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Abstract: This 56-day study aimed to evaluate the effects of histidine levels on intestinal antioxidant
capacity and endoplasmic-reticulum stress (ERS) in largemouth bass (Micropterus salmoides). The
initial weights of the largemouth bass were (12.33 ± 0.01) g. They were fed six graded levels of
histidine: 0.71% (deficient group), 0.89%, 1.08%, 1.26%, 1.48%, and 1.67%. The results showed that
histidine deficiency significantly suppressed the intestinal antioxidant enzyme activities, including
SOD, CAT, GPx, and intestinal level of GSH, which was supported by significantly higher levels of
intestinal MDA. Moreover, histidine deficiency significantly lowered the mRNA level of nrf2 and
upregulated the mRNA level of keap1, which further lowered the mRNA levels of the downstream
genes sod, cat, and gpx. Additionally, histidine-deficiency-induced intestinal ERS, which was charac-
terized by activating the PEPK-signalling pathway and IRE1-signalling pathway, including increased
core gene expression of pepk, grp78, eif2α, atf4, chopα, ire1, xbp1, traf2, ask1, and jnk1. Dietary histidine
deficiency also induced apoptosis and necroptosis in the intestine by upregulating the expressions of
proapoptotic genes, including caspase 3, caspase 8, caspase 9, and bax, and necroptosis-related genes,
including mlkl and ripk3, while also lowering the mRNA level of the antiapoptotic gene bcl-2. Fur-
thermore, histidine deficiency activated the NF-κB-signalling pathway to induce an inflammatory
response, improving the mRNA levels of the proinflammatory factors tnf-α, hepcidin 1, cox2, cd80,
and cd83 and lowering the mRNA levels of the anti-inflammatory factors tgf-β1 and ikbα. Similarly,
dietary histidine deficiency significantly lowered the intestinal levels of the anti-inflammatory factors
TGF-β and IL-10 and upregulated the intestinal levels of the proinflammatory factor TNF-α, showing
a trend similar to the gene expression of inflammatory factors. However, dietary histidine deficiency
inhibited only the level of C3, and no significant effects were observed for IgM, IgG, HSP70, or IFN-γ.
Based on the MDA and T-SOD results, the appropriate dietary histidine requirements of juvenile
largemouth bass were 1.32% of the diet (2.81% dietary protein) and 1.47% of the diet (3.13% dietary
protein), respectively, as determined by quadratic regression analysis.

Keywords: histidine deficiency; juvenile largemouth bass (Micropterus salmoides); antioxidant
capacity; endoplasmic-reticulum stress; inflammation

1. Introduction

The intestine, as one of the most important tissues in fish, plays a role in the digestion
and absorption of nutrients; hence, intestinal health is a prerequisite for healthy animal
growth [1,2]. The intestinal tract is also the largest mucosal immune organ and the most
vulnerable immune barrier in fish [3]. However, fish intestinal walls are thin and easily
damaged [2]. Additionally, the intestinal polyunsaturated fatty acid content in fish is high
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and easily damaged by oxidation [1–3]. In addition, the intestinal tract is one of the parts of
the body most closely related to the external environment and is prone to environmental
stress. Therefore, it is important to construct nutritional programs to maintain the intestinal
health of fish. Numerous studies have shown that healthy intestinal development depends
on the composition of the feed formulation, including elements such as amino acids [4,5],
tributyrin [6], and vitamins [7,8]. These studies suggested that balanced nutrition may have
beneficial effects on the intestinal health of fish.

