential
use in the production of drugs or the use in biopharmaceuticals [35,36]. Moreover, the
extract of green coffee beans containing a large amount of 5-CQA has been certified by
COSMOS to obtain a label of a natural raw material for cosmetics [37]. It is also produced
by Naturex under the trade name Svetol® as a supplement for body weight loss [38].

This paper aims to discuss and assess the recent advances in chemical synthesis of
HCQAs, their extraction from plant material and agricultural waste as well as emerging bio-
production of these compounds using natural or modified micro-organisms. The HCQAs
production strategies and relevant research developments are summarized.

2. HCQAs Extraction from Plants and Agricultural Waste
2.1. HCQAs Biosynthesis in Plants

The phenylpropanoid pathway forms a platform for HCQAs biosynthesis in plants
with the main biochemical reactions presented in Figure 2. HCQAs can be synthesized from
p-coumaric acid or p-coumaroyl-CoA by four different routes. The first route (blue arrows
in Figure 2) requires the direct conversion of p-coumaric acid into other hydroxycinnamic
acids (caffeic, ferulic, sinapic acids) via hydroxylation or methylation reactions mediated
by p-coumarate 3-hydroxylase (C3H), caffeic/5-hydroxyferulic acid O-methyltransferase
(COMT) or ferulic acid 5-hydroxylase (F5H) [39]. Then, hydroxycinnamic acids CoA esters
are formed with mediation of 4-coumaroyl-CoA ligase (4CL) [40] and HCQAs are produced
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by transesterification reaction with quinic acid catalyzed by HCT/HQT [41]. The second
route (pink arrows in Figure 3) is the conversion of hydroxycinnamates into glucosides
and transesterification with quinic acid [41]. The third and fourth routes starts from p-
coumaroyl-CoA, which is converted into p-coumaroyl-quinic (quinate shunt, red arrows in
Figure 2), or p-coumaroyl-shikimic (shikimate shunt, green arrows in Figure 2) acids with
additional conversion of obtained shikimate into ester of CoA and following esterification
with quinic acid, respectively [39,41,42]. 3-CQA, 4-CQA are produced from 5-CQA, and
3,4-diCQA or 4,5-diCQAs are synthesized from 1,5-diCQA with mediation of isomerase
or hydroxycinnamoyltransferase, respectively [43,44]. The dual activity of HQT enzyme
results in 5-HCQAs production in cytosol and in the production of 3,4-diCQA, 3,5-diCQA
or 4,5-diCQAs from two molecules of 5-CQA (acting as acyl-donor and acyl-acceptor) in
the vacuoles [45]. In addition, 3,5-diCQA can be obtained from 5-CQA and caffeoyl-CoA
with mediation of HCT and ICS enzymes [46]. Cis isomerization may occur with mediation
of the non-specified/non-identified enzyme [47] or due to the exposure to ultraviolet
irradiation [48]. To date, the major synthesis routes in plants are shikimic or quinic acids
shunts, which results in the production of p-CoQAs, CQAs or FQAs [39,44,49,50].

2.1.1. Plant Sources of HCQAs

All types of HCQAs (from Table 2) may be found in plants (Figure 3) and they are
mainly localized in fruit skin, seeds, kernels, leaves, or husks. The richest sources of HCQAs
(mainly mono- and dicaffeoylquinic acids) are Yerba mate, white, green teas and coffee
(Table 2). Although coffee is considered a major 5-CQA source, depending on the coffee
type it may contain a lower total amount of 5-CQA but a larger variety of other HCQAs
(including sinapoyl- derivatives such as 3-SQA, 4-SQA, 5-SQA, 3-S-5-CQA, 3-S-4-CQA,
4-S-3-CQA, 3-S-5-FQA, 3-F-4-SQA, 4-S-5-FQA) than teas [51–53]. The plants from Asteraceae,
Cichorium, Phaseoullus, Brassica, Solanaceae and Lamiaceae families possess high amounts of
different HCQAs [54–56]. Many fruits and berries are rich in CQAs with the highest total
concentrations of 200–570 mg/kg wet biomass determined in cherry, quince, mulberry,
bilberry, and sweet granadilla [57]. Food, crop and agro-industrial waste can be used as an
alternative source for the bio-refinery of HCQAs [58,59]. Coffee by-products are some of
the richest waste sources containing up to 10–23% of HCQAs [51,60]. Principally, all plants
containing high levels of alkaloids possess significant amounts of HCQAs [61,62].

