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Abstract: Oxidative stress is an important pathophysiological mechanism in the development of
numerous cardiovascular disorders, but few studies have examined the levels of oxidative stress in
adults with congenital heart disease (CHD). The objective of this study was to investigate oxidative
stress levels in adults with CHD and the association with inflammation, exercise capacity and en-
dothelial function. To this end, 36 adults with different types of CHD and 36 age- and gender-matched
healthy controls were enrolled. Blood cell counts, hs-CRP, NT-proBNP, fasting glucose, cholesterol
levels, iron saturation and folic acid concentrations were determined in venous blood samples. Levels
of superoxide anion radical in whole blood were determined using electron paramagnetic resonance
spectroscopy in combination with the spin probe CMH. Physical activity was assessed with the
IPAQ-SF questionnaire. Vascular function assessment (EndoPAT) and cardiopulmonary exercise
testing were performed in the patient group. Superoxide anion radical levels were not statistically
significantly different between adults with CHD and the matched controls. Moreover, oxidative stress
did not correlate with inflammation, or with endothelial function or cardiorespiratory fitness in CHD;
however, a significant negative correlation with iron saturation was observed. Overall, whole blood
superoxide anion radical levels in adults with CHD were not elevated, but iron levels seem to play a
more important role in oxidative stress mechanisms in CHD than in healthy controls. More research
will be needed to improve our understanding of the underlying pathophysiology of CHD.

Keywords: oxidative stress; reactive oxygen species (ROS); superoxide anion radical; inflammation;
exercise capacity; endothelial (dys)function; “heart defects, congenital” [Mesh]

1. Introduction

Congenital heart diseases (CHDs) comprise a wide range of cardiac malformations [1].
Medical and surgical advances have dramatically increased the survival of patients with
CHD, leading to a continuously growing number of children, adolescents and adults
with CHD [2,3]. Nevertheless, CHD patients have lower physical fitness [3–5], reduced
quality-of-life [6] and worse prognosis [7,8] compared to healthy individuals of similar
age. The development and progression of heart failure (HF) is the main cause of mor-
bidity and mortality in this population [9,10]. Patients with HF induced by CHD and
patients with HF induced by other etiologies share many characteristics, including exercise
intolerance [4,11–13], ventricular dysfunction [1,14,15], increased inflammatory cytokine
levels [16] and neurohormonal activation [17]. To improve therapy and preventive strate-
gies, we need a better understanding of the underlying pathophysiological mechanisms.
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In patients with HF induced by other etiologies, increased oxidative stress is impli-
cated in the pathogenesis of cardiac injury and the disease progression [18,19]. Under
physiological conditions, the most common oxygen free radical in the human body is
the superoxide anion radical (O2

•−) [20,21], which dismutates to form hydrogen peroxide
(H2O2), which can further react to form the hydroxyl radical (HO•) [22]. If the production of
reactive oxygen species overwhelms the intrinsic anti-oxidant defenses [20], then oxidative
stress will arise and this will induce inflammation and endothelial dysfunction [23–27].
It is known that the excess generation of superoxide can directly quench nitric oxide
(NO), thereby reducing NO bioavailability and limiting its physiological effects, such as
vasodilation [28,29].

Although there are some studies on oxidative stress in the blood of patients with
CHD, in general they have used indirect or nonspecific markers [30–38] or have been based
on a certain subgroup of patients [39]. Inflammation, exercise capacity and endothelial
function have been studied in CHD, but not their relationship with superoxide anion
radical formation.

The aim of the present study was to investigate oxidative stress in adults with CHD.
To this end, we determined superoxide anion radical levels as a direct parameter of ox-
idative stress in the blood of patients with different types of CHD by electron param-
agnetic/spin resonance spectroscopy (EPR/ESR) using the spin-probe CMH (hydroxy-
3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine) [40]. Subsequently, we examined if
superoxide anion radical levels were correlated with inflammation, exercise capacity and
endothelial dysfunction in adults with CHD.