Histidine, an essential amino acid for fish, has important functions in improving fish
growth [9]. According to research reports, histidine acts as an antioxidant and plays an
important role in scavenging oxidative free radicals in fish and mammals [10,11]. Histidine
has other significant antioxidant activities in addition to scavenging free radicals, such
as binding divalent metal ions and resisting glycation [10,12]. In grass carp, dietary his-
tidine has a positive effect on lowering lipid peroxidation and protein oxidation in the
intestines and gills [4,13]. In addition, histidine has important functions in inhibiting lipid
peroxidation in the sarcoplasmic reticulum of fish muscle [14]. The antioxidant functions
of histidine are mainly achieved through the nuclear factor erythroid 2-related factor 2
(Nrf2) signalling pathway [13,15]. Furthermore, the endoplasmic reticulum (ER), as one
of the most important organelles in eukaryotic cells, is closely related to cell homeostasis,
and ER homeostasis is maintained through unfolded protein reactions involving three
signalling pathways: the PEPK-signalling pathway, IRE-1-signalling pathway, and ATF6-
signalling pathway [16]. In aquatic animals, numerous studies have reported that adverse
factors could induce endoplasmic-reticulum stress (ERS) by affecting the mRNA levels of
core genes in the IRE1-signalling pathway, PERK-signalling pathway, and ATF6-signalling
pathway, such as high-fat induction in blunt snout bream (Megalobrama amblycephala) [17],
hydrogen peroxide exposure and ammonia stress in common carp (Cyprinus carpio) [18,19],
waterborne cadmium exposure in Gibel carp (Carassius gibelio) [20], and nitrite induction in
grass carp (Ctenopharyngodon idella) [21]. When ERS occurs or is persistent and exceeds the
range of cellular self-regulation, it leads to cell apoptosis and death and induces disease [22].
Furthermore, ERS might activate the NF-κB-signalling pathway and regulate downstream
inflammatory factors to induce an inflammatory response [23]. Hence, reducing ERS and
oxidative stress is crucial to improving animal health and immunity.

The largemouth bass (Micropterus salmoides) is native to freshwater rivers and large
lakes in America, especially the Great Lakes in the United States. These fish have been
widely raised around the world because of their tender meat and delicious taste that is
loved by consumers. Largemouth bass sell well on the international market and are known
as freshwater grouper. However, due to the problems of breeding density and nutrient
level, largemouth bass often suffer from physiological problems such as metabolic disor-
ders and intestinal inflammation, which could reduce their growth and induce diseases,
resulting in great economic losses. In our previous study, the appropriate dietary histidine
level was 1.26% of their diet [24], which showed the best growth performance. However,
how histidine, an important antioxidant, regulates the intestinal health needs to be inves-
tigated. Hence, this study is to assess the functions of histidine in the intestinal health of
largemouth bass.

2. Materials and Methods
2.1. Ethical Statement

This experiment was based strictly on the requirements of the Institutional Animal
Care and Ethics Committee of Nanjing Agricultural University, Nanjing, China [Permit
number: SYXK (Su) 2011-0036].

2.2. Experimental Diet

The experimental formulation referred to our previous study [24]. A combination of
crystalline amino acids, excluding histidine, was supplemented to simulate the 47%-whole-
body-amino-acid pattern of largemouth bass [24]. The additional level of histidine was
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designed with an arithmetic difference of 0.2%. The compositional analysis of histidine
levels in feed were 0.71%, 0.89%, 1.08%, 1.26%, 1.48%, and 1.67%. The basic formula levels
are shown in Table 1. All ingredients were fully crushed to completely pass through an
80 µm mesh screen, and then the feed was prepared according to the experimental formulas
and thoroughly mixed with water and oil. Lastly, the mixed ingredients were made into
1 mm expanded pellets with an aquatic feed puffing machine (Jiangsu Muyang Holdings
Co., Ltd., Yangzhou, China). The feed was dried and stored for breeding experiments.

Table 1. Ingredients and proximate compositions of experimental diets (% dry matter) 1.

Ingredient Diet 1 (%) Diet 2 (%) Diet 3 (%) Diet 4 (%) Diet 5 (%) Diet 6 (%)

Fish meal 2 30 30 30 30 30 30
Rapeseed meal 2 8 8 8 8 8 8
Soybean meal 2 10 10 10 10 10 10
Wheat meal 2 16 16 16 16 16 16

Fish oil 5 5 5 5 5 5
Sleeve-fish ointment 2 2 2 2 2 2
Amino acid mixes 3 13.21 13.21 13.21 13.21 13.21 13.21

Choline chloride 0.1 0.1 0.1 0.1 0.1 0.1
Vitamin premix 4 1 1 1 1 1 1
Mineral premix 4 1 1 1 1 1 1