2.1.2. Marine Sources of HCQAs

HCQAs are present in marine sources, mainly microalgae (Spongiochlori sp., Euglena
cantabrica, Anabaena doliolum, Porphyra tenera, Undaria pinnatifia) and cyanobacteria (Nos-
toc sp.) [64–67]. The HCQAs synthesis pathway in these organisms is similar to higher
plants [68]. Although microalgae and cyanobacteria contain high levels of extractable
phenolic compounds (phenolic acids) and quinic acid, the abundance of various HCQAs is
limited. To date, the data on abundance of 5-CQA is only available for some species of ma-
rine plants and cyanobacteria. Its concentration reaches up to 78 µg/g DW for microalgae
and 9.55 µg/g DW for cyanobacteria (Table 3). The higher amount of 5-CQA is determined
in algae due to the adaptation to abiotic and biotic stress occurring in the evolutionary
advanced micro-organisms [65].
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propanoid metabolism are highlighted in different colors: green, shikimate shunt; red, quinate shunt;
blue and pink, direct conversion and cinnamoyl glucosides pathway. Dashed arrows show the
suggested enzymatic reactions. Abbreviations: PAL, L-phenylalanine ammonia-lyase; C4H, cinna-
mate 4-hydroxylase; 4CL, p-coumaroyl-CoA ligase; HCT/HQT, 4-hydroxycinnamoyl CoA - shiki-
mate/quinate hydroxycinnamoyl transferase; C3’H, p-coumaroyl shikimate/quinate 3’-hydroxylase,
CSE - caffeoyl shikimate esterase, ICS isochlorogenate synthase, HCT - hydroxycinnamoyl-CoA
shikimate/quinate hydroxycinnamoyltransferase; HQT, hydroxycinnamoyl-CoA quinate hydroxycin-
namoyl transferase; CSE, caffeoyl shikimate esterase; FSE, feruoyl shikimate esterase; SSE, sinapoyl
shikimate esterase; COMT, caffeic/5-hydroxyferulic acid O-methyltransferase; C3H, p-coumarate
3-hydroxylase (ascorbate peroxidase); CCoAOMT, caffeoyl-CoA 3-O-methyltransferase; UGT84, UDP-
glucoside transferase; HCGQT, hydroxycinnamoyl D-glucose:quinate hydroxycinnamoyl transferase;
F5’H—ferulic acid 5-hydroxylase.
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Table 2. Plant sources with the most abundant HCQAs available.

Source

HCQAs, g/kg Dry Weight

Ref.
3-

C
Q

A

4-
C

Q
A

5-
C

Q
A

3,
4-

di
C

Q
A

3,
5-

di
C

Q
A

4,
5-

di
C

Q
A

5-
FQ

A

3-
p-

C
oQ

A

4-
p-

C
oQ

A

5-
p-

C
oQ

A

To
ta

l

Leaves and Thalli of
Yerba mate (Ilex
paraguariensis)

27.6 6.80 12.07 5.82 29.59 9.98 n.d. n.d. n.d. n.d. 91.89 [54]

Leaves of White tea
(Camellia sinensis) 3.68 0.80 3.04 1.31 5.78 1.78 n.d. n.d. n.d. n.d. 16.40 [54]

Leaves of Green tea
(Camellia sinensis) 3.06 0.64 1.85 1.20 5.51 0.96 n.d. n.d. n.d. n.d. 13.23 [54]

Leaves of Artichoke
(Cynara scolymus) 0.08 0.01 5.97 0.12 2.86 0.095 n.d. n.d. n.d. n.d. 9.16 [54]

Leaves and Thalli of
Arnica (Arnicaeflos) 0.24 0.26 2.80 1.36 2.89 1.40 n.d. n.d. n.d. n.d. 8.98 [54]

Leaves of Rosemary
(Rosmarinus officinalis) 0.04 0.01 0.005 n.d. 0.12 8.46 n.d. n.d. n.d. n.d. 8.95 [54]

Coffee spp. 4.8–5.5 7.1–7.8 52.0–54.2 n.d. 8.1–8.8 4.1–4.8 3.8–4.2 0.005–0.55 0.01–0.26 0.14–1.84 29.5–70.5 [52,63]

n.d.—no data presented.

Table 3. Marine sources of 5-CQA.

Source 5-CQA Concentration Ref.

Cyanobacteria
Nostoc commune 2.16 µg/g DW [65]

Nostoc 2S9Bn 9.55 µg/g DW [66]

Algae
Euglena cantabrica 78 µg/g DW [65]

Spongiochloris platensis 72.11 ng/g [64]

Spongiochloris spongiosa 260 ng/g [67]
95.87 ng/g [64]

Anabaena doliolum 82 ± 6.6 ng/g [67]
Porphyra tenera 19 ± 11.9 ng/g [67]

Undaria pinnatifia 10 ± 11.9 ng/g [67]

