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Abstract: The control of neuropathic pain is a leading challenge in modern medicine. Traditional
medicine has, for a long time, used natural compounds such as nutraceuticals for this purpose, and
extensive evidence has supported their role in controlling oxidative stress and persistent pain-related
inflammation. Nutraceuticals are natural products belonging to the food sector whose consumption
could be related to physiological benefits. Indeed, they are used to improve health, prevent chronic
diseases, and delay the aging process. Here, we report a systematic review and meta-analysis to
provide a more comprehensive report on the use of nutraceuticals in neuropathic pain, including
evaluating confounding factors. A search of the literature has been conducted on principal databases
(PubMed, MEDLINE, EMBASE, and Web of Science) following the PRISMA statement, and we
retrieved 484 articles, 12 of which were selected for the meta-analysis. The results showed that
administration of natural drugs in animals with neuropathic pain led to a significant reduction in
thermal hyperalgesia, measured in both the injured paw (SMD: 1.79; 95% CI: 1.41 to 2.17; p < 0.0001)
and in the two paws (SMD: −1.74; 95% CI: −3.36 to −0.11; p = 0.036), as well as a reduction in
mechanical allodynia and hyperalgesia (SMD: 1.95, 95% CI: 1.08 to 2.82; p < 0.001) when compared to
controls. The results of the review indicate that nutraceutical compounds could be clinically relevant
for managing persistent neuropathic pain.

Keywords: neuropathic pain; oxidative stress; antioxidants; new therapeutic targets; systematic
review; meta-analysis

1. Introduction
1.1. Neuropathic Pain

Neuropathic pain is a serious health problem affecting millions of people in the world,
representing a debilitating condition which is often overwhelming for patients.

According to the International Association for the Study of Pain (IASP), neuropathic
pain is the “pain caused by injury or disease of the somatosensory system” [1]. The main
characteristics of this condition are allodynia (pain caused by painless stimuli) and/or
hyperalgesia (increased response to noxious stimuli) in addition to continuous development
(i.e., independent of the stimulus) [2,3]. The mechanisms of induction and maintenance
of chronic neuropathic pain are still poorly understood [4,5]. However, it is well known
that in tissue injury, hyperalgesia and allodynia lead to a persistent state of peripheral
sensitization that subsequently initiates spinal sensitization.
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Various diseases may induce neuropathic pain following nerve lesions, i.e., autoim-
mune diseases (multiple sclerosis), metabolic diseases (diabetic neuropathy), infections
(postherpetic neuralgia), vascular disease (stroke), trauma, and cancer [6].

Although several pharmacological and non-pharmacological approaches have been
proposed [7], current treatments are not entirely adequate to relieve neuropathic pain, and
novel options are, therefore, necessary. Treatment options for neuropathic pain include
first-line drugs, such as antidepressants (tricyclic agents, TCA) [8,9] and anticonvulsants
(gabapentin and pregabalin). These exert their mechanism of action through the potential
calcium channel-blocking effects [10], without binding to GABA receptors or interacting
with GABA uptake transporters [11,12]. Opioids are the most effective treatments for severe
chronic pain. Their prolonged use is limited by the development of dependence, analgesic
tolerance, and, thus, oxidative stress. Nevertheless, they are second-line drugs to treat
neuropathic pain [13], since their effectiveness requires increasing doses to achieve similar
pain relief. This limits their use for chronic management of neuropathic pain [14]. Table 1
describes the treatment options for neuropathic pain.

Table 1. Pharmacological treatment in neuropathic pain.

Drugs Mechanism of Action Side Effect Reference

Triciclic antidepressant
(TCA)

- Blockade sodium channel
- Anticholinergic effects

somnolence,
dizziness, suicide
risk, urinary
retention

[9]

Serotonin-noradrenalin
reuptake inhibitors

- Serotonin and
noradrenaline reuptake

- Inhibition potential
calcium

nausea,
hypertension,
ataxia, lethargy

[14]

Anticonvulsant
- Channel-blocking effects
- Decrease central

sensitization

sedation,
dizziness, oedema [11]

Local anesthetics
-Licodaine

- Sodium channel blockade local erythema,
rash [13]

Opioids - µ-receptor agonist
nausea, vomiting,
somnolence,
dizziness

[13]

In addition, non-pharmacological treatments for chronic pain are also increasingly
used, including behavioral, cognitive, integrative, and physical therapies [7]. Other tech-
niques used to treat chronic and neuropathic pain include the classic method of neural
blockade therapy. For instance, neural blockade of the scalp can be used as an anesthetic for
intra- or extracranial procedures or as general anesthesia [15]. In Europe, neural stimulation
is heavily used, and includes spinal cord stimulation (SCS), peripheral nerve stimulation
(PNS), transcutaneous electrical nerve stimulation (TENS), and motor cortex stimulation
(MCS) [15].

The interest in drugs of natural origin is dramatically increasing, due to the fewer side
effects, lower costs for national health systems, and patients’ trust in natural products [16,17].
In addition, evidence shows that natural antioxidants act against oxidative stress generated
immediately after the insurgence of neuropathic disease [18].

1.2. Oxidative Stress in Neuropathic Pain

The pathways involved in developing neuropathic pain are complex, and numerous
molecular and cellular mechanisms are involved. Oxidative species formation is critical for
the onset of neuropathic pain and neurodegenerative diseases, including diabetes, cancer,
premature aging, osteoarthritis, atherosclerosis, and Crohn’s disease [19].
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Increased extracellular glutamate levels following painful stimuli lead to the acti-
vation of numerous intracellular pathways, including free radicals’ formation (oxygen
(ROS) and nitrogen (RNS) reactive species). In particular, free radicals increase during
stress, resulting in oxidative/nitroxidative stress. This condition activates cyclooxygenase
(COX) enzymes and enhances the production of prostaglandins through the activation of
transcription factors (i.e., activator protein 1 (AP1), nuclear factor kappa (NF-kB)), and
mitogen-activated protein kinases (MAPK) [20,21]. Inflammatory cell activation, together
with cytochrome P450 metabolism, is a potential source of endogenous ROS production.
Superoxide anion (SO) is considered the “primary” ROS, and mitochondrial SO production
increases with the presence of diseases. Levels of SO are kept under control by the man-
ganese superoxide dismutase (MnSOD) isoform in the mitochondrion, and by the copper,
Zinc-SOD (Cu, ZnSOD), in the cytoplasm [22,23]. Furthermore, SO and peroxynitrite (PN),
the main agents responsible for peripheral and central sensitization [24–27], stimulate the
production of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6), prostanoids, nitric oxide,
excitatory amino acids (i.e., glutamate). In addition, they activate spinal cord glial cells,
damage endothelial cells, recruit neutrophils, cause single-stranded DNA damage, activate
poly-ADP-ribose-polymerase (PARP), and, completing a vicious cycle, contribute to the
formation of PN and lipid peroxidation products.