Monocalcium phosphate 2.5 2.5 2.5 2.5 2.5 2.5
Microcrystalline cellulose 3.18 3.18 3.18 3.18 3.18 3.18

Rice bran 7 7 7 7 7 7
Ethoxylquinine 0.01 0.01 0.01 0.01 0.01 0.01

Glycine 1 0.8 0.6 0.4 0.2 0
L-histidine 0 0.2 0.4 0.6 0.8 1

Compositional analysis (dry matter)
Crude protein (%) 46.93 47.01 47.11 46.83 46.91 47.03

Crude lipid (%) 11.02 10.98 10.94 11.01 10.97 10.99
Energy (MJ/kg) 18.87 18.85 18.83 18.85 18.91 18.88

Histidine levels (%) 0.71 0.89 1.08 1.26 1.48 1.67

1 The experimental formulation referred to our previous study [24]; 2 Fish meal, rapeseed meal, soybean meal,
wheat meal obtained from Wuxi Tongwei feedstuffs Co., Ltd. (Wuxi, China), crude protein 65.6%, 39.2%, 39.2%,
and 13.1%, respectively; crude lipid 9.5%, 6.1%, 4.3%, and 4.0%, respectively; 3 Amino acid mixes: the amino acid
content was balanced according to the amino acid composition of 47% protein level of the whole fish. Arginine,
0.87%; isoleucine, 0.74%; leucine, 1.21%; lysine, 1.40%; methionine, 0.37%; phenylalanine, 0.61%; threonine, 0.74%;
valine, 0.74%; tryptophan, 0.14%; aspartic acid, 1.00%; serine, 0.71%; glycine, 1.16%; alanine, 0.52%; glutamic acid,
2.02%; proline, 0.98%. All amino acids obtained from Feeder Co., Ltd. (Shanghai, China); 4 Vitamins premix and
mineral mix were purchased by HANOVE Biotechnology Co., Ltd. (Wuxi, China).

2.3. Breeding Experiment

Juvenile largemouth bass ((12.33 ± 0.01) g) were randomly divided into 18 experimen-
tal cages (3 replicates for each treatment group and 20 fish in each experimental cage). The
fish were fed two times daily (at 7:00 and 17:00) with the appropriate DHL feed according
to the standard of apparent satiety. The indices of the aquaculture water during the experi-
ment were (28 ± 2) ◦C (water temperature), 7–7.5 (pH), >6.0 mg/L (dissolved oxygen), and
<0.01 mg/L (total ammonia nitrogen).

2.4. Sample Collection

At the end of 56 days of feeding, the fish were starved for 24 h. After anesthetization
with MS-222 (200 mg/L), three fish from each cage were dissected to obtain intestine
samples, and a total of 9 samples in each experimental group were used for antioxidant
indices, immune cytokines, and qRT-PCR analysis.. These samples were stored at −80 ◦C
for subsequent analysis.

2.5. Chemical Analysis, RNA Extraction, and Quantitative Real-Time PCR

Measurements of the moisture, crude protein, ash, and crude lipid of the raw materials
and diets were conducted using the established methods of AOAC [25]. After pretreat-
ment, all samples were analyzed using an Agilent-1100 amino acid assay system (Agilent
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Technologies Co., Ltd., Santa Clara, CA, USA). Tryptophan hydrolysis was carried out
in 5 N NaOH at 110 ◦C for 20 h, which referred to our previous study [24]. The gross
energy of diets were analyzed by combustion using a IKA C6000 oxygen bomb calorimeter
(IKA WORKS GUANGZHOU, Guangzhou, China). The contents of glutathione (GSH) and
malondialdehyde (MDA), as well as the activities of catalase (CAT), glutathione peroxidase
(GPx), total superoxide dismutase (T-SOD), and total antioxidant capacity (T-AOC), were an-
alyzed with commercial kits (Nanjing Jiancheng Institutes, Nanjing, China). Enzyme-linked
immunosorbent assays (ELISAs) were used to evaluate the contents of intestinal tumour
necrosis factor-α (TNF-α), interleukin 10 (IL-10), transforming growth factor-β (TGF-β),
heat stress protein 70 (HSP70), interleukin 1β (IL-1β), component 3 (C3), immunoglobulin
M (IgM), interleukin 8 (IL-8), and interferon-γ (IFN-γ) by the double-antibody sandwich
method (with a test wavelength of 450 nm) according to our previous study [6].