2.2. HCQAs Extraction

HCQAs are usually extracted by conventional, solid–liquid extraction (SLE) and non-
conventional or intensified techniques, such as ultrasound assisted (UAE), microwave
assisted (MAE), pressurized liquid (PLE), supercritical fluid (SFE), enzymatic extraction
(EAE) [69,70] or infrared assisted extraction (IAE) [71] (Table 4). Only in EAE, the re-
lease and extraction is performed for HCQAs trapped within the plant cell walls using
enzymes (cellulases, glucosidases, proteases, dextranases, xylanases and ligninolytic en-
zymes that do not hydrolase the HCQAs into their constituents) in aqueous buffers or ionic
liquids [72–75]. The non-conventional or intensified extraction methods are considered
to be more efficient. In extraction process, parameters (such as temperature, time, pH
of solvents, particle size, solvent type and concentration, its volume and other specific
parameters of the process (e.g., microwave power, ultrasonic frequency, enzyme concentra-
tion)) can be optimized [69,76]. The final yield of HCQAs depends on the raw material as
well as the extraction method (Table 4). The highest yields (up to 4% of raw material) of
HCQAs are determined for the coffee by-products, honeysuckle (Lonicera japonicae) and
its flowers or by-products, sunflower seed kernels [60,77–82]. All the extraction methods
are potentially suitable for the HCQAs except for SFE, which is considered as the green
extraction technique, but the recovery yields do not exceed~52%, due to reduced solubility
in the nonpolar supercritical fluid [80,83]. The MAE and IRE are usually very efficient and
require a short time for the extraction process, but the large size microwave extractors in
industry remain too expensive. Therefore, SLE is considered the most relevant method for
industrial application due to its simplicity, reproducibility, low cost and possibility to use
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environment friendly solvents [84]. Intensified methods are mostly applied for the recovery
of HCQAs from waste [71,85–93] (Table 4).

Table 4. Yields HCQAs extracted from plants and wastes.

HCQAs Plant Type and Part Extraction
Method Yield Ref.

3-CQA

Mulberry leaves (Morus alba L.) UAE

0.47 mg/mL

[89]4-CQA 1.29 mg/mL

5-CQA 0.65 mg/mL

5-CQA Spent coffee grounds SLE 0.04–0.2 g/L extract [77]

5-CQA Silver skin from coffee SLE 3% [60]

5-CQA Honeysuckle (Lonicera japonicae) UAE 37.78 mg/g [79]

5-CQA

Honeysuckle (Lonicera japonica) flower buds SLE

23.08 mg/kg raw material

[82]

1,4-diCQA 0.32 mg/kg raw material

3,4-diCQA 42.46 mg/kg raw material

4,5-diCQA 14.62 mg/kg raw material

3,4,5-triCQA 4.62 mg/kg raw material

5-CQA Sunflower (Helianthus annuus) cake MAE 8.4 mg /g [78]

5-CQA Burdock (Arctium lappa) leaves
PLE 18.453 (g/kg extract)

[83]
SFE 8.765(g/kg extract)

5-CQA Sunflower (Helianthus annuus) seed kernels SFE 9.06 mg/g raw material [80]

5-CQA Honeysuckle (L. japonica) flowers EAE ~4% [81]

5-CQA Hardy rubber tree (Eucommia ulmoides) leaves IL-EAE ~3–5.5 mg/g raw material [75]

5-CQA Bog bilberry (Vaccinium uliginosum) leaves MSDDE 17.02 mg/g raw material [90]

5-CQA Coffee chaff MMM 0.64–0.94 mg/g raw material [91]

5-CQA Coffee pulp SLE-SSF 600 mg/kg raw material [92]

3,4,5-triCQA
3,4-diCQA
3,5-diCQA
4,5-diCQA

3-CQA
3-C-FQA

Sweet potato (Ipomoea batatas) peels UAE n.d. [93]

3-CQA
4-CQA
5-CQA

Tobacco (Nicotiana tabacum) waste SLE n.d. [94]

5-CQA Tobacco (Nicotiana tabacum) waste UAE 0.497% [85]

5-CQA Carrot (Daucus carota) pomace UAE 17.58µg/g [86]

5-CQA Pomegranate (Punica granatum) peels
SLE
UAE
IAE

301–1220 µg/g DW

[71]284–1556 µg/g DW

679–1562 µg/g DW

4-CQA
Fennel (Foeniculum vulgare) bulbs waste PLE

1.949 mg/g DW
[87]

3,4-diCQA 0.490 mg/g DW
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Table 4. Cont.

HCQAs Plant Type and Part Extraction
Method Yield Ref.

1-CQA

Potatoes (Fontane) by-products UAE

0.36 mg/g DW

[88]

5-CQA 3.04 mg/g DW

4-CQA 0.39 mg/g DW

5-FQA 0.05 mg/g DW

3,4-diCQA 0.09 mg/g DW

3,5-diCQA 0.40 mg/g DW

4,5-diCQA 0.16 mg/g DW

n.d.—no data presented.

Many intensified extraction methods have been adopted for waste valorization. Fur-
thermore, combined processes, such as microwave-assisted simultaneous distillation and
dual extraction (MSDDE) [90], multi-frequency multimode modulated vibration (acoustic
probe) technique (MMM) [91] or simultaneous SLE extraction and solid-state fermentation
(SLE-SSF) [92] have been developed for 5-CQA extraction (Table 4).These three methods are
more effective than SLE or other non-conventional extraction methods, however, MSDDE
and MMM are too expensive for industrial application, and only SLE-SSF can be applied
for large scale extraction and production of 5-CQA with high enrichment of raw material
(for example, up to 400% for coffee pulp) [92].