The direct role of SO and PN in the onset of neuropathic pain has been demonstrated
by the development of thermal hyperalgesia following intraplantar administration of SO
and PN. Furthermore, this hyperalgesic state was accompanied by the development of
chronic inflammation following the spinal activation of the N-methyl-D-aspartate receptor
(NMDAR) [24] (Figure 1).
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Figure 1. Free radical action following nerve injury.

An important ROS/RNS target is polyunsaturated fatty acids, which are extremely
sensitive to oxidation. The final products of this reaction, which is referred to as lipid
peroxidation, are malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) [3,21]. Oxida-
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tive stress occurs when ROS/RNS production overwhelms a cell’s antioxidant capability,
leading to cellular macromolecule damage-causing alteration of the mitochondrial path-
way. This event is, in turn, responsible for the post-translational modification of key
proteins, such as mitochondrial manganese superoxide dismutase (MnSOD), glutamate
transporter (GLT-1), glutamate receptor N-methyl-D-aspartate (NMDA), and glutamine
synthase (GS) [28].

The excess of free radicals is generally inactivated by the endogenous or exogenous
antioxidant activity of molecules that inhibit the oxidation by directly removing free
radicals, thus providing maximal protection for biological sites.

1.3. Natural and Synthetic Antioxidants

Antioxidants are classified according to their chemical nature into enzymatic and
non-enzymatic antioxidants. Enzymatic antioxidants remove free radicals, converting
dangerous oxidative products into hydrogen peroxide (H2O2) and water. The most efficient
endogenous enzymatic antioxidants include superoxide dismutase (SODs), glutathione
peroxidase, and catalase (CAT). SODs, a class of oxidoreductase enzymes that contain
Cu/Zn or Mn at the active site, catalyze the dismutation of superoxide to H2O2 and are the
first line of defense against free radicals.

The enzyme is present in all aerobic organisms and subcellular compartments suscep-
tible to oxidative stress [29]. In mammals, three isoforms of SOD have been discovered
to be localized within the cell: SOD1, or Cu/Zn SOD, is found mainly in the cytoplasm
and nuclear compartments [22,30]; SOD2, or MnSOD, is in the mitochondria; SOD3, or
EC-SOD, is in the extracellular compartments [31]. Glutathione peroxidase can reduce lipid
hydroperoxides to their corresponding alcohols and reduce free hydrogen peroxide to wa-
ter [32]. Catalase, in the peroxisome, converts hydrogen peroxide into water and molecular
oxygen. It also binds to NADPH in order to prevent oxidative enzyme inactivation by
H2O2 when reduced to water [33,34].

Non-enzymatic exogenous antioxidants can be classified into natural antioxidants
and synthetic antioxidants. Synthetic antioxidants are substances created from chemical
processes, and can be used to remove free radicals, as reported by our recent studies [2,35].
Among them, Mn (III)tetrakis (4-benzoic acid) porphyrin (MnTBAP) is a potent inhibitor
of lipid peroxidation [36,37]. Moreover, it protects against some effects associated with
endotoxic and hemorrhagic shock, as well as acute and chronic pain [21,38]. Its efficacy is
likely due to its SO and PN scavenging activity. Another extensively studied synthetic an-
tioxidant is the metalloporphyrin iron tetrakis (N-methyl-4′-pyridyl) porphyrin (FeTMPyP).
Intrathecal injection of PN decomposition catalyst FeTMPyP prevents nitration and inhibits
NMDA-mediated thermal hyperalgesia [2,28]. On the other hand, natural antioxidants are
obtained from natural sources, and are generally used in the food, cosmetics, and phar-
maceutical industries; they include low-molecular-weight compounds, such as vitamins,
plant-derived polyphenols, glutathione, and carotenoids. Vitamins (especially C and E)
have good antioxidant properties, although recommended daily levels of vitamins are
insufficient to prevent oxidative damage to cells [39]. Particularly, vitamin C (ascorbic
acid) acts directly by eliminating superoxide, hydroxyl radicals, and singlet oxygen, or by
reducing H2O2 to water through the ascorbate peroxidase. It can also regenerate vitamin E
(tocopherol) from the α-tocopheroxyl radical, protecting the membrane [40]. α-tocopherol
is the most active form of vitamin E, and may directly repair oxidative radicals, preventing
the chain propagation step during lipid autoxidation. It reacts with peroxyl lipid radicals
and alkyl radicals derived from polyunsaturated fatty acids (PUFA) oxidation [41,42]. Glu-
tathione (GSH) is the major soluble antioxidant, and the GSH/GSSG ratio is a principal
target of oxidative stress. GSH can eliminate cytotoxic H2O2 and reacts non-enzymatically
with other ROSs: single oxygen, superoxide radical, and hydroxyl radical. In addition,
the GSH antioxidant role is to regenerate another powerful water-soluble antioxidant,
i.e., ascorbic acid, through the ascorbate–glutathione cycle [43,44]. Finally, carotenoids
(i.e., Lycopene and β-carotene) are fat-soluble phytonutrients known to eliminate peroxyl
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radicals, and they play an essential role in protecting lipoproteins and cell membranes
against ROSs [45].

