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Abstract: Schizophrenia (SZ) is a deleterious brain disorder affecting cognition, emotion and reality
perception. The most widely accepted neurochemical-hypothesis is the imbalance of neurotransmitter-
systems. Depleted GABAergic-inhibitory function might produce a regionally-located dopaminergic
and glutamatergic-storm in the brain. The dopaminergic-release may underlie the positive psychotic-
symptoms while the glutamatergic-release could prompt the primary negative symptoms/cognitive
deficits. This may occur due to excessive synaptic-pruning during the neurodevelopmental stages
of adolescence/early adulthood. Thus, although SZ is not a neurodegenerative disease, it has been
suggested that exaggerated dendritic-apoptosis could explain the limited neuroprogression around
its onset. This apoptotic nature of SZ highlights the potential therapeutic action of anti-apoptotic
drugs, especially at prodromal stages. If dysregulation of apoptotic mechanisms underlies the
molecular basis of SZ, then anti-apoptotic molecules could be a prodromal therapeutic option to
halt or prevent SZ. In fact, risk alleles related in apoptotic genes have been recently associated to
SZ and shared molecular apoptotic changes are common in the main neurodegenerative disorders
and SZ. PRISMA-guidelines were considered. Anti-apoptotic drugs are commonly applied in classic
neurodegenerative disorders with promising results. Despite both the apoptotic-hallmarks of SZ and
the widespread use of anti-apoptotic targets in neurodegeneration, there is a strikingly scarce number
of studies investigating anti-apoptotic approaches in SZ. We analyzed the anti-apoptotic approaches
conducted in neurodegeneration and the potential applications of such anti-apoptotic therapies as a
promising novel therapeutic strategy, especially during early stages.

Keywords: apoptosis; apoptotic inhibitors; schizophrenia; systematic review; therapy

1. Introduction

Schizophrenia (SZ) is a heterogeneous psychiatric disorder with unclear etiology
affecting ~1% of the population worldwide [1]. The few pharmacological treatments avail-
able mainly target the positive psychotic symptoms, but not the negative and cognitive
symptoms. To gain a complete understanding of SZ, the integration of multidisciplinary
approaches through molecular biology, genetics, epigenetics, environmental factors, neu-
roimaging, cell and animal models, translational clinical and epidemiological research is
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needed. According to the neurodevelopmental hypothesis of SZ [2], early processes such
as abnormal neurogenesis, neuronal migration, dendritic arborization or axonal outgrowth
would affect the formation of the neural circuits. During adolescence and young adulthood,
postnatal brain maturation abnormalities, including excessive dendritic spine pruning [3],
could eventually account for the onset of SZ symptoms [4]. In order to study dendritic
pruning during brain maturation, several key neurodevelopmental animal models of SZ
have been developed. Some neurodevelopmental models of SZ include the maternal im-
mune activation model [5] or the use of antagonists of the n-methyl-D-aspartate (NMDA)
receptors, such as MK-801 [6] ketamine [7] and phencyclidine [8,9] or prenatal methyla-
zoxymethanol acetate exposure [10–13], with the latter being one of the most validated
neurodevelopmental model of SZ, in terms of face, construct and predictive validity [14–18].

1.1. Synaptic Pruning in SZ

Cortical pyramidal neurons from subjects with SZ exhibit different anatomical fea-
tures [19] (Figure 1).

Figure 1. Neuronal features in SZ. Cortical pyramidal neurons from subjects with schizophre-
nia exhibit smaller soma volume, decreased spine density, decreased dendritic length and
decreased terminals.

The hypotheses of the underlying etiopathogenesis of SZ have been repeatedly re-
formulated and yet continue to be revisited. We recently reviewed a reassessment of the
synaptic over-pruning hypothesis of SZ [20]. The glutamate hypothesis, accounting for
the mostly prodromal negative symptoms, arose more recently as compatible with the
initial hypothesis of a dopamine storm explaining the positive symptoms. Glutamate acts
as the main neurotransmission modulator via NMDA/α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptors under physiological conditions, but may trigger
loss of integrity of dendritic spines upon dysregulation. During a critical neurodevelop-
mental period, there is dysregulation between excitatory glutamatergic pyramidal neurons
and inhibitory gamma-aminobutyric acid (GABAergic) interneurons, leading to excessive
local glutamate release [20]. Glutamate dysregulations, via its NMDA/AMPA receptors,
negatively impact the integrity of the dendritic spines, with subsequent excessive dendritic
pruning with the activation of local apoptosis machinery. Over-pruning of dendritic spines,
together with aberrant synaptic plasticity may lead to neural misconnections and subopti-
mal synaptic function, promoting clinical symptoms [20]. Indeed, postmortem studies have
reported reduced number of dendritic spines, especially on pyramidal neurons located in
layer-III of the prefrontal cortex, in the superior temporal gyrus, and in hippocampal sub-
fields (CA3) [3,21]. Taken together, the driving hypothesis of glutamate storms originating
from uncontrolled extrapyramidal neuron firing due to inefficient inhibitory regulation
of GABAergic-interneurons highlights the importance of pharmacological interventions
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during the prodromal phase of disease and apoptotic targeting. Accordingly, the use of
anti-apoptotic drugs has been reported to prevent the loss of GABAergic interneurons [22].