2. Material and Methods
2.1. Study Population

Thirty-six adult CHD patients, with an age range of 18–65 years, NYHA class I–II,
who visited the out-patient clinic at the Antwerp University Hospital, were prospectively
enrolled. The exclusion criteria were: professional endurance athlete, class II and III obesity
(BMI > 35 kg/m2), smoking, macrovascular coronary artery disease, diabetes mellitus or
presence of systemic disease (e.g., malignancies, acute and chronic inflammatory diseases
in the preceding 3 months). For each CHD patient, an age- and gender-matched healthy
control was included. The same exclusion criteria were applied. The study was carried
out according to the principles of the Declaration of Helsinki and the Research and Ethics
committee of the Antwerp University Hospital approved the study protocol (Belgian
number: B3002020000298). Written informed consent was obtained from all subjects.

2.2. EPR for Superoxide Anion Radical Levels

Fasting venous blood samples were obtained in a heparin tube (BD Vacutainer®,
Mississauga, ON, Canada). The blood was immediately treated with 1-hydroxy-3-methoxy
carbonyl-2,2,5,5-tetramethylpyrrolidine (CMH, Noxygen Science Transfer & Diagnostics,
Alsace, Germany). A 1 mM CMH solution was prepared in buffer (Krebs-Hepes buffer
(KHB)) containing 25µM deferroxamine methane-sulfonate salt (DF) chelating agent and
5µM sodium diethyldithio-carbamate trihydrate (DETC)) at pH 7.4. CMH has been shown
to be a suitable spin probe for the quantification of superoxide radical anions in blood [41].
Therefore, 100 µL of blood was added to 100 µL of spin probe CMH. Immediately after
mixing, the sample was snap frozen and stored at −80 ◦C until analysis. For analysis,
the mixture of CMH and blood was thawed and transferred into a 50 µL glass capillary
(Hirschmann®, Eberstadt, Germany). The glass capillaries were placed in the resonator of
the EPR. EPR measurements were carried out on a Bruker EMX 1273 spectrometer equipped
with an ER 4119HS high-sensitivity resonator and 12 kW power supply operating at X
band frequencies [21,42]. The EPR analysis setting were as follows: frequency, 9.86 GHz;
power, 50.41 mW; modulation frequency, 100 kHz; modulation amplitude, 1 G; sweep
time, 41.94 s; time constant, 40.96 ms; sweep width, 50 G; number of scans, 1 [21]. The
data were analyzed using WinEPR (Brüker, Bremen, Germany) software and radicals were
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identified and quantified as ESR peak amplitude arbitrary units (A.U.). We took two
samples from each participant. The intraclass correlation coefficient was 0.921 (one-way
random effects, single measures), indicating that there was a good agreement between
the two measurements. Therefore, we performed the statistical analysis by using the first
sample measured. A Bland–Altman plot and scatter plots are shown in Figure S1 in the
Supplementary Materials.

2.3. Haematological Parameters

Fasting peripheral blood was collected using ethylenediaminetetraacetic acid (EDTA)
and serum vacuette tubes (BD Vacutainer®, Mississauga, ON, Canada). EDTA and serum
samples were analyzed using a Sysmex XN-9100 (Sysmex, Norderstedt, Germany) and
Atellica® IM/CH Analyzer (Siemens Healthcare, Erlangen, Germany), respectively. Blood
cell counts, high-sensitivity C-reactive protein (hs-CRP), N-terminal-pro hormone B-type
natriuretic peptide (NT-proBNP), fasting glucose, cholesterol levels, iron saturation and
folic acid concentrations were quantified.

2.4. Physical Activity Level

All participants were asked to complete a physical activity level questionnaire: IPAQ-
SF [43].

2.5. Exercise Capacity

A cardiopulmonary exercise test (CPET) was performed in the CHD patient group.
In brief, a continuously incrementing ramp protocol (an increase in work rate, e.g., ev-
ery 2–15 s) was designed with the aim of reaching maximal exertion within 8–12 min
on a Lode Corival bike ergometer. The increase in load was based on Jones’ predictions
of Wattmax [44]. The gas exchange measurements and 12-lead electrocardiogram were
recorded continuously. Blood pressure was measured every minute. Peak oxygen con-
sumption (pVO2) was determined as the mean VO2 peak during the final 30 s of exercise.