The gene mRNA levels were analysed by qRT-PCR. The main processes included
extracting tissue RNA, checking the quantity and quality of the RNA, and proceeding
with qRT–PCR analysis on a 7500 Real Time PCR System (Applied Biosystems, Foster city,
CA, USA), which was described in our previous study [26]. The designed primers for the
qRT-PCR analysis are shown in Table 2. The internal reference gene is glyceraldehyde-
3-phosphate dehydrogenase (gapdh), and the mRNA levels were calculated based on the
standard curve and quantified using a relative standard curve method.

Table 2. Primer sequences for RT-qPCR.

Gene Name Forward Sequence Reverse Sequence Amplification
Efficiency (%) Source

nrf2 CCACACGTGACTCTGATTTCTC TCCTCCATGACCTTGAAGCAT 102.5

[27]keap1 GCACCTAACCGTGGAACTCAA CCAGTTTTAGCCAGTCATTGTTCC 99.8
cat TGGTGTTCACGGATGAGATGG GGAGAAGCGGACAGCAATAGG 98.6
sod CCACCAGAGGTCTCACAGCA CCACTGAACCGAAGAAGGACT 101.2
gpx CCCTGCAATCAGTTTGGACA TTGGTTCAAAGCCATTCCCT 102.5 [28]

nf-κb CCACTCAGGTGTTGGAGCTT TCCAGAGCACGACACACTTC 100.8 XP_027136364.1
tnf-α CTTCGTCTACAGCCAGGCATCG TTTGGCACACCGACCTCACC 99.9

[29]
il-8 CGTTGAACAGACTGGGAGAGATG AGTGGGATGGCTTCATTATCTTGT 103.6

il-1β CGTGACTGACAGCAAAAAGAGG GATGCCCAGAGCCACAGTTC 103.4
il-10 CGGCACAGAAATCCCAGAGC CAGCAGGCTCACAAAATAAACATCT 101.1

tgf-β1 GCTCAAAGAGAGCGAGGATG TCCTCTACCATTCGCAATCC 98.5
hepcidin1 CATTCACCGGGGTGCAA CCTGATGTGATTTGGCATCATC 99.4 [28]

cox2 CACTGGGTCGTGTCACTTT TGATTCTCCTCCTTGCTGT 101.3

[30]cd80 TCTTCATCGTGGTAATAATAGG TGTGGTGTCTTCAGGGTCT 98.9
cd83 CACTGTTGTGCCTTGCTG GGAGCCTCTTTGACCTTGT 99.8
ikbα CCCCAACTACAGTGGACAAA AAGGTCAAGGAGGCAACG 103.1

caspase 3 GAGGCGATGGACAAGAGTCA CACAGACGAATGAAGCGTGG 99.8 XM_038713063.1
bcl-xl CATCCTCCTTGGCTCTGG GGGTCTGTTTGCCTTTGG 103.5 [31]

caspase 8 GAGACAGACAGCAGACAACCA TTCCATTTCAGCAAACACATC 101.8
[28]caspase 9 CTGGAATGCCTTCAGGAGACGGG GGGAGGGGCAAGACAACAGGGTG 99.7

bcl-2 CGCCATCCACAGAGTCCT CCGGAACAGTTCGTCTATCACC 101.1

[30]
bax ACTTTGGATTACCTGCGGGA TGCCAGAAATCAGGAGCAGA 101.9
mlkl CCCAAGCCTCAGTTCCTC TTTCTTCGGTCTGGTGCA 102.1

tnrf1a GCATACCCAGAATGTGAGA CATAACCGCCACGACTAA 99.3
ripk3 GTTTAGGGCAGGAGGTGA TTCTGAGTTTCCCAATGTTT 99.7
eif2α CCTCGTTTGTCCGTCTGTATC GCTGACTCTGTCGGCCTTG 101.2 [28]traf2 CTGCCAAACCTTAATCCTT ACAGACTTACAGCCCACTTC 99.5
xbp1 ACACCCTCGACACGAAAGA AGAATGCCCAGTAGCAAATC 98.9