Nutraceuticals are natural products belonging to the food sector, particularly used
as food supplements. The term “nutraceutical” is derived from “nutrition” and “phar-
maceutics”, because they are very often formulated as concentrated or purified products,
administered as pills, tablets, or other pharmaceutical forms, and because they may exert
some health benefits [46].

In recent years, the use of nutraceuticals rich polyphenols has increased significantly
for pain treatment, thanks to their lower side effects compared to pharmaceuticals. Polyphe-
nols are micronutrients with a wide range of beneficial effects on humans, involved in the
prevention of inflammatory and neuropathic pain, neurodegenerative diseases, cardiovas-
cular diseases [47], diabetes, and osteoporosis [48,49] (Table 2).

Table 2. Polyphenols classification, food origin, and potential health benefits.

Polyphenols.

Flavonoids

- Food origin: Fruits, Vegetable, Plants
- Potential health benefit: Asthma, Cancer,

Artery diseases

Flavones

Flavanols

Isoflavones

Flavanones

Anthocyanidis

Flavanols

Phenolic Acid

- Food origin: Plants, Vegetables
- Potential health benefit: Cancer, Inflammation

Hydroxycimamic
Acids

Hydrobenzoic
Acids

Lignans

- Food origin: Plants, Vegetables
- Potential health benefit: Heart diseases,

Osteoporosis, Breast cancer, Menopausal
symptoms

Secosolariciresinal
diglucoside

Stilbenes

- Food origin: Fruits
- Potential health benefit: Cancer, Ischemic

damage

Resveratrol

Polyphenols are involved in improving endothelium dysfunction, metabolic function,
and the body’s antioxidant defenses. Furthermore, the number of phenolic rings and
structural elements that bind these rings together classifies polyphenols [50]. Among these,
the most important compounds are flavonoids and stilbenes in fruits and vegetables [51,52].
These are involved in various biological functions, including the modulation of a wide range
of enzymes and cell receptors and the protection from DNA damage [53]. Natural products,
mainly medicinal plants, are one of the oldest forms of medical practice to cure and prevent
diseases. More recently, natural antioxidants have contributed to developing new drugs for
managing chronic pain, including neuropathic pain [45,47,52,54,55] (Figure 2).
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Figure 2. Role of natural antioxidants in pain prevention.

We report a systematic review and meta-analysis of the existing literature on animal
studies, in which we examine the mechanisms of action of different nutraceuticals in
treating neuropathic pain and assess the influence of confounding factors. This study
evaluated several animal models in order to include all the possible known therapies,
considering the limited efficacy of current therapies for chronic pain.

The present meta-analysis aims to evaluate the effect of natural drugs on neuropathic
pain and to investigate whether the animal model of pain, the type of animal, the route of
administration, or different pain measurements could influence the results.

2. Materials and Methods
2.1. Database Sources

The systematic review includes published data from experimental studies regarding
the mechanism of action of different nutraceuticals (both in terms of dose and type) on
neuropathic pain. The keywords used for the research of the articles were: “natural
antioxidants and neuropathic pain”, “nutraceuticals and neuropathic pain”, “polyphenols
and neuropathic pain”, “natural drugs and neuropathic pain”, “natural products and
neuropathic pain”, and “phytotherapy and neuropathic pain”.

The studies included in the review were retrieved from the PubMed, MEDLINE, EM-
BASE, and Web of Science databases, in accordance with the PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) statement and following the PICOs
framework (Population Intervention Comparison Outcome Population) [56]. All papers
written in English and published in the period from 2012 to 2022 were evaluated. The
reference list of all retrieved articles was also reviewed in order to identify other eligible
studies that were not indexed by the aforementioned databases.

As reported in the flow-chart (Figure 3) there were studies matching the inclusion
criteria with regard to animals, treatment, and study design, which were not included in
the analysis, as numerical data were not available, but only their graphical representations
were. For these reasons, we contacted 170 primary or corresponding authors of these
studies by e-mail twice. No additional papers were retrieved from this activity. However, to
evaluate whether the exclusion of these studies introduced a selection bias, we performed a
sensitivity analysis on a random sample of 10 studies [57–65], wherein the numerical values
of means, medians, SEM, and SD were extrapolated from the graph. The point estimate of
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the effect (SMD = 1.89) was very close to the results of the meta-analysis described in the
paper, though it was not possible to evaluate the variability of the single studies, since the
extrapolation of SEM/SD from the graphs was not always possible/reliable.
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2.2. Eligibility Criteria

− Studies on animals (rats or mice) with neuropathic pain;
− Study using any natural drug treatments for neuropathic pain.
− Studies were excluded from the analysis for the following reasons:
− use of non-natural drugs or synthetic substances;
− non-pharmacological interventions for pain;
− cellular studies;
− human studies;
− studies in animals other than rats and mice.

2.3. Study Outcomes

We performed two separated analyses in order to consider the heterogeneity of out-
comes. In the first meta-analysis, the primary outcome was the change in thermal hyperal-
gesia through paw withdrawal latency (sec), comparing different experimental models of
neuropathic pain between animals that received pain only (ctrl group), and those that were
also treated with natural drugs (experimental group).

Specifically, thermal hyperalgesia was examined, considering both the paw with-
drawal latency measured in the injured paw and that in both paws (through the difference
between the injured and the healthy paw, or through the mean between the two paws).
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The outcome of the second meta-analysis was the variation of mechanical allodynia
and hyperalgesia through paw withdrawal threshold (gr) in the injured paw, comparing
different experimental models of neuropathic pain between animals that received pain only
(control group) and those that were also treated with natural drugs (experimental group).