2.6. Vascular Function Measurements

Blood pressure measurements were taken using an automated blood pressure device
(Digital ProBPTM 2000, Welch Allyn, Auburn, NY, USA) in all participants. The peripheral
endothelial function at the microvascular level was evaluated only in the CHD patient
group using the Endo-PAT2000® (Itamar Medical, software version 3.2.4, Caesarea, Israel),
as previously described [21]. The EndoPAT system uses pneumatic finger probes that assess
digital volume changes accompanying pulse waves. Relative ischemia was induced by
inflating a blood pressure cuff to at least 100 mmHg above systolic blood pressure, on the
forearm of the patient for five minutes, after which the pressure was released and reactive
hyperemia was measured. Reactive hyperemia induces an increase in shear stress, resulting
in an increase in endothelial NO production and subsequent vasodilation. The reactive
hyperemia index (RHI) was calculated based on the ratio of the average amplitude of the
PAT signal over a one-minute period starting one minute after cuff deflation (maximum
pulse amplitude) divided by the average amplitude of the PAT signal over a 3.5 min
period before cuff inflation (baseline pulse amplitude). The control arm was used to
correct for confounding factors (room temperature, systemic changes). EndoPAT is an
operator-independent and highly reproducible technique [45].

2.7. Statistical Analysis

Statistical analysis was performed using SPSS version 28.0. The normality of the
continuous variables was evaluated using histograms and Q-Q plots. Because some of the
parameters were not normally distributed, non-parametric testing was performed. Data are
presented as the median (Q1–Q3). Groups were compared using the Mann–Whitney U test
and Fisher’s exact test for continuous and categorical variables, respectively. Spearman’s
correlation coefficient was used for univariable correlation analysis. Correlations between
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superoxide on the one hand, and age, BMI, alcohol consumption, blood pressure, thrombo-
cyte and white blood cell count, hs-CRP, NT-proBNP, iron saturation, folic acid, pVO2 and
RHI on the other, were investigated. A two-tailed p < 0.05 was considered significant.

3. Results
3.1. Characteristics, Haematological Parameters and Self-Reported Physical Activity Levels

The characteristics, hematological parameters and self-reported physical activity levels
of both the patient and control group are summarized in Table 1. Patients differed from
healthy controls in systolic and diastolic blood pressure, white blood cell count, fasting
glucose and NT-proBNP levels.

Table 1. Characteristics, hematological parameters and self-reported physical activity levels of the
CHD patients and healthy controls.

Variable CHD Patients
(n = 36)

Controls
(n = 36) p-Value

Characteristics
Age (years) 31.50 (24.25–41.50) 31.50 (24.25–41.50) 1.000

Gender (M/F) 18/18 18/18 1.000
BMI (kg/m2) 24.39 (21.73–27.34) 24.33 (21.26–27.77) 0.813

Alcohol consumption
(n glasses/week) 1.00 (0.31–2.75) 2.75 (0.63–4.00) 0.052

Systolic blood pressure (mmHg) 114.50 (108.00–121.50) 121.00 (116.75–129.25) 0.004 *
Diastolic blood pressure (mmHg) 72.00 (68.25–76.75) 80.50 (70.75–85.00) 0.001 *

Heart rate at rest (bpm) 63.50 (57.25–73.75) 67.50 (62.25–81.00) 0.114
Hematological parameters

Hemoglobin (g/dL) 14.70 (13.50–15.70) 14.65 (13.95–15.85) 0.849
Hematocrit (%) 44.10 (40.70–46.90) 44.25 (42.08–47.45) 0.516

Thrombocyte count (×109 E/L) 251.00 (214.00–280.00) 251.50 (204.50–285.50) 0.913
White blood cell count (×109 E/L) 6.38 (5.80–7.32) 5.63 (4.84–6.53) 0.026 *

hs-CRP (mg/L) 0.76 (0.42–2.15) 0.97 (0.40–2.15) 0.608
NT-proBNP (pg/mL) 82.00 (38.50–158.25) 46.50 (35.00–86.00) 0.017 *