[30]grp78 TTGCCGATGACGACGAAA CAATCAGACGCTCACCCT 102.1
chopα GATGAGCAGCCTAAGCCACG AACAGGTCAGCCAAGAAGTCG 101.5
perk CCACCGCAGAGCAGATGTAA TGCTGGAGTCATCCTACCGA 102.7

[32]ask1 CAACTACGCCTTCATCCCGT GGTCCCAACAGCATCTCGAA 99.7
ire1 CTGCCAGATCCGCATACACT GGTGTCCACTCTTGAAGGCA 98.5
atf6 GACGCCCCGCATAAGAGTAA GCAGACTTGAGGAGAGCTGG 101.6
jnk1 TGCACTACCTGAGCCACTTG TGTGCTTCCTGGCTGATGTT 100.3 XM_038735152.1
atf4 GCGGACATTTGTGTTGCACT CTGTCCTGCCAGGTGATGAA 99.2 XM_038712790.1

gapdh ACTGTCACTCCTCCATCTT CACGGTTGCTGTATCCAA AZA04761.1
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2.6. Statistical Analysis

The data were evaluated by one-way analysis of variance (ANOVA) with Tukey’s mul-
tiple comparisons test. The results are presented as the means with the standard deviation.
Results with p-values less than 0.05 indicate that the results are significantly different.

3. Results
3.1. Intestinal Antioxidant Status

Compared with the 0.71% dietary histidine level (DHL), the (1.08–1.67)% DHLs sig-
nificantly lowered the intestinal MDA levels and upregulated the intestinal antioxidant
enzyme activities of GPx, T-SOD, and CAT, and the (0.89–1.67)% DHLs significantly upreg-
ulated the intestinal GSH levels (p < 0.05) (Figure 1A,B). However, no significant changes
in T-AOC were found with different DHLs (p > 0.05) (Figure 1B). Based on the MDA and
T-SOD results, the dietary histidine requirements of juvenile largemouth bass were 1.32% of
the diet (2.81% dietary protein) and 1.47% of the diet (3.13% dietary protein), as determined
by quadratic regression analysis (Figure 2).Antioxidants 2022, 11, x FOR PEER REVIEW 6 of 18 
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3.2. Intestinal Immune Cytokines

Compared with the 0.71% DHL, significantly higher levels of intestinal C3 were
observed at the (1.08–1.67)% DHLs (p < 0.05) (Figure 3A). DHLs of (1.08–1.48)% significantly
upregulated the intestinal anti-inflammatory cytokine levels of TGF-β and IL-10, and the
1.08%–1.67% DHLs significantly lowered the intestinal proinflammatory cytokine level
of TNF-α (p < 0.05) (Figure 3B). However, DHL had no significant effect on the intestinal
levels of the immune cytokines IL-1β, IFN-γ, IgM, HSP70, and IL-8 (p > 0.05) (Figure 3A,B).

3.3. The mRNA Levels of the Key Genes in the Nrf2-Signalling Pathway

Compared with the 0.71% DHL, significantly higher mRNA levels of nrf2 were
observed in the (0.89–1.67)% DHL groups (p < 0.05). However, DHLs of (0.89–1.67)%
significantly lowered the mRNA levels of Kelch-like ECH-associated protein 1 (keap1)
(p < 0.05). Furthermore, compared with the control group, the (0.89–1.67)% DHLs also
significantly upregulated the mRNA levels of gpx, cat, and superoxide dismutase (sod)
(p < 0.05) (Figure 4).