2.4. Statistical Analysis

Continuous outcomes, measured on the same scale, are expressed as the mean value
and standard deviation, for descriptive purposes. Standardized mean differences (SMD)
and the corresponding 95% confidence interval (95% CI) were used to estimate pooled re-
sults. The I-square (I2) and Q chi-square tests were performed—according to the Cochrane
review guidelines—to evaluate the presence of heterogeneity on the meta-analysis results
(when there was a significant heterogeneity with I2 > 50%, random effect modeling was
used). Effect sizes are represented by the standardized mean difference, and are presented
together with their 95% confidence intervals. SMDs were interpreted as small (0.2–0.5),
moderate (0.5–0.8), or large (>0.8), based on [66]. In order to explore possible contribu-
tors to the study variance, we investigated the effects of biological and clinical potential
confounders on the SMD by univariate meta-regression analysis, reporting a Q chi-square
of the moderators’ test (QM). The presence of publication bias was tested using funnel
plots adjusted through the “trim and fill” method, as well as Egger’s test. Statistical assess-
ment was two-tailed, and was considered statistically significant at p < 0.05. All analyses
were carried out using R version 3.6.2, with the packages metafor and meta (metafor;
Statistical program).

3. Results
3.1. Data Collection

The systematic review identified 500 records from the literature search. Thirty-six
papers were excluded as duplicates, and seventy-three were excluded due to the contents
not fitting the aims of the review. Three hundred ninety-one articles were assessed for
eligibility and, after abstract and full text screening, three hundred fourteen had been
excluded, as they were reviews, in vitro studies, congress communication, or their dates
were incomplete. Finally, 19 papers describing in vivo experiments were included in
quantitative analysis (meta-analysis) and split into two meta-analyses according to the
behavioral pain assessment method. The process of the literature search and the papers’
screening is illustrated in Figure 3 (PRISMA flow chart [67]).

3.2. Systematic Review on the Effect of Nutraceuticals in Neuropathic Pain

Table 3 summarizes the main characteristics of the 19 papers on the use of nutraceu-
ticals in controlling neuropathic pain. Data were based on the effect of nutraceuticals as
therapeutic agents in experimental models of neuropathic pain.

Briefly, bergamot is a natural antioxidant that differs from other citrus fruits due
to its composition and its high content of flavonoids. Bergamot from different chemical
extracts has been used as an antioxidant to prevent chronic diseases such as neuropathic
pain [25,68–70]. It also reduces oxidative stress, restoring mitochondrial homeostasis. In
particular, bergamot polyphenolic fraction (BPF) restores the biological functions of the
mitochondrial proteins SIRT3 (member of the class III histone deacetylase family, HDAC)
and MnSOD. Both enzymes are inactivated in rat models of CCI, highlighting the beneficial
effect of bergamot during oxidative stress-induced pain [3].

Furthermore, preclinical studies indicated that bergamot essential oil (BEO) could
regulate pain perception in different inflammatory, nociceptive, and neuropathic pain
models by modulating endogenous antioxidant systems. The administration of BEO, in
combination with a low dose of morphine, showed an activation of the peripheral opioid
system and induced antiallodynic effects [68]. Komatsu et al., 2018 [69] showed BEO
antioxidant effect in a partial sciatic nerve ligation (PSNL) model of neuropathic pain. The
intra-plantar injection of bergamot in PSNL mice resulted in the attenuation of allodynia
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and the inhibition of ERK activation in the spinal cords of mice, probably triggered by the
activation of peripheral µ-opioid receptors [69].

Bergamot (Citrus bergamia) and N-palmitoyl-D-glucosamine (PGA) are also effec-
tive during chemotherapy-induced neuropathic pain. Specifically, in the rat model of
chemotherapy-induced neuropathic pain, intraperitoneal injection of BPF protects from ther-
mal hyperalgesia and mechanical allodynia. Hence, the development of neuropathic pain
occurs via inhibition of the nitration of essential proteins involved in oxidative stress [3,71].

PGA, a natural molecule produced by Rhizobium leguminosarum bacteria and related to
the lipid A component of LPS, known for its immunoregulatory and anti-inflammatory
properties, has also been observed to prevent damage induced by LPS and peripheral nerve
damage by reducing neuropathic pain [72].

Lepidium meyenii Walp., commonly called Maca, belongs to the Brassicaceae family,
and is able to restore the pain threshold alterations evoked by oxaliplatin and paclitaxel.
For this reason, the compound could be considered a therapeutic opportunity to relieve
neuropathic pain [73].

Chlorogenic Acid (5-caffeoylquinic acid, CGA) is a naturally occurring phenolic com-
pound that has antioxidant, anti-inflammatory, and analgesic activity. Indeed, it has been
observed that this compound, through the modulation of hyperglycemia and oxidative
stress, has the potential to alleviate diabetic neuropathic pain [74].

Cannabinoids and endocannabinoid systems are also emerging promising agents to
manage the neuroimmune effects of nociception and thermal hyperalgesia [75–77]. In
particular, ∆9-tetrahydrocannabinol (THC), cannabidiol (CBD), and their combination are
being considered as therapeutic alternatives for treatment of NP [75]. Linher-Melville et al.,
in 2020, studied CBD, THC, and their association. The THC: CBD combination has been
observed to provide a beneficial effect in male rats after neuropathic pain induction [75].
Cannabidiol (CBD) is an active phytocannabinoid of Cannabis sativa L. and exerts anti-
inflammatory and antioxidant properties [78]. Repeated treatment with cannabidiol (CBD)
oil positively affected mice’s behavioral dysfunctions associated with traumatic brain injury
(TBI). It may be adequate to modulate the immune response following peripheral nerve
constriction [77]. In particular, it was observed to be responsible for immunosuppression,
starting two months after the nerve injury, at the level of recruitment/proliferation of T
lymphocytes in thyme [75].

In addition, endocannabinoid-related N-acylethanolamines, such as palmitoylethanolmide
(PEA) and oleoylethanolamide (OEA), have been shown to participate in pain mechanisms [79].
Indeed, Guida et al., in 2015, showed that daily treatment with PEA or OEA reduced pain
symptoms in a model of spared nerve injury (SNI) in mice [80], and PEA treatment also reverted
the depression and the impaired cognitive function associated with neuropathy [80].