Fasting glucose (mg/dL) 86.00 (79.00–89.00) 90.50 (86.25–95.00) <0.001 *
Total cholesterol (mg/dL) 177.50 (155.25–209.50) 184.50 (162.75–206.75) 0.290

LDL (mg/dL) 128.50 (96.25–151.75) 136.00 (108.50–147.75) 0.551
HDL (mg/dL) 50.50 (43.25–65.75) 54.50 (44.75–69.25) 0.373

Triglycerides (mg/dL) 88.00 (67.25–126.25) 98.50 (76.25–137.50) 0.350
Iron saturation (%) 36.00 (28.00–43.50) 32.00 (23.00–38.00) 0.103
Folic acid (µg/L) 9.20 (7.20–10.90) 9.35 (7.00–11.05) 0.679

Self-reported physical activity level
Walking MET 594.00 (248.00–2079.00) 643.50 (297.00–1386.00) 0.616

Moderate MET 360.00 (0.00–960.00) 480.00 (0.00–960.00) 0.902
Vigorous MET 480.00 (0.00–1800.00) 720.00 (0.00–1560.00) 0.938

Total MET 2853.00 (822.00–4994.00) 2283.00 (926.25–4536.00) 0.228
Data are presented as the median (Q1–Q3); * The significance level is 0.05; Abbreviations: BMI = body mass index,
F = female, HDL = high-density lipoprotein, hs-CRP = high-sensitivity C-reactive protein, LDL = low-density
lipoprotein, M = male, MET = metabolic equivalent of task, n = amount, NT = N-terminal-pro hormone B-type
natriuretic peptide.

Of all the patients, 15 (41.7%) had cyanotic and 21 (58.3%) had acyanotic CHD. The
different types of CHD in the patient population are shown in Table 2. Nineteen patients
(52.8%) had a surgical history for CHD, whereas 17 (42.2%) never had surgery.
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Table 2. Occurrence of different types of CHD.

Type of CHD Number of Patients Type of CHD Number of Patients

TGA * 5 ASD II 5

TGA + VSD 1 ASD II + TI 1

TOF 3 ASD II + BAV 1

PS 3 BAV 8

PS + VSD 1 UAV 1

VSD 3 PDA 1

AVSD/ASD + VSD 2 Cor triatriatum sinister 1
* including 1 ccTGA. Abbreviations: ASD = atrial septal defect, AVSD = atrioventricular septal defect,
BAV = bicuspid aortic valve, PDA = patent ductus arteriosus, PS = pulmonary valve stenosis, (cc)TGA = (con-
genitally corrected) transposition of the great arteries, TI = tricuspid insufficiency, TOF = Tetralogy of Fallot,
UAV = unicuspid aortic valve, VSD = ventricular septal defect.

3.2. Superoxide Anion Radical Levels

The superoxide anion radical levels in the blood of adult CHD patients were not
statistically significantly different from the superoxide anion radical levels in the healthy
control group (Figure 1). Examples of EPR spectra of the CMH radicals detected in whole
blood of a typical patient and matched healthy control are shown in Figure 2.
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3.3. Oxidative Stress and Characteristics and Haematological Parameters

There was a statistically significant positive correlation between superoxide anion
radical levels and BMI, but only for the healthy control group (Table 3 and Figure S4 in the
Supplementary Materials) and a significant negative correlation between superoxide anion
radical levels and alcohol consumption for the healthy control group and the total group
(Table 3 and Figure S4 in the Supplementary Materials). There was no significant correlation
with age or blood pressure. Also, superoxide anion radical levels were not significantly
different between males and females (Figure S2 in the Supplementary Materials). There was
no statistically significant difference in superoxide anion radical levels between cyanotic
and acyanotic patients (Figure S3A in the Supplementary Materials) nor between patients
with and without a surgical history (Figure S3B in the Supplementary Materials).