3.4. The mRNA Levels of Inflammatory-Related Genes

Compared with the 0.71% DHL, DHLs of (1.08–1.67)% significantly lowered the mRNA
levels of the proinflammatory-related genes nuclear factor kappa B (nf-κb), tnf-α, hepcidin
1, and cd83 (p < 0.05) (Figure 5A,B). However, DHLs of (0.89–1.67)% also lowered the
mRNA levels of the proinflammatory-related genes cyclooxygenase 2 (cox2) and cd80
(p < 0.05) (Figure 5B). Additionally, the (1.08–1.48)% DHLs significantly upregulated the
mRNA levels of the anti-inflammatory-related gene transforming growth factor β1 (tgf-β1)
(p < 0.05), and the (1.08–1.67)% DHLs significantly upregulated the mRNA levels of the
anti-inflammatory-related gene NF-kappa-B inhibitor alpha (ikbα) (p < 0.05) (Figure 5C).
However, no significant changes in il-8, il-1β, or il-10 were observed in fish fed different
DHLs (p > 0.05) (Figure 5A,C).
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3.5. The mRNA Levels of Apoptosis and Necroptosis Genes

Compared with the 0.71% DHL, significantly lower mRNA levels of B-cell leukaemia/
lymphoma 2 (bcl-2), caspase 3, mixed lineage kinase-like (mlkl), caspase 9, and receptor-
interacting protein kinase-3 (ripk3) were observed with the (1.08–1.67)% DHLs (p < 0.05),
and significantly lower mRNA levels of caspase 8 and bcl-2-associated x (bax) were also
observed with the (0.89–1.67)% DHLs (p < 0.05) (Figure 6A,B). However, DHL had no
significant effect on the mRNA levels of B-cell leukaemia/lymphoma-XL (bcl-xl) and
tumour necrosis factor receptor 1A (tnfr1a) (p > 0.05) (Figure 6A,B).
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3.6. The mRNA Levels of ERS-Related Genes

Compared with the 0.71% DHL, significantly higher mRNA levels of c-Jun N-terminal
kinase-1 (jnk1), activating transcription factor 4 (atf4), X-box binding protein 1 (xbp1),
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apoptosis signal-regulating kinase 1 (ask1), protein kinase R (PKR)-like endoplasmic-
reticulum kinase (perk), and TNF receptor-associated factor 2 (traf2) were observed with the
(1.08–1.67)% DHLs (p < 0.05), and significantly higher mRNA levels of eukaryotic transla-
tion initiation factor 2 (eif2α), C/EBP-homologous protein (chopα), and inositol-requiring
enzyme 1 (ire1) were also observed with the (0.89–1.67)% DHLs (p < 0.05) (Figure 7A–C).
Furthermore, the 1.08% DHL significantly upregulated the mRNA level of 78 kDa glucose-
regulated protein (grp78) (p < 0.05) (Figure 7A). However, DHL had no significant effect on
the mRNA levels of activating transcription factor 6 (atf6) (p > 0.05) (Figure 7B).
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4. Discussion
4.1. Histidine Deficiency Inhibited Intestinal Antioxidant Capacity