For the separation, concentration and purification of HCQAs, mesoporous resins
(recovery 65.03%, purity of CQAs 89.27%) [94], a high-speed countercurrent or high-
performance liquid chromatography (recovery up to 99.56%) [82,89,95], fractional extraction
in centrifuges (yield 35%, purity 99.5%) [96], isocratic system with three zones of simu-
lating moving beds (0.04–0.2 g/L extract, purity 99.27%) [77], ultrafiltration membranes
(rejection 92%) [97], molecularly imprinted polymer (recovery 60.08–72.59%, extraction
yield 12.57 mg/g raw material) [79], imprinted magnetic nanomaterials or membranes
(recovery 86–102%) [98,99], ethanol/salt aqueous two-phase system (95.76% maximum
extraction) [100] are used. The chromatography-based purification is the most popular
method, which is often used in industrial applications, due to its simplicity, effectiveness
and reasonable cost. The fractional extraction in centrifuge or three-zone simulated moving
bed method are based on continuous and selective processes, which allows for separating
and concentrating 5-CQA with high purity (97.25–99.27%) [77,96]. However, only the
fractional extraction in centrifuge is a cost-effective method and can be applied in industrial
scale production [96]. The other separation and purification methods have been tested
only in lab-scale production and may be limited due to some disadvantages, such as high
cost, low effectiveness, low purity or selectivity, long analysis time, usage of toxic (organic)
solvents, or membrane fouling [79,94,98,100–103].

The extraction and identification of HCQAs suffer from some limitations. Firstly, the
stability of HCQAs is reduced by the isomerization or destruction reactions under extraction
conditions, especially if these conditions are harsh [2,93]. Secondly, transesterification
reactions can occur due to the activity of chlorogenate-dependent caffeoyltransferase, when
the extraction of fresh plant material is performed in alcohol or alcohol-water mixtures [104].
The transformed products may be mistakenly identified as the new bioactive ingredients
of the plant sources [105]. Another problem is the identification of the compounds in
the extracts due to the limited number of commercially available standards and similar
properties or spectra of HCQAs as summarized in [2,106].

Extraction and purification processes can be more environment-friendly if ionic liquids
or eco-friendly natural deep eutectic solvents are used instead of organic solvents. They
have a higher affinity to HCQAs than water [107], and it is easy to purify these solvents by
distillation and to re-use them for extraction processes [108,109]. Furthermore, the use of
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ionic liquids can result in a shorter extraction time [75,110]. Generally, the recycling and
re-use of the extraction solvents, application of high solid–to–liquid ratio, and reduced
processing time helps to lower the total cost of the extraction [100,111].

The extraction of HCQAs results in large amounts of the residual plant material.
Aiming for the sustainable circular economy and resource conservation, these residues
can be utilized for combustion [112], as a biofuel (e.g., biodiesel, bioethanol, biochar
and liquid pyrolysis product production) [113–115] or other applications [60,113,116–123]
(Figure 4), which allows for reducing the solid waste amount and/or covering up to 100%
of phytoremediation cost [124,125].
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3. Chemical Synthesis of HCQAs

The major HCQAs containing hydroxycinnamoyl moieties can be chemically syn-
thesized performing either esterification or condensation reaction between quinic and
hydroxycinnamic acids using pyridine or DMAP as homogenous catalyst in organic sol-
vents (dichlormethane or DMF). The reactions with the best total yields are presented
in Figure 5.

The highest total yields have been obtained with Sefkow synthesis method for 1-CQA,
3-CQA, 4-CQA or 5-CQA isomers (Table 5) using esterification reaction between caf-
feoylchloride derivative and quinic acid derivatives with unprotected OH groups at
1, 3, 4 and/or 5 positions followed by 1–2 steps of hydrolysis reaction of protecting
groups [126,127]. The non-protected quinic acid can also be used in the esterification
with suitably protected hydroxycinnamoyl derivative, which results in the formation of all
mono- substituted HCQAs with moieties at 1-, 3-, 4- and 5- positions [128]. The synthesis
of 5-FQA can be obtained from quinic acid ester with malonate and vanillin without any
protected hydroxyl group via Knoevenagel condensation reaction when the (E)-double
bond is formed (the total yield of 19%) [129]. Independently of the synthesis method, the
final crystalline HCQAs can be purified by recrystallization or by a complex procedure
(extraction, concentration and chromatographic purification followed by recrystallization)
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for the improved purity of the final compound [126,127,129]. All the above methods are
commonly used in manufacturing, and they are considered cost-effective as the solvents
can be recovered by distillation and reused.
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Table 5. The highest yields of other HCQAs obtained by synthetic chemistry methods.

HCQA Synthesis Method Total Yield, % Ref.

5-CQA Esterification 65 [127]
5-CQA Esterification 35 [130]

1-CQA
3-CQA
4-CQA

Esterification
41
60
36

[126]

5-FQA Condensation 19 [129]

3-FQA
4-FQA
5-FQA

Esterification
32.59
14.47
45.10

[131]

1-p-CoQA
3-p-CoQA
4-p-CoQA
5-p-CoQA

Esterification

34.47
14.64
14.64

26

[132]

5-SQA Esterification 15 [133]
3,4-diCQA Esterification n.d. * [134]

3,4,5-triCQA Esterification ~14 [135]
1,3,5-triCQA Esterification 11.71 [136]

3,5-diCQA
3,5-diFQA Condensation 20.46

21.66 [137]

* n.d.—no data-not enough data presented.