Table 3. Correlation coefficients between superoxide anion radical levels and characteristics, hemato-
logical parameters, exercise capacity and peripheral microvascular endothelial function.

Variable CHD Patients Controls Total Group
r p-Value r p-Value r p-Value

Characteristics
Age (years) −0.239 0.161 0.001 0.996 −0.116 0.332

BMI (kg/m2) −0.170 0.321 0.451 0.006 ** 0.172 0.148
Alcohol consumption (n

glasses/week) −0.237 0.164 −0.330 0.050 * −0.254 0.032 *

Systolic blood pressure (mmHg) −0.176 0.305 0.214 0.224 0.041 0.738
Diastolic blood pressure (mmHg) −0.303 0.072 0.073 0.680 −0.078 0.520

Haematological parameters
Thrombocyte count (×109 E/L) 0.163 0.350 0.436 0.008 ** 0.285 0.016 *

White blood cell count (×109 E/L) −0.068 0.699 0.461 0.005 ** 0.194 0.105
hs-CRP (mg/L) −0.015 0.929 0.249 0.143 0.172 0.148

NT-proBNP (pg/mL) 0.094 0.585 0.292 0.084 0.170 0.153
Iron saturation (%) −0.367 0.028 * −0.196 0.251 −0.274 0.020 *
Folic acid (µg/L) −0.290 0.092 −0.265 0.118 −0.288 0.015 *

Exercise capacity
pVO2 (ml/kg/min) 0.332 0.084 / /

Peripheral microvascular endothelial function
RHI 0.177 0.301 / /

BMI = body mass index, hs-CRP = high-sensitivity C-reactive protein, n = amount, NT = N-terminal-pro hormone
B-type natriuretic peptide, pVO2 (ml/kg/min) = peak oxygen consumption, RHI = reactive hyperemia index.
r = Spearman’s rho. * Correlation is significant at the 0.05 level (2-tailed), ** Correlation is significant at the 0.01
level (2-tailed).
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The superoxide anion radical levels were significantly and positively correlated with
the thrombocyte count in healthy controls and in the total group (Table 3 and Figure S5
in the Supplementary Materials). While superoxide anion radical levels significantly and
positively correlated with white blood cell count in healthy controls (Table 3 and Figure S5 in
the Supplementary Materials), there was no significant correlation between the superoxide
anion radical level and hs-CRP in any group. Iron saturation turned out to be significantly
negatively correlated with superoxide anion radical levels in patients and in the total
group (Table 3 and Figure S6 in the Supplementary Materials) as did folic acid in the total
group (Table 3 and Figure S6 in the Supplementary Materials). There were no significant
associations between superoxide anion radical levels and NT-proBNP.

3.4. Oxidative Stress and Exercise Capacity in Adults with CHD

Only exercise tests that were performed maximally (RER > 1.10) were included in the
analysis. The median pVO2 in the patient group was 26.45 (21.05–32.10) mL/kg/min. There
was no statistically significant correlation between pVO2 and superoxide anion radical
levels in the blood of CHD patients (Table 3).

3.5. Oxidative Stress and Peripheral Microvascular Endothelial Function in Adults with CHD

The median RHI in the patient group was 2.17 (1.78–2.68). There was no statistically
significant correlation between the RHI and superoxide anion radical levels in the blood of
CHD patients (Table 3).

4. Discussion

Oxidative stress is involved in the pathophysiology of endothelial dysfunction and
most cardiovascular disorders, but studies in adult patients with CHD are scarce. Therefore,
we measured superoxide anion radicals directly with EPR in a heterogeneous population
of CHD and studied its relationship with patient characteristics, biochemical parameters,
exercise capacity and vascular function tests. The main finding of this study was that the
blood levels of superoxide anion radical did not significantly differ between adults with
CHD and their age- and gender-matched healthy controls. This finding is contrary to some
other studies that claim the presence of oxidative stress in the peripheral blood of patients
with CHD [30–39], but it is in accordance with three studies showing that there was no
significant difference in oxidative stress in the peripheral blood of patients with CHD and
healthy individuals [46–48].