MDA is marker for oxidative stress, which can reflect the degree of cellular oxida-
tive stress [33]. This study found that dietary histidine deficiency (0.71% DHL) signifi-
cantly upregulated the intestinal MDA level, indicating that dietary histidine deficiency
could cause oxidative damage. Similar reports were also found in the serum of Jian carp
(C. carpio var. Jian) [11], gills of grass carp [13], and muscles of grass carp [15]. The increase
in MDA level caused by histidine deficiency may be related to a decreased ability to scav-
enge superoxide anions and hydroxyl radicals. The antioxidant system plays an important
role in preventing oxidative stress and scavenging superoxide anions and hydroxyl radicals
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in fish [34]. In the present study, histidine deficiency significantly suppressed the intestinal
antioxidant enzyme activities of T-SOD, CAT, and GPx and the intestinal level of GSH. Fur-
thermore, the activity of antioxidant enzymes is regulated by the expression of antioxidant
genes [35]. The Nrf2-signalling pathway regulates antioxidant genes [13,15]. In this study,
dietary histidine deficiency significantly lowered the mRNA level of nrf2 and increased
the mRNA level of keap1, which further lowered the mRNA levels of the downstream
genes sod, cat, and gpx. Thus, dietary histidine supplementation has a positive effect on
these antioxidant indices and the mRNA levels of antioxidant genes, which further lowers
intestinal MDA levels. Jiang et al. [13] reported that dietary histidine deficiency suppressed
the antioxidant index and gene expression in the gills of grass carp. Furthermore, similar re-
sults were reported in the muscles of grass carp [15]. The results here indicated that dietary
histidine deficiency increased MDA levels, which might be partially related to the decrease
of antioxidant enzymes and factors in the intestine. In our previous study, dietary histidine
deficiency resulted in reduced growth performance [24]. In this study, dietary histidine
deficiency also had negative effects on intestinal antioxidant capacity of largemouth bass.
These results might be one of the reasons why histidine deficiency could lower the growth
performance of largemouth bass. Lemire et al. [36] reported that glutamate, a product of
histidine catabolism, was involved in the generation of the antioxidant α-ketoglutarate,
which is also considered a crucial molecule in cellular redox regulation [36–40]. In aquatic
animals, α-ketoglutarate supplementation in the diet enhanced the antioxidant capacity in
grass carp [41,42], hybrid sturgeon (Acipenser schrenckii ♀× A. baerii ♂) [43], Songpu mirror
carp [44], and common carp [45]. Hence, histidine exerts its antioxidant functions through
its metabolite α-ketoglutaric acid. In this study, no significant changes in T-AOC were
found with different DHLs. However, only the highest DHL (1.42%) significantly increased
the activity of T-AOC in juvenile blunt snout bream [46]. In this study, the DHL in the
control group was 0.71%, which was much higher than that in the juvenile blunt snout
bream. Therefore, it may be related to the difference in DHL in this study. Unfortunately,
there are few studies on the relationship between histidine and T-AOC in aquatic animals,
and the related mechanism is still unclear, which needs to be further studied. Furthermore,
the recommended histidine requirement of juvenile largemouth bass was 1.26% of the diet
(2.68% of dietary protein) based on the growth performance in our previous study [24].
However, in this study, the dietary histidine requirements of juvenile largemouth bass were
1.32% of the diet (2.81% dietary protein) and 1.47% of the diet (3.13% dietary protein) based
on the MDA and T-SOD results, which showed that the requirement based on antioxidant
capacity was slightly higher than that based on growth performance, indicating that the
level of histidine in the feed might be necessary to be further increase if a better immune
effect is pursued.

4.2. Histidine Deficiency Suppressed Intestinal Immunocompetence

Immune globulin, the interferon system, and the complement system play an indis-
pensable role in the regulation of immune capacity [47–49]. In this study, dietary histidine
deficiency inhibited the level of C3 compared with that after appropriate histidine supple-
mentation, indicating that dietary histidine deficiency has a negative effect on immune
regulation in largemouth bass. It has been found that the active site of C3 in all animal
species contains a conserved histidine residue, which can activate the thioester bond of
C3 and promote covalent binding of the activated group with the hydroxyl group on the
surface of target cells, leading to the occurrence of the corresponding biochemical reaction.
If this key histidine residue is substituted, complement activation cannot be completed [50].
This might be a possible reason why dietary histidine deficiency decreased the production
of intestinal C3. However, dietary histidine supplementation had no significant effect
on IgM, HSP70, or IFN-γ. Interestingly, only a limited number of studies have reported
the regulation of immune globulin, the interferon system, and the complement system in
animals. Therefore, the specific regulatory mechanism needs to be further studied.
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4.3. Histidine Deficiency Induces Intestinal Endoplasmic-Reticulum Stress Resulting in
Inflammatory Response, Apoptosis, and Necroptosis