Epigallocatechin-3-gallate (EGCG), a polyphenolic compound found in green tea,
appears to have numerous beneficial effects due to its antioxidant activity [81]. Some
studies have shown a protective effect of EGCG against neurodegenerative diseases, spinal
cord injuries, and ischemia. Few studies have been conducted on the antioxidant effect
of EGCG in neuropathic pain. Renno et al., in 2012, demonstrated that EGCG improves
functional behavioral recovery, protects muscle fibers from cell death by activating anti-
apoptotic pathways, and improves morphological recovery in skeletal muscle tissues after
nerve injury in rats [81]. Subsequent studies by Xifrò in 2015 [82] and Bosch-Mola in
2017 [83] confirmed the role of EGCG in reducing thermal hyperalgesia through down-
regulation of CX3CL1 protein expression. EGCG also inhibited the mechanical allodynia
via decreased pro-inflammatory cytokine synthesis and reduced NF-kB activity [82,83].

Annona muricata Linn. (Annonaceae), also known as Soursop, is used in traditional
African medicine for the treatment of neuralgia, rheumatism, and arthritic pain, and it has
also been observed to possess analgesic and anti-inflammatory activities in various animal
models of pain [84].

Plant products for treating pain conditions, including diabetic neuropathy, have been
widely used in recent years. For example, rosmarinic acid (RA), found in several medicinal
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plants, is a natural phenol carboxylic acid with anti-inflammatory, antioxidants, analgesic,
and anti-cancer activity [85–87]. Studies conducted by Hasanein et al. in 2014 showed that
oral administration of RA has anti-hyperalgesic and antiallodynic action in experimental
models of streptozotocin-induced diabetic rats [88]. Furthermore, Agrimonia eupatoria L., a
medicinal plant used in traditional medicine, contains phenolic acids, flavonoids, triter-
penes, and tannins, and is known for its antioxidant, antidiabetic, and antibacterial proper-
ties [89]. Lee et al., 2016 also showed the antinociceptive effect of Agrimonia eupatoria L. in
the chemotherapy-neuropathic pain model, showing a lower paw withdrawal latency in
the plantar test and pin-prick test, and a higher paw withdrawal threshold in the Randall–
Selitto test compared to the neuropathic pain group [89].

Ginseng, the root of Panax ginseng C.A. Meyer, has been used extensively for the treat-
ment of various ailments in traditional Asian medicine. Currently, ginsenoside monomers
have been isolated, each with different effects [90]. Park et al. (2009) showed that ginseng
extract and RB1, the most abating ginsenoid, appear to have anti-inflammatory effects [91].
In this regard, Lee et al., 2020 showed that saponin extract and Rb1 also have potential
antinociceptive effects against neuropathic pain [90].

Medicinal plant extracts have antinociceptive and anti-inflammatory effects [92];
Harpagophytum procumbens D.C., a medicinal herb from southern Africa, has different
therapeutic uses, including antioxidant properties [93]. Parenti et al. in 2015 observed,
in rats with CCI, that the combined administration of H. procumbens and morphine could
develop a synergistic effect against allodynia and hyperalgesia, evaluated by von Frey and
plantar tests [94].

Bacopa monnieri (Linn.) Pennell possesses numerous properties, some of which are anti-
dementia, cognitive enhancement, antidepressant, antiepileptic, anti-inflammatory, and
neuroprotective. Specifically, Bacopa monnieri is known to attenuate opioid tolerance and
increase opioid-induced analgesia. Furthermore, it was observed to have strong antinoci-
ceptive properties in relieving hyperalgesia and allodynia in the chronic constricting injury
animal model of neuropathic pain. For these reasons, it could be considered a beneficial
remedy for the management of painful neuropathic syndromes [95]. Gallic acid (GA), a
natural polyphenolic found in green tea, grapes, and berries, showed antioxidant, anti-
inflammatory, and anti-allergic properties associated with different pathways, including
the inhibition of COX2 and the NF-kB signaling pathway [96,97]. Furthermore, GA showed
antinociceptive effects during acute pain. Trevisan et al. in 2014 showed that oral admin-
istration of GA reduced mechanical allodynia and edema formation in an inflammatory
model, and also decreased the nociception induced by a mechanical or cold stimulus in the
CCI model of neuropathic pain [98].

Obesity is a significant factor causing insulin resistance and type 2 diabetes [99].
In particular, diabetic peripheral neuropathy is a disease of the vascular system, which
can lead to ischemia and impaired nerve function. Studies observed that enalapril or
α-lipoic acid monotherapies are effective in ameliorating diabetic peripheral neuropathy,
vascular impairment of arterioles of the sciatic nerve [100], and oxidative stress [101,102].
Moreover, Holmes et al., in 2015, observed that dietary correction in obese and diabetic
rats (12 weeks) with enalapril or menhaden oil improves neurological endpoints [103].
Indeed, diet treatment in obese rats with a high-fat diet containing enalapril or enriched
with menhaden oil improved sensory nerve conduction velocity as well as intraepidermal
nerve fiber density and sensitivity [103].
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Table 3. Studies on natural products effects in several model of neuropathic pain.

References Substances Route of
Administration

Gender
Animals
Strains

Pain Model Behavioral
Test Results

KOMATSU et al.,
2018 [69]

Essential oil of Bergamot
(BEO)

(20 µg/paw)

Subcutaneous
injection (s.c) of

BEO

Male Mice
ddY

PSNL (partial sciatic
nerve ligation) Von Frey test Attenuation of

allodynia

ILARI et al., 2020 [3]
Polyphenol fraction of

Bergamot (BPF)
(50 mg/kg)

Subcutaneous
infusion of BPF
by mini-pump

Male Rats
Sprague–Dawley

Neuropathic pain
induced by sciatic
nerve injury (CCI)

-Von Frey
test

-Plantar test

Reduction in
mechanical

allodynia and
thermal

hyperalgesia

ILARI et al., 2021 [71]
Polyphenol fraction of

Bergamot (BPF)
(25 mg/kg)

Intraperitoneal
injection (i.p.) of

BPF

Male Rats
Sprague–Dawley

Neuropathic pain
induced by

administration of
paclitaxel

-Von Frey
test

-Plantar test

Reduction in
mechanical

allodynia and
thermal

hyperalgesia

IANNOTTA et al.,
2021 [72]

N-Palmitoyl-D-
glucosamine

(PGA)
(20 mg/kg)

Oral gavage Male Mice
CD1

Chemotrapy-
induced peripheral

neuropathy by
oxaliplatin

-Von Frey
-Cold plate

Prevention of
mechanical

allodynia and
hyperalgesia

TENCI et al., 2017 [73]
Lepidium meyenii Walp.