Notably, just one other study [39] measured superoxide anion radical levels in the
blood directly with EPR in combination with CMH; superoxide anion radical levels were
increased in 18 infants with increased pulmonary blood flow due to ventricular septal
defects (VSD). In our study, only five adult patients with VSD were included; this subgroup
was too small to perform a separate statistical analysis. In contrast, in most other studies
on oxidative stress in the blood of patients with CHD, indirect nonspecific markers of
oxidative stress [30–38,46–66] were used, e.g., the assessment of the activity of oxidative and
antioxidant enzymes (superoxide dismutase (SOD), catalase and glutathione peroxidase),
levels of antioxidants (vitamin E, uric acid and selenium), levels of malondialdehyde (MDA)
and protein carbonyl (PCO), plasma total oxidant status (TOS), total antioxidant capacity
or status (TAC or TAS) and oxidative stress index (OSI) as well as the quantification of
DNA damage assessed by alkaline comet assay in circulating lymphocytes and levels of
8-hydroxy-2′-deoxyguanosine.

In our adult CHD population, there was no significant difference in superoxide anion
radical levels between cyanotic and acyanotic patients, or between patients with and
without a surgical history. This is in contrast to two other studies [30,34] showing that the
level of oxidative stress in children with cyanotic CHD was significantly higher than in
the acyanotic group. One study even examined the difference in oxidative stress between
different types of left-to-right shunt CHD. They concluded that the SOD and MDA contents
in erythrocytes can be used as markers for the assessment of the severity of the disease [31].
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Moreover, oxidative stress was not correlated with inflammation or with endothelial
function or exercise capacity in our adult CHD patient group. Although there was a
statistically significant correlation between superoxide anion radical levels and white
blood cell count in the control group, this was not the case in the patient group. This
is in contrast to the results of Pirinccioglu et al. [34] and Michel et al. [32]. The former
author group found that blood levels of MDA and PCO were positively correlated with
hs-CRP in their group of children with cyanotic and acyanotic CHD. Moreover, PCO was
also positively correlated with pro-inflammatory cytokine IL-6 [34]. The latter authors
studied alterations in the amino acid metabolome in adult Fontan patients, suggesting
links between Fontan pathophysiology, altered cell energy metabolism, oxidative stress and
endothelial dysfunction [32]. However, RHI and superoxide anion radical level were not
correlated in our patients, thereby not confirming a link between endothelial dysfunction
and oxidative stress in CHD. Although the EndoPAT® has been used several times to
measure peripheral endothelial function in CHD [67–69], it has never been correlated with
direct measurements of superoxide anion radicals. In patients with preeclampsia, on the
other hand, the association between oxidative stress and microvascular endothelial function
has been studied. Mannaerts et al. [21] found a significant relationship between increased
superoxide concentration and decreased RHI in women with preeclampsia, but there was
no significant correlation between the superoxide and hematological parameters of systemic
inflammation (mean platelet volume and neutrophil–lymphocyte ratio). In patients with
chronic HF, oxidative stress evaluated by the measurement of free radicals in venous
blood using EPR, similar to our study, was also not related to endothelial function [19]
in accordance with our study results. However, endothelial function was examined with
flow-mediated dilation (FMD) in the brachial artery, which is a conduit artery, and therefore
it does not study the microcirculation. Using indirect assessments of oxidative stress, two
groups [32,47] have already established a negative association between oxidative stress and
exercise capacity in CHD. In our study, we were unable to confirm this finding as there was
no statistically significant correlation between pVO2 and superoxide anion radical levels
directly measured by EPR in the blood of CHD patients.

Iron saturation negatively correlated with oxidative stress in adults with CHD, but
not in the control group. It is well-known that a complex interplay exists between iron
metabolism and reactive oxygen species (ROS), such as superoxide [70]. Iron is reported
to be involved in both the formation and the scavenging of these species [70]. Since iron
can be a necessary cofactor in the production of free radicals, iron excess is related to
oxidative damage. On the contrary, iron deficiency results in defective mitochondrial
function and mitochondrial DNA damage, which results in the release and leakage of
ROS out of deficient mitochondria. Therefore, both iron deficiency and iron excess could
promote oxidative stress [21,71,72].