The ER is one of the most important organelles in eukaryotic cells and is closely
related to cell homeostasis, and ER homeostasis is maintained through unfolded protein
reactions involving three signalling pathways, including the PEPK-signalling pathway,
IRE-1-signalling pathway, and ATF6-signalling pathway [16]. In this study, dietary histi-
dine deficiency activated the PEPK-signalling pathway and IRE1-signalling pathway with
increased core gene expression of pepk, grp78, eif2α, atf4, chopα, ire1, xbp1, traf2, ask1, and
jnk1, indicating that dietary histidine deficiency induced ERS. In aquatic animals, activa-
tion of the PEPK-signalling pathway and IRE1-signalling pathway resulted in ERS under
heat stress in largemouth bass [32]. Furthermore, numerous studies have reported that
adverse factors can induce ERS by affecting the expression of the core genes in the IRE1-
and PERK-signalling pathways in blunt snout bream [17], common carp [18,19], Gibel
carp [20], and grass carp [21]. However, dietary histidine deficiency had no significant
effect on the mRNA level of ATF6. In contrast to this study, ERS regulation was also
involved in the ATF6-signalling pathway [32,51]. Activation of the IRE1 pathway by B-cell
differentiation did not lead to the upregulation of the CHOP downstream genes in the
ATF6 and PERK pathways [52,53]. Therefore, it was speculated that these three pathways
could be selectively activated. However, the mechanism of selection was unclear.

In this study, dietary histidine deficiency significantly upregulated the mRNA levels
of proapoptotic genes, including caspase 3, bax, caspase 8, caspase 9, and the mRNA levels
of necroptosis genes, including mlkl and ripk3. Furthermore, dietary histidine deficiency
also significantly lowered the mRNA levels of the antiapoptotic gene bcl-2. These results
showed that chronic dietary histidine deficiency could induce apoptosis and necroptosis
of the intestine. Jiang et al. [13] also reported that dietary histidine deficiency induced
apoptosis in the gills of grass carp by improving the mRNA levels of caspase 3, caspase 8,
and caspase 9, which supports the results of this study. When intense or persistent ERS
occurs, CHOP gene expression is activated in the three above-mentioned pathways and
ERS exceeds the range of cellular self-regulation, which leads to cell apoptosis and cell
death [23]. Hence, chronic dietary histidine deficiency induced persistent ERS, which
further led to cell apoptosis and necroptosis in largemouth bass. Furthermore, studies have
reported that IRE1 binds with TRAF2 to activate ASK1 and further activate JNK, which
upregulates CHOP gene expression to regulate antiapoptotic genes and caspase-mediated
apoptosis pathways [54,55]. This might be another mechanism by which dietary histidine
deficiency induces apoptosis. NF-κB is an important signalling pathway in inflammatory
regulation [56]. In this study, dietary histidine deficiency activated the NF-κB-signalling
pathway to induce an inflammatory response, which further upregulated the mRNA levels
of the proinflammatory factors tnf-α, hepcidin 1, cox2, cd80, and cd83 and lowered the mRNA
levels of the anti-inflammatory factors tgf-β1 and ikbα. Furthermore, dietary histidine
deficiency significantly lowered the levels of the intestinal anti-inflammatory factors IL-10
and TGF-β and upregulated the level of the intestinal proinflammatory factor TNF-α,
showing a trend similar to that of the gene expression of inflammatory factors. A similar
study reported that dietary histidine deficiency induced an inflammatory response in the
gills of grass carp [13] and intestines of blunt snout bream [46]. Furthermore, dietary amino
acid deficiency can also induce inflammatory responses, such as through methionine and
lysine, in blunt snout bream [5,57]. It was reported that activation of the IRE1–TRAF2–
ASK1–JNK1-signalling pathway could upregulate NF-κB and mediate the inflammatory
response [23]. Dietary histidine deficiency can also activate the IRE1–TRAF2–ASK1–JNK1-
signalling pathway, which might be the mechanism by which histidine regulates the
NF-κB-signalling pathway. However, unfortunately, there are relatively few studies on
histidine at present, and the relevant mechanisms need further study.
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5. Conclusions

Histidine deficiency can weaken the intestinal antioxidant capacity and induce in-
testinal endoplasmic-reticulum stress, which further leads to an inflammatory response,
apoptosis, and necroptosis and decreases the immune capacity of largemouth bass. How-
ever, histidine supplementation could alleviate these problems. Based on the results of
MDA and T-SOD, the appropriate dietary histidine requirements of juvenile largemouth
bass are 1.32% of the diet (2.81% dietary protein) and 1.47% of the diet (3.13% dietary
protein), respectively, as determined by quadratic regression analysis.
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