(Maca)
(10 g/kg)

Oral gavage Male Rats
Sprague–Dawley

Neuropathic pain
induced by

administration of
paclitaxel and

oxaliplatin

-Cold plate
Reduction in

thermal
hyperalgesia

BAGDAS et al.,
2014 [74]

Chlorogenic Acid
(5-caffeoylquinic acid,

CGA) (100 mg/kg)

Intraperitoneal
injection (i.p.)

Male Rats
Wistar

Streptozotocin-
induced diabetic
neuropathic pain

-Randall–
Selitto

test

Prevention of
mechanical
allodynia

LINHER-MELVILLE
et al., 2020 [75]

Cannabil oil (CBD)
(0.0833 mg/200 gr rats)

and
∆9-tetrahydrocannabinol
(THC) (0.0167 mg/200

rats).

Oral gavage Male Rats
Sprague–Dawley

Neuropathic pain
by sciatic nerve cuff

surgery
Von Frey test

Reduction in
mechanical
allodynia

BELARDO et al.,
2019 [77]

Cannabil oil (CBD)
(30 µL of CBD dissolved in

10% hemp seed oil and
natural tocopherols)

Oral gavage Male Mice
C57BL/6

Traumatic brain
injury (TBI) Von Frey test

Reduction in
mechanical
allodynia

GUIDA et al., 2015 [80]

Palmitoylethanolmide
(PEA) (10 mg/kg) and

Oleoylethanolamide (OEA)
(10 mg/kg)

Intraperitoneal
injection (i.p.)

Male Mice
CD1

Neuropathic pain
induced by spared
nerve injury (SNI)

-Plantar test
-Dynamic

plantar aes-
thesiometer

Reduction in
mechanical

allodynia and
hyperalgesia

RENNO et al., 2012 [81]
Epigallocatechin-3-

Gallate(EGCG)
(50 mg/kg)

Intraperitoneal
injection (i.p.)

Male Rats
Wistar

Neuropathic pain
induced by sciatic
nerve crush injury

-Von Frey
test

-Randall–
Selitto test

-Hotplate test

Reduction in
mechanical

allodynia and
hyperalgesia

XIFRò et al., 2015 [82] Epigallocatechin-3-Gallate
(EGCG) (50 mg/kg)

Intraperitoneal
injection (i.p.) of

EGCG

Female Mice
Balb-c

Neuropathic pain
induced by sciatic
nerve injury (CCI)

Plantar test
Reduction in

thermal
hyperalgesia

BOSCH-MOLA et al.,
2017 [83]

Epigallocatechin-3-Gallate
(EGCG) (50 mg/kg)

Intraperitoneal
injection (i.p.) of

EGCG

Female Mice
Balb/c

Neuropathic pain
induced by sciatic
nerve injury (CCI)

Plantar test
Reduction in

thermal
hyperalgesia

ISHOLA et al., 2014 [84]
Annona muricata Linn.

(Soursop)
(200 mg/kg)

Oral gavage Male albino mice Morphine induced
pain

Hot plate
test

Reduction in
thermal

hyperalgesia

HASANEIN et al.,
2014 [88]

Rosmarinic Acid (RA)
(30 mg/kg)

Oral gavage (o.g.)
of RA

Male Rats
Wistar

Diabetic neuropathy
induced by

streptozotocin
(STZ)

Tail flick
latency

Reduction in
hyperalgesia and

allodynia

LEE et al., 2016 [89] Agrimonia eupatoria L.
(200 mg/kg) Oral gavage Male Rats

Sprague–Dawley
Cisplatin-induced
neuropathic pain

-Pin-prick
test

-Randall–
Selitto

-Plantar test

Reduction in
hyperalge

LEE et al., 2021 [104]

Ginseng (Panax ginseng
C.A. Meyer) (saponin
extract 50 mg/kg; Rb1

12.5 mg/kg)

Oral gavage Male Rats
Sprague–Dawley

Neuropathic pain
induced by tail

nerve injury (TNI)
and spinal cord

injury (SCI)

-Plantar test
-Von Frey

test

Reduction in
allodynia and
hyperalgesia
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Table 3. Cont.

References Substances Route of
Administration

Gender
Animals
Strains

Pain Model Behavioral
Test Results

PARENTI et al.,
2015 [94]

SHAHID et al., 2017 [95]

Harpagophytum
procumbens

(400–800 mg/kg) plus
morphine (3–5 mg/kg)

Bacopa monnieri (Linn.)
Pennell

(80 mg/kg)

Intraperitoneal
injection (i.p.)
Oral gavage

Male Rats
—-

Male Rats
Sprague–Dawley

Neuropathic pain
induced by sciatic
nerve injury (CCI)
Neuropathic pain
induced by sciatic
nerve injury (CCI)

-Plantar test
-Von Frey

test
-Von Frey

test
-Hot plate

test

Reduction in
allodynia and
hyperalgesia
Reduction in
mechanical

allodynia and
hyperalgesia

HOLMES et al.,
2015 [103]

-Menhaden oil (replacing
50% of the high fat diet)

Oral
administration
(containing in
high fat diet)

Male Rats
Sprague–Dawley

Diabetic neuropathy
induced by

streptozotocin
(STZ)

Plantar test
Reduction in

thermal
hyperalgesia

3.3. Meta-Analysis

The systematic review identified 19 papers, divided into two separate meta-analyses
according to behavioral analyses used for the identification of neuropathic pain (thermal
hyperalgesia (sec) or mechanical (gr) hyperalgesia/allodynia). Articles which reported
behavioral studies concerning both thermal and mechanical approaches were included in
both meta-analyses. Strains and genders of mice/rats were considered.