Dendritic pruning, however, is not restricted to pathologic contexts. Physiologically,
dendritic pruning corresponds to a highly regulated homeostatic neurodevelopmental
process to either favor or delete certain brain connections underpinning synaptic plasticity
during normal growth. Significant cell death occurs during early development of the
nervous system with over half of all developing neurons dying via apoptosis [23]. Interest-
ingly, aberrant dendritic apoptosis preceding neuronal death has also been found in the
hippocampus and prefrontal cortex in the early stages of neurodegenerative diseases such
as Alzheimer’s disease (AD) [24]. Even though the underlying molecular mechanisms are
not fully understood [25], synaptic pruning exhibits molecular features in common with
apoptosis [26]. It is worth mentioning that microglia and immune responses also contribute
to the loss of dendritic spine density in SZ [27], although this is beyond the scope of this re-
view. In any case, during dendritic apoptosis, apoptotic molecules generate the signals that
attract microglia for removal of synaptic debris, suggesting that microglial phagocytosis
of synapses occurs downstream in this apoptotic process [28]. Such apoptotic processes
are often regulated by a complex molecular cascade of cysteine proteases, the so-called
caspases (caspase-1–15, of which -2,-8,-9,-10 are initiators and -3-6-7 are effectors) [29]. The
two main apoptotic pathways [24], the molecular interactions [30,31] and involvement of
inhibitor-of-apoptosis (IAP) molecules [32] are herein represented (Figure 2).

Figure 2. Two prototypical apoptotic pathways (extrinsic and intrinsic) initiated by separate events
converge at a common place to execute apoptosis. Main associations of these apoptotic pathways to
the neurodegenerative disorders AD, PD, HD as well as SZ are indicated. Death receptor pathways
triggered by binding of death receptors by their ligands (tumor necrosis factor (TNF, FasL) that results
in receptor clustering and recruitment of adaptor proteins, leading to the activation of initiator caspase-
8. The intrinsic pathway responds to a variety of cellular stress signals that act on mitochondria
to cause leakage of pro-apoptotic effectors like cytochrome c and apoptosis-inducing factor (AIF).
Cytochrome c binds to Apaf-1 in the presence of ATP to form the “apoptosome”, which subsequently
recruits and activates initiator pro-caspase-9. AIF translocates to the nucleus to cause high molecular
weight DNA fragmentation in a caspase-independent manner. Both pathways activate effector
caspases-3 and -7. Endoplasmic reticulum stress causes the activation and release of caspase-12,
leading to apoptotic cell death. AIF, apoptosis-inducing factor; AD, Alzheimer’s disease; ALS,
amyotrophic lateral sclerosis; Apaf, apoptotic protease activating factor; Bak, Bcl-2 homologous
antagonist killer; Bax, Bcl-2 associated X protein; Bcl, B-cell lymphoma; Bid, BH3 interacting domain
death agonist; Casp, caspase; CytC, cytochrome c; FADD, Fas-associated-death-domain protein; FAS,
cysteine-rich transmembrane protein CD95; HD, Huntington’s disease; PD, Parkinson’s disease; SZ,
schizophrenia; tBid, truncated Bid; TNF, tumor necrosis factor.
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1.2. Apoptotic Molecular Studies in Neurodegenerative Disorders and Overlap with SZ

Apoptotic molecular changes and the involvement of apoptotic proteins have been
observed in neurodegenerative disorders, including AD [33], Parkinson’s disease (PD) [34],
Huntington’s disease (HD) [35] and amyotrophic lateral sclerosis (ALS) [36]. Some or
the specific molecular apoptotic changes occurring in these neurodegenerative disorders,
also observed in SZ, will be extensively discussed in Section 3 and briefly summarized in
Figure 2. Importantly, at a genetic level, different known risk alleles related to apoptosis
have been found to be associated with SZ in the recent literature, including apoptotic
mediator BCL11B, BCL2L12, BNIP3L and ENOX1 genes [37].