There are positive and negative aspects of condensation and esterification meth-
ods. Higher total yields can be achieved with the esterification method compared to
the condensation method. Irrespective of method, the synthesis of di- or tri-HCQAs
is more complex than that of mono-HCQAs. Esterification reaction requires the pro-
tection/deprotection of active hydroxyl groups because the HCQAs molecules are sen-
sitive to basic and strong acidic or hydrogenative conditions due to the double bond
reduction, transesterification or isomerization reactions as well as possible cleavage reac-
tions [129,131,132]. Additionally, esterification may require low or ultralow temperature,
solvent system CH2Cl2/pyridine/DMAP ratio optimization, and long acidic hydrolysis
time for the deprotection reaction [126,127,131,132,136], which could cause the decreased
yields of HCQAs due to the side reactions. In contrast, the condensation reaction by Kno-
evenagel involves benzyl aldehydes use of which does not require any protection of reactive
hydroxyl groups [137]. 1-HCQAs and di- or tri- substituted HCQAs are more difficult to
obtain by both condensation and esterification methods due to increased steric hindrance.

The prices of the major chemical substances for both synthesis methods are presented
in Table 6. The Knoevenagel condensation reaction requires benzyl aldehydes, which are
currently commercially produced from naphtha. Hydroxycinnamic acids for the esterifi-
cation reaction are expensive as they are produced mainly by chemical synthesis. Even
biotechnological production of vanillin, syringaldehyde or extraction of hydroxycinnamic
acids from plant biomass could not reduce the high synthesis costs of HCQAs.

Table 6. The average prices for the chemical substances and catalysts required for the HCQAs
synthesis (Prices are listed from [138].

Compound (Purity 95–99%) Average Price for 1 L or 1 kg, USD $

Piperidine 80–360
DMAP 60–70

Pyridine 40–150
p-Hydroxybenzaldehyde 50–120
Protocatechuic aldehyde 150–200

Vanillin 100–200
Syringaldehyde 750–1800
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Table 6. Cont.

Compound (Purity 95–99%) Average Price for 1 L or 1 kg, USD $

p-Coumaric acid 940–1500
Vanillic acid 339–512
Syringic acid 586–1100
Caffeic acid 595–633
Quinic acid 8–2920 *

* Depending on the total amount purchased.

4. Biosynthesis of HCQAs in Non-Modified and Modified Micro-Organisms
4.1. Non-Modified Micro-Organisms

Non-modified micro-organisms, such as bacteria and fungi are able to produce 5-CQA
from organic carbon (Table 7). The detectable amounts of 5-CQA have been observed
with bacteria such as Brevibacillus borstelensis, Bacillus amyloliquefaciens, Bacillus badius,
Sphingomonas yabuuchiae, Enterobacter tabaci, Paenibacillus phoenicis and fungi including
Colletotrichum acutatum, Lodderomyces elongisporus, Sphingomonas yabuuchiae, Enterobacter
tabaci, Paenibacillus phoenicis [139], Sordariomycetes sp. [140], Penicillium flavigenum, Screlotium
rolfsii [141,142]. L. elongisporus sp. S216 and P. flavigenum (CML2965) exhibit the 5-CQA titers
that could be of interest for industrial scale production [139,141] (Table 7). The pathway
of 5-CQA biosynthesis in micro-organisms is considered to be similar to plants [139].
Interestingly, an ortho-adipate pathway enabling production of 1-CQA and 3,4,5-triCQA
may be functional in Streptomyces albogriseolus KF977548, which has been isolated from
decaying wood [143].

Table 7. Comparison of HCQAs production cases in non-modified micro-organisms.

Microorganism Substrate Product Product Concen-
tration/Titer

Fermentation
Time (Days) Ref.

Streptomyces albogriseolus
KF977548 (strain AOB)

Coniferyl alcohol or
caffeic acid

1-CQA or
3,4,5-triCQA n.d. n.d. [144]

Penicillium flavigenum
(CML2965) PD broth

5-CQA

0.38 g/L extract 7 [141]

Screlotium rolfsii Czapek Yeast extract
Broth (CYB) n.d. 5 [142]

Lodderomyces elongisporus S216 Modified PD medium 23.39 mg /L 5 [139]

Sphingomonas yabuuchiae N21 Modified Beef Extract
(BEA) medium 13.04 mg/ L 1 [139]

Bacillus badius Modified Beef Extract
(BEA) medium 5.43 mg/ L 1 [139]

n.d.—no data presented.

Micro-organisms producing 5-CQA can be used for the valorization of agricultural
waste. For example, B. amyloliquefaciens B17 has been applied for the successful fermentation
of mango peels in liquid state fermentation at 37 ◦C [145]. Further research is required to
screen and develop micro-organisms for the valorization of different types of waste.