3.3.1. Meta-Analysis of Thermal Hyperalgesia

Based on pain assessment methods, we divided this meta-analysis into two further
meta-analyses: the first measured the hyperalgesic threshold only on the injured paw
(Figure 4), and the second measured the hyperalgesic threshold on both paws (Figure 5).
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Figure 4. Forest plot showing the nutraceutical effects in thermal hyperalgesia by measuring the
withdrawal latency in the injured paw. SD, standard deviation; SMD, standardized mean differences;
CI, confidence interval.

In the first meta-analysis, eleven studies, with a total of 89 animals in the experimental
group and 87 animals in the control group, were included (Figure 4). Results generated
by fixed model showed a strong beneficial effect of natural drugs on thermal hyperalgesia
measured in the injured paw, compared to the control group (SMD: 1.79; 95% CI: 1.41 to
2.17; p < 0.0001). A low and statistically significant heterogeneity between studies was
observed: I2 = 50%, p = 0.03 (Figure 4). Visual inspection of the funnel plot did not identify
substantial asymmetry (Supplementary Figure S1), also confirmed by the Egger’s test
(t = 2.05; p = 0.07).
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Figure 5. Forest plot showing the nutraceutical effects on thermal hyperalgesia by measuring the
withdrawal latency in the two paws. SD, standard deviation; SMD, standardized mean differences;
CI, confidence interval.

Seven studies, with a total of 71 animals in the experimental group and 69 animals in
the control group, were included in the second meta-analysis (Figure 5). Results generated
by the random effects model showed a strong beneficial effect compared to the control
group of natural drugs in thermal hyperalgesia measured in the two paws (SMD: −1.74;
95% CI: −3.36 to −0.11; p = 0.036). A high heterogeneity between studies was observed:
I2 = 90%, p < 0.01. Visual inspection of the funnel plot identified substantial asymmetry,
confirmed by the trim and fill method, with three added studies printed as open circles
(p = 0.782) (Supplementary Figure S2), confirmed by Egger’s test (t = −2.37, p = 0.064).

Multivariate Meta-Regression Analysis in Thermal Hyperalgesia

Selected variables, such as publication year, animal species, behavioral test, pain model,
and route of administration were tested as potential confounders in the meta-regression
analysis. None of them resulted as statistically significant (data not shown).

3.3.2. Meta-Analysis of Mechanical Allodynia/Hyperalgesia

A total of 19 studies were included in the meta-analysis of mechanical allodynia/hyperalgesia,
including a total of 171 animals in experimental groups and 161 animals in the control groups
(Figure 6). Results generated by the random-effects model showed a strong beneficial effect of
natural drugs on mechanical allodynia/hyperalgesia measured in the injured paw, compared to
untreated animals (SMD: 1.95, 95% CI: 1.08 to 2.82; p < 0.001).

A high heterogeneity between studies (I2 = 85.0%; p < 0.01), was confirmed by the trim
and fill method, with seven added studies (p = 0.172) (Supplementary Figure S3), and by
the Egger’s test (t = 4.55; p = 0.0003).

Subgroup Analysis and Univariate Meta-Regression in Mechanical
Allodynia/Hyperalgesia

The high degree of heterogeneity observed in this meta-analysis allowed us to test
different variables, such as publication year, animals, behavior, pain model, and route of
administration, as potential confounders in the meta-regression analysis. In the univariate
meta-regression, animals and their behavior were not significantly associated with the
effect of natural drugs on pain.
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In order to further investigate the residual heterogeneity observed in the meta-analysis
of mechanical allodynia/hyperalgesia, route of administration (Figure 7) and pain model
(Figure 7) were divided into small subgroups and re-analyzed. With regard to the route
of administration, mPFC microinjection had a strong effect (SMD: 3.58; 95% CI: 2.51 to
4.65) and oral gavage (SMD: 2.61; 95% CI: 1.07 to 4.16) had a moderate effect, while
intraperitoneal injection (SMD: 1.42; 95% CI: 0.75 to 2.09) had a lower and insignificant
effect, and subcutaneous administration was not associated with any effect (Figure 7).
Heterogeneity was generally low or very low, apart from with oral gavage (I2 = 86%,
p < 0.01).

In the meta-analysis of the pain model subgroup, we observed that neuropathic pain
induced by chemotherapy or diabetic agents had a stronger effect (SMD: 4.7, 95% CI: 0.63
to 8.11) than that induced by injury of the sciatic nerve (SMD: 1.60, 95% CI: 0.72 to 2.48)
(Figure 8). A high heterogeneity between studies was observed (I2 = 86.0%, p < 0.01 and
I2 = 85.0%, p < 0.01, respectively) (Figure 8).

Meta-regression analyses investigated whether route of administration and pain model
were positively or negatively associated with intervention effects.

Specifically, the univariate meta-regression for route of administration did not show
a statistically significant difference between subgroups (QM = 7.11, p = 0.07). Likewise,
the univariate meta-regression for pain model also did not show a statistically significant
difference between subgroups (QM = 2.52, p = 0.11).
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4. Discussion

The present meta-analysis provides a comprehensive report on the effect of natu-
ral drugs in controlling neuropathic pain. Through meta-regression, we evaluated the
confounding factors (animal model of pain, type of animal, route of administration, and
different pain measurements) which could possibly be responsible for the heterogeneity
observed in the results.

Neuropathic pain is a health problem affecting many people around the world, with
critical socioeconomic effects. Regarding the mechanisms, the role of oxidative stress and
the inflammatory response has been extensively described [105]. Furthermore, pharmaco-
logical and non-pharmacological treatments are available for chronic pain, although the
limited efficacy and side effects these therapies make their use controversial [8]. Therefore,
it becomes urgent to discover new, safe, and effective strategies to prevent this condition.