Regarding the BMI, there is mounting evidence that human obesity is a state of chronic
oxidative stress with increased superoxide production [73]. In children with CHD, BMI was
negatively correlated with MDA and PCO while it was positively correlated with TAC [34].
Interestingly, our findings are similar: a statistically significant positive correlation between
superoxide and BMI in the control group, and a negative trend—although not significant—
in CHD (Table 3). In our control group, the thrombocyte count was positively correlated
with superoxide levels. It is known that the oxidative stress and decreased antioxidant
levels found in cardiovascular disease are associated with changes in platelet function [74].
Also, the adhesion of activated platelets to the leukocytes greatly enhances the capacity
of the leukocyte to generate superoxide [75,76]. Nevertheless, we found no significant
correlation between superoxide and the thrombocyte count in our patient group. Finally,
there are multiple studies suggesting that folic acid may offer a protective effect against
oxidative stress and inflammatory responses and that it has beneficial effects on endothelial
function [77–79]; however, our findings also seem to suggest that alcohol has a protective
effect against oxidative stress. The effects of chronic alcohol exposure on the cellular content
or activity of SOD are controversial, with reports of increases, no changes, or decreases,
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depending on the model, diet, amount, and time of alcohol feeding [80]. In our study
population, all but one male healthy control belonged to the no, light or moderate drinker
groups (i.e., ≤14 drinks a week for men, ≤7 drinks per week for women). Although several
studies have shown a protective effect of moderate alcohol consumption on the incidence
of cardiovascular diseases [81,82], other research has shown that alcohol consumption of all
amounts is associated with increased cardiovascular risk [83] and that the risk of all-cause
mortality, and of cancers specifically, rises with increasing levels of consumption; the level
of consumption that minimizes health loss is zero [84]. Therefore, a chronic intake of low to
moderate amounts of alcohol cannot be recommended.

The goal of this study was to measure superoxide anion radical levels in the whole
blood of adults with CHD, which provides a representation of possible general stress
originating from blood cells and the endothelium. These superoxide anion radical levels in
whole blood may reflect the contribution of multiple organs, but do not indicate changes
in specific tissues or organs. Although there are already indications for oxidative stress
in, for example, the myocardial tissue of patients with CHD [85,86], indirect nonspecific
biomarkers of oxidative stress were used in these studies. In follow-up studies, it would be
interesting to measure superoxide anion radical levels more directly, for example, by EPR,
in selected organs or tissues, such as in the heart muscle.

Overall, whole blood superoxide anion radical levels in adults with CHD were not
elevated, but iron levels seem to play a more important role in oxidative stress mechanisms
in CHD than in healthy controls. It will be worthwhile to investigate these outcomes in
studies with a larger sample size on the one hand, and in studies focusing on one specific
CHD on the other hand.

5. Conclusions

In conclusion, there was no difference in superoxide anion radical levels in whole
blood between adult patients with CHD and healthy controls. Moreover, oxidative stress
did not correlate with inflammation or with endothelial function or exercise capacity in the
patient group; however, a statistically significant negative correlation with iron saturation
was found. This is the first paper to directly measure superoxide anion radicals with EPR in
a varied population of adults with CHD and to correlate this direct oxidative stress marker
with the characteristics, biochemical parameters, exercise capacity and endothelial function
in this patient population. More research, especially studies with a large sample size, will
be needed to improve our understanding of the underlying pathophysiology of CHD.
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CPET cardiopulmonary exercise testing
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EPR/ESR electron paramagnetic/spin resonance spectroscopy
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H2O2 hydrogen peroxide
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HO• hydroxyl radical
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O2•− superoxide anion radical
OSI oxidative stress index
PCO protein carbonyl
RER respiratory exchange ratio
RHI reactive hyperemia index
ROS reactive oxygen species
SOD superoxide dismutase
TAC/TAS total antioxidant capacity/status
TOS total oxidant status
VSD ventricular septal defect
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