4.2. Modified Micro-Organisms

The HCQAs biosynthesis pathways have been developed in E. coli, Saccharomyces
cerevisiae, and Pichia pastoris. For the production of 5-CQA from caffeic acid, the E. coli
has been engineered by introducing hydroxycinnamoyl-CoA quinate transferase gene
HQT from Nicotiana tabacum and 4-coumarate CoA:ligase gene 4CL, which mediates the
formation of coenzyme A thioester with hydroxycinnamic acids and deletion of aroD gene,
which is required for the conversion of 3-dehydroquinate into 3-dehydroshikimate [145].
This recombinant strain B-101 was able to accumulate 3-dehydroquinate and caffeoyl-
3-dehydroquinate, but it was not able to produce 5-CQA in higher concentrations than
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16 mg/L. When gene ydiB encoding shikimate/quinate dehydrogenase was overexpressed
followed by the vector and cell concentration optimization, then the production up to
450 mg/L in 24 h was achieved from quinate and additionally supplied caffeic acid [145].

Recently, the synthesis of 5-CQA and p-coumaroyl shikimate by expressing shikimate
gene modules in E. coli has been demonstrated. The overexpression of five genes of the
shikimate pathway (ppsA, tktA, aroGf, aroB, ydiB) and heterologous genes TAL, HpaBC,
4CL, HST, and HQT resulted in the biosynthesis of 109.7 mg/L 5-CQA from glucose [146]
(Figure 6).

The polyculture technique has been applied for 5-CQA production using engineered
E. coli. In the two culture technique, E. coli B-102 was inoculated in a filtrated culture
mixture of modified E. coli strain B-TP-CA2, which produced caffeic acid from glucose [147].
After 45 h the highest concentration (78 mg/L) of 5-CQA was obtained. Similarly, de novo
5-CQA production using the polyculture technique with three recombinant E. coli strains
containing biosynthetic modules of caffeic acid, quinic acid and 5-CQA, reached 250 µM
(or ~88 mg/L) concentration after 18 h of incubation [148]. In both cases, a rather low
yield of targeted compound could be acceptable due to the usage of a low-cost primary
compound (glucose).

Yeast has also been engineered for the synthesis of HCQAs. The expression of tobacco
4CL and globe artichoke HCT genes in yeast Saccharomyces cerevisiae resulted in the forma-
tion of N-(E)-p-coumaroyl-3-hydroxyanthranilic acid as a primary product, which is similar
to avenanthramides [149]. Subsequently, a successful biosynthesis of 5-CQA and 5-pCoQA
in yeast was achieved by expressing a BAHD enzyme NtHQT from tobacco Nicotiana
tabacum and 4CL5 [150]. Recently, it has been shown that GDSL lipase-like ICS enzyme
from Ipomoea batatas can be used for the efficient conversion of 5-CQA into 3,5-diCQA in
P. pastoris [46].
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respectively. Dashed arrows represent the complex processes. The blue and red names of genes
correspond to inserted and overexpressed genes, respectively. Abbreviations: AroH - phospho-2-
dehydro-3-deoxyheptonate aldolase; TyrR—transcriptional regulatory protein; AroF - phospho-
2-dehydro-3-deoxyheptonate aldolase; AroG—phospho-2-dehydro-3-deoxyheptonate aldolase;
AroD—5-dehydroquinate dehydratase; AroB—dehydroquinate synthase; PAL2—phenylalanine am-
monia lyase from Arabidopsis thaliana; C3′H—cytochrome P450 98A3 from A. thaliana; CPR1 and
AtCPR2—P450 reductases from A. thaliana; YdiB—quinate/shikimate dehydrogenase from E. coli;
AtC4H, cinnamate-4-hydroxylase from A. thaliana; 4CL—4-coumarateCoA:ligase from Oryza sativa;
4CL1, 4-coumarate:CoA ligase 1 from A. thaliana; HQT—hydroxycinnamoyl-CoA quinate transferase
from Nicotiana tabacum; HQT2—hydroxycinnamoyl-CoA quinate transferase 2 from Cynara scoly-
mus; ARO3K222L—L-phenylalanine feedback-insensitive DAHP synthase; ARO4K229L—L-tyrosine
feedback-insensitive DAHP synthase; ARO7G141S—L-tyrosine feedback-insensitive chorismate mu-
tase; PYK1D146N—pyruvate kinase 1 mutant with reduced catalytic activity.

Further improvements have been achieved by introducing into S. cerevisiae the de
novo 5-CQA synthesis pathway, including PAL2, C4H, 4CL1, C3′H, CPR1, CPR2, HQT2,
YdiB, CYB5 and implementing the following modifications (Figure 6): (1) unlocking
the shikimate pathway and optimizing carbon distribution by overexpressing the L-
phenylalanine feedback-insensitive DAHP synthase (ARO3K222L), L-tyrosine feedback-
insensitive DAHP synthase (ARO4K229L), pyruvate kinase 1 mutant with reduced catalytic
activity (PYK1D146N) and transketolase (TKL1); (2) optimizing the L-phenylalanine branch
and pathway balancing by overexpressing the l-tyrosine feedback-insensitive chorismate
mutase (ARO7G141S), endogenous prephenate dehydratase (PHA2), NADH kinase (POS5),
and cytochrome b5 (Cyb5); (3) increasing the copy number of 5-CQA pathway genes en-
coding hydroxycinnamoyl-CoA quinate transferase 2 (HQT2) and cytochrome P450 98A3
(C3′H) [151]. The engineered S. cerevisiae strain produced 5-CQA to 234.8 ± 11.1 mg/L in
shake flask culture and 806.8 ± 1.7 mg/L in fed-batch fermentation [151].
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5. Conclusions