In recent years, new therapeutic options to contrast neuropathic pain have been inves-
tigated; among them are natural products, especially medicinal herbs [55]. Phytochemicals
prevent diseases due to their antibacterial, antifungal, anti-inflammatory, diuretic, and
anesthetic effects. Additionally, some phytochemicals protect against oxidative stress dam-
age, and thus inhibit different types of pain. In this regard, numerous studies are currently
focusing on the characterization and application of natural agents in various diseases for
the reduction in and/or elimination of free radicals [17].

This systematic review examined the effect of nutraceuticals, mainly antioxidants, on
the reduction in neuropathic pain measured through thermal hyperalgesia or mechanical
allodynia/hyperalgesia.

In total, 19 preclinical studies met the inclusion criteria. Fifteen natural compounds
groups were included: bergamot (Citrus bergamia) (n = 3), cannabinoid oil (n = 2), N-
Palmitoyl-D-glucosamine (n = 1), palmitoylethanolmide and oleoylethanolamide (n = 1),
epigallocatechin-3-Gallate (n = 3), rosmarinic acid (n = 1), Agrimonia eupatoria L. (n = 1),
Harpagophytum procumbens (n = 1), Lepidium meyenii Walp. (Maca) (n = 1), chlorogenic acid
(5-caffeoylquinic acid, CGA) (n = 1), Annona muricata Linn. (Soursop) (n = 1), ginseng
(Panax ginseng C.A. Meyer) (n = 1), Bacopa monnieri (Linn.) pennell (n = 1), and menhaden
oil (n = 1). All studies compared the effects of natural treatment on neuropathic pain in
mice (n = 7) or rats (n = 12), which were mostly male.

Various mechanisms are involved in the onset of neuropathic pain, the most important
of which are mechanically induced pain neuropathy, diabetes, and chemotherapy [3,71].
Therefore, the present study includes data related to these mechanisms, and through the
analysis of thermal hyperalgesia and mechanical allodynia/hyperalgesia, nutraceuticals
seem to improve the symptoms of neuropathic pain caused by all of these mechanisms.

In this setting, it the effect of the natural drugs was compared in the following
three neuropathic pain models in animals: CCI, SNI, PSNL, sciatic nerve crush and sci-
atic nerve cuff surgery (peripheral neuropathic pain), brain trauma (central neuropathic
pain), streptozotocin-induced neuropathic pain (diabetic induced neuropathic pain), and
paclitaxel-oxaliplatin- and cisplatin-induced neuropathic pain (chemotherapy induced
neuropathic pain).

Meta-analyses showed the beneficial role of nutraceuticals in animals with neuropathic
pain by evaluating the effect of treatment on the thermal hyperalgesia measured in the
injured paw (SMD: 1.79; 95% CI: 1.41 to 2.17; p < 0.0001) and in the two paws (SMD: −1.74;
95% CI: −3.36 to −0.11; p = 0.036), or by targeting mechanical allodynia and hyperalgesia
(SMD: 1.95; 95% CI: 1.08 to 2.82; p < 0.001).

However, the substantial heterogeneity between studies allowed us to perform sub-
group analyses to discover the source of this heterogeneity.

These analyses revealed that the administration of natural drugs improved thermal
hyperalgesia regardless of the type of animal, the behavioral test, or the route of admin-
istration. Furthermore, the analysis showed that natural drug administration improved
mechanical allodynia/hyperalgesia symptoms primarily in chemotherapy or diabetes-
induced neuropathic pain (although only four studies used these mechanisms), compared
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to mechanically induced neuropathic pain (fifteen studies). More studies are needed to
define the best pain model for the effectiveness of natural drugs.

The route of administration of the natural compound was also evaluated in this
study. In particular, the method of drug administration in the analysis of mechanical
hyperalgesia/allodynia was subcutaneous in two studies, intraperitoneal in five studies,
and by gavage in ten studies, while only one author used m-PFC microinjection. The
analysis revealed that m-PFC microinjection and oral gavage could be the main routes for
natural drugs in neuropathic pain. However, given the few studies reviewed, these results
require further investigation.

However, despite the heterogeneity found, all of the results of the experimental
studies on the use of nutraceutical compounds provide substantial mechanistic sup-
port to the use of these therapeutic options for managing persistent pain in clinical and
rehabilitative settings.

Limits and Strengths of the Study

Possible methodological limitations of this systematic review and meta-analysis need
to be considered: some data were collected from the same study, which could influence the
results with regard to the efficacy of the natural compounds in neuropathic pain. All studies
included in this review showed different experimental designs. The natural compounds
identified derive from several families, including capnellene, epigallocatechin-3-gallate,
Agrimonia eupatoria L., essential oil of bergamot, gallic acid, rosmarinic acid, menaden oil,
cannabiloil oil, N-Palmitoyl-D-glucosamine, polyphenolic fraction of bergamot, Harpago-
phytum procumbens, Lepidium meyenii Walp., CGA, Annona muricata Linn. (Soursop), ginseng,
Bacopa monnieri (Linn.) pennell, Palmitoylethanolamide (PEA) and oleoylethanolamide
(OEA), thus increasing heterogeneity. Another limitation of the present work was the low
number of studies on the efficacy of natural drugs in managing thermal hyperalgesia and
mechanical allodynia/hyperalgesia, due to a lack of data from other works.

5. Conclusions

The results of this systematic review and meta-analysis clearly illustrate the efficacy
of nutraceutical compounds in preclinical neuropathic pain models. In particular, in vivo
pain models could represent an important starting point for increasing the translational
impact on pain research. Of course, new research is needed to improve the homogeneity
of the studies. It is important to note that although there was much heterogeneity, all
of the results found a beneficial effect of drugs in neuropathic pain induced in different
ways, thus showing the importance of the use of the nutraceuticals and the validity of this
study model.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox11122361/s1, Figure S1: Funnel plot for meta-analysis on
the effects of natural drugs in neuropathic pain; Figure S2: Funnel plot for meta-analysis on the effects
of natural drugs in neuropathic pain after applying the trim-and fill method. The filled-in-study
results are printed as open circles.; Figure S3: Funnel plot for meta-analysis on the effects of natural
in neuropathic pain after applying the trim-and fill method. The filled -in-study results are printed as
open circles.
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