HCQAs are becoming very important compounds in cosmetics, medicine and food
supplements production due to their outstanding properties. Therefore, the need of HC-
QAs, especially 5-CQA, is constantly increasing. The main strategies to obtain these com-
pounds are based on their extraction from plant biomass and chemical synthesis. Recently,
biosynthesis using modified or non-modified micro-organisms has attracted significant
research efforts.

Several conventional and intensified methods have been developed for extraction of
HCQAs from plants or marine biomass. Amongst the most promising are solid–liquid
extraction techniques (SLE), pressurized liquid (PLE), supercritical fluid (SFE), enzymatic
extraction (EAE), even if SLE remains dominant. The successful application of other inten-
sified methods, such as microwave-assisted simultaneous distillation and dual extraction
(MSDDE), multi-frequency multimode modulated vibration (acoustic probe) technique
(MMM) or simultaneous SLE extraction and solid-state fermentation (SLE-SSF), was demon-
strated with some evident success for the 5-CQA. Their suitability for other HCQAs remains
to be explored. Despite that, intensified methods can result in better yields and can require
less time; however, they are expensive, which limits their industrial application. 5-CQA
extraction has already reached the stage of industrialization. 5-CQA is mainly produced
(>75%) from honeysuckle, eucommia and green coffee bean. For the less abundant HCQAs,
such as SQAs (which is present at extremely low yields in plants), further improvements of
the extraction methodology are required.

Chemical synthesis enables achievement of moderate yields of mono-, di- or tri-
HCQAs. It requires large quantities of hydroxycinnamic acid and is based on use of
condensation or esterification methods. Esterification enables achievement of a better yield,
but the high costs of reagents limits use of this method. Overall, the chemical synthesis of
HCQAs is expensive and environmentally unfriendly because the primary compounds of
the synthesis are obtained mainly from naphtha and its refinery products. Moreover, the
use of halogenized organic compounds generates toxic waste. Despite this, this method
could be preferable for the production of naturally scarce SQAs or to synthesize HCQAs
that are not obtainable by other methods.

Biotechnological production of HCQAs is considered a most promising approach that
enables consolidation of green chemistry and circular economy objectives. Despite its early
stage, several non-modified micro-organisms have already been shown to produce the
CQAs to yields that are comparable to those obtained by extraction from plant biomass.
Significantly, the engineered bacteria Escherichia coli or yeast Saccharomyces cerevisiae have
been developed to synthesize a greater variety of HCQAs, such as 5-CQA, 5-FQA, 5-p-CoQA
from simple carbon sources. The 5-CQA titer of approximately 0.8 g/l has been achieved
in fed-batch fermentation using Saccharomyces cerevisiae. Although the biotechnological
production of HCQAs requires a significant advancement to make it suitable for industrial
application, the utilization of micro-organisms shows great promise in the recycling and
recovery of HCQAs from organic waste.

Author Contributions: Conceptualization, E.V. and N.M.; original draft preparation, E.V.; review
and editing, E.V. and N.M.; funding acquisition and project administration, N.M. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the European Regional Development Fund (project no.
01.2.2-LMT-K-718-02-0023) under grant agreement with the Research Council of Lithuania (LMTLT).

Acknowledgments: The authors are indebted to the Research Council of Lithuania (LMTLT). This
research was funded by the European Regional Development Fund (project no. 01.2.2-LMT-K-718-02-
0023) under grant agreement with the LMTLT.

Conflicts of Interest: The authors declare no conflict of interest. The funding source had no role in the
study’s design; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.



Antioxidants 2022, 11, 2427 16 of 21

References
1. Silva, N.; Mazzafera, P.; Cesarino, I. Should I stay or should I go: Are chlorogenic acids mobilized towards lignin biosynthesis?

Phytochemistry 2019, 166, 112063. [CrossRef] [PubMed]
2. Clifford, M.; Jaganath, I.; Ludwig, I.; Crozier, A. Chlorogenic acids and the acyl-quinic acids: Discovery, biosynthesis, bioavailabil-

ity and bioactivity. Nat. Prod. Rep. 2017, 34, 1391–1421. [CrossRef] [PubMed]
3. Abrankó, L.; Clifford, M. An Unambiguous Nomenclature for the Acyl-Quinic Acids Commonly Known as Chlorogenic Acids. J.

Agric. Food Chem. 2017, 65, 3602–3608. [CrossRef] [PubMed]
4. DataIntelo. Global Chlorogenic Acid Market Report, History and Forecast 2014–2025, Breakdown Data by Manufacturers, Key

Regions, Types and Application. Available online: https://dataintelo.com/report/chlorogenic-acid-market (accessed on 15
March 2022).

5. Sato, Y.; Itagaki, S.; Kurokawa, T.; Ogura, J.; Kobayashi, M.; Hirano, T.; Sugawara, M.; Iseki, K. In vitro and in vivo antioxidant
properties of chlorogenic acid and caffeic acid. Int. J. Pharm. 2011, 403, 136–138. [CrossRef] [PubMed]

6. Gouthamchandra, K.; Sudeep, H.; Venkatesh, B.; Shyam Prasad, K. Chlorogenic acid complex (CGA7), standardized extract from
green coffee beans exerts anticancer effects against cultured human colon cancer HCT-116 cells. Food Sci. Hum. Wellness 2017, 6,
147–153. [CrossRef]

7. Cao, X.; Islam, M.N.; Duan, Z.; Pan, X.; Xu, W.; Wei, X.; Zhong, S. Chlorogenic acid osmosis of snakehead fish: A novel approach
to maintain quality and suppress deterioration during storage. Int. J. Food Prop. 2020, 23, 387–399. [CrossRef]

8. Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; FangFang, X.; Modarresi-
Ghazani, F.; et al. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother. 2018,
97, 67–74. [CrossRef]

9. Cho, A.-S.; Jeon, S.-M.; Kim, M.-J.; Yeo, J.; Seo, K.-I.; Choi, M.-S.; Lee, M.-K. Chlorogenic acid exhibits anti-obesity property and
improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem. Toxicol. 2010, 48, 937–943. [CrossRef]

10. Ali, F.; Hassan, N.; Abdrabou, R. Hepatoprotective and antiproliferative activity of moringinine, chlorogenic acid and quercetin.
Int. J. Med. Sci. 2016, 4, 1147–1153. [CrossRef]

11. Li, Y.; Yang, D.; Jia, Y.; He, L.; Li, J.; Yu, C.; Liao, C.; Yu, Z.; Zhang, C. Research Note: Anti-inflammatory effects and antiviral
activities of baicalein and chlorogenic acid against infectious bursal disease virus in embryonic eggs. Poult. Sci. 2021, 100, 100987.
[CrossRef]

12. Hakkou, Z.; Maciuk, A.; Leblais, V.; Bouanani, N.; Mekhfi, H.; Bnouham, M.; Aziz, M.; Ziyyat, A.; Rauf, A.; Hadda, T.B.; et al.
Antihypertensive and vasodilator effects of methanolic extract of Inula viscosa: Biological evaluation and POM analysis of
cynarin, chlorogenic acid as potential hypertensive. Biomed. Pharmacother. 2017, 93, 62–69. [CrossRef] [PubMed]

13. Heitman, E.; Ingram, D. Cognitive and neuroprotective effects of chlorogenic acid. Nutr. Neurosci. 2017, 20, 32–39. [CrossRef]
[PubMed]

14. Narita, Y.; Inouye, K. Inhibitory effects of chlorogenic acids from green coffee beans and cinnamate derivatives on the activity of
porcine pancreas α-amylase isozyme I. Food Chem. 2011, 127, 1532–1539. [CrossRef]

15. Narita, Y.; Inouye, K. Kinetic analysis and mechanism on the inhibition of chlorogenic acid and its components against porcine
pancreas α-amylase isozymes I and II. J. Agric. Food Chem. 2009, 57, 9218–9225. [CrossRef] [PubMed]

16. Bajko, E.; Kalinowska, M.; Borowski, P.; Siergiejczyk, L.; Lewandowski, W. 5-O-Caffeoylquinic acid: A spectroscopic study and
biological screening for antimicrobial activity. LWT Food Sci. Technol. 2016, 65, 471–479. [CrossRef]

17. Buron, N.; Coton, M.; Desmarais, C.; Ledauphin, J.; Guichard, H.; Barillier, D.; Coton, E. Screening of representative cider yeasts
and bacteria for volatile phenol-production ability. Food Microbiol. 2011, 28, 1243–1251. [CrossRef]

18. Whiting, G.C.; Carr, J.G. Chlorogenic Acid Metabolism in Cider Fermentation. Nature 1957, 180, 1479. [CrossRef]
19. Torres-Mancera, M.T.; Baqueiro-Peña, I.; Figueroa-Montero, A.; Rodríguez-Serrano, G.; González-Zamora, E.; Favela-Torres, E.;

Saucedo-Castañeda, G. Biotransformation and improved enzymatic extraction of chlorogenic acid from coffee pulp by filamentous
fungi. Biotechnol. Prog. 2013, 29, 337–345. [CrossRef]

20. Gauthier, L.; Bonnin-Verdal, M.-N.; Marchegay, G.; Pinson-Gadais, L.; Ducos, C.; Richard-Forget, F.; Atanasova-Penichon, V.
Fungal biotransformation of chlorogenic and caffeic acids by Fusarium graminearum: New insights in the contribution of phenolic
acids to resistance to deoxynivalenol accumulation in cereals. Int. J. Food Microbiol. 2016, 221, 61–68. [CrossRef]
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