The clear association between neuronal death and neurodegenerative mechanisms
has led to the widespread use of anti-apoptotic therapeutic strategies in models of classic
neurodegenerative disorders, including AD [38], PD [39], HD [40] and ALS [41]. However,
neuronal death is a complex process that is not restricted to a unique type of mechanism,
quite the opposite, it may occur via a complex and strikingly high number of molecular
events [24]. While multiple molecular pathways lead to the activation of the caspases,
the mitochondrial intrinsic pathway is mostly associated with neuronal apoptosis [19,31].
Regulation of mitochondrial outer membrane permeabilization and intrinsic apoptosis
in neurons appears to center on control of Bax activation (Table S1). Evidence of a main
role of the mitochondrial apoptotic machinery in SZ etiopathogenesis has been reported
in the literature [42,43], placing mitochondrial anti-apoptotic molecules as a potential sur-
rogate therapeutic option. Apoptotic activity can be both preceded and triggered by a
broad panoply of stimuli including pro-inflammatory cytokines, excitotoxicity (including
glutamate excitotoxicity earlier related to SZ), neurotrophin withdrawal, abnormal calcium
concentrations and mitochondrial dysfunction with subsequent oxidative stress [44]. In
fact, the inhibitory GABAergic-interneurons expressing parvalbumin are highly sensitive
to oxidative stress and require a highly regulated antioxidant system to neutralize the over-
production of reactive oxygen species (ROS) generated by mitochondria [45]. Interestingly,
all the aforementioned apoptotic triggers are present in SZ, suggesting apoptosis as a key
factor of SZ onset.

1.3. Apoptotic Molecular Studies in SZ

Despite the underlying mechanisms leading to synaptic dysfunction in SZ being
uncertain, evidence suggests that dysregulation of neuronal apoptosis may contribute to its
pathophysiology [19,46]. It has been hypothesized that apoptotic activity contributes to the
evidence for reduced grey matter volume and synaptic deficits in SZ [19,47]. Additionally,
synaptic/dendritic neuronal loss could be explained by increased susceptibility to apoptosis
in SZ. The basis for the apoptotic features in SZ is widely supported. First, there is a 50%
increase in the Bax/Bcl-2 ratio as an apoptotic indicator (via cytochrome-c release) in the
temporal cortex (area 21, middle temporal gyrus) of SZ patients [48]. Second, there is a
30% decrease in Bcl-2 levels in the temporal cortex in SZ [49]. This suggests that cortical
neurons and synapses in patients with SZ may have less neuroprotection given that Bcl-2
can exert both neuroprotective and neurotrophic effects [19].

Although caspase activation is often considered a precursor to rapid cell death, the
emerging concept of synaptic apoptosis suggests that apoptotic activation can be localized
to synapses of distal neurites without inducing immediate neuronal death or involving
the neuronal cell body [19,50]. Interestingly, caspase-3 activity has been associated with
normal physiological activity, including synaptic plasticity [19]. It is of note that local
apoptosis in SZ occurs in the absence of neuronal cell loss and without changes in the
number of pyramidal neurons [51]. This is in line with animal models that have shown
local caspase activity in neurons in which caspases were confined to the dendritic com-
partment of pruning instead of the soma or axonal areas [26]. NMDA receptor activation
can trigger local dendritic apoptosis [52], and following focal application of glutamate
to distal dendrites in vitro, a localized increase in caspase-3 activity was seen without
propagation to the neuronal soma [50]. This local activation of apoptosis mediated by
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caspase-3 within distal dendrites is enough to prune dendritic spines and branches lo-
cally [53]. If apoptotic activity contributes to synaptic and neuritic elimination, then there
must also be a mechanism to limit the proliferation of the caspase cascade to the rest of
the neuron. The induction of endogenous caspase-inhibitors may be present in neuronal
cytoplasm [54]. Importantly, the different molecular findings constituting the molecular
basis of SZ, including glutamate excitotoxicity, oxidative stress or lack of neurotrophic
factors may converge at the apoptotic endpoint [45]. Results from our research group add
further evidence supporting the apoptotic hallmarks in the disease. We described increased
apoptotic susceptibility in primary fibroblasts from a skin biopsy of naïve patients with a
first-psychotic episode [55] and found a correlation between altered apoptotic markers with
both the volume of certain brain regions and glutamate/glutamine-neurometabolites [56].
Additionally, we observed alterations in the expression of genes involved in apoptotic
pathways [57]. The consistent findings in the literature [58], supported by our group,
suggesting that dysregulation of apoptotic mechanisms underlies the molecular basis of SZ,
led us to propose anti-apoptotic molecules as a challenging prodromal therapeutic option
to halt onset and/or SZ progression.

This systematic review is therefore justified based on: i) the neurodevelopmental
changes derived from excessive dendritic pruning via local activation of the apoptosis
machinery occurring around the onset of SZ, and ii) the efficacy of apoptotic-inhibitors in
classic neurodegenerative disorders, including AD, PD, HD and ALS. We have gathered
the scientific data reported in the literature that used anti-apoptotic molecules to halt
neurodegeneration and have analyzed those treatments with anti-apoptotic properties
against SZ to further elucidate their potential as novel effective therapeutic approaches
targeting SZ.

2. Materials and Methods

This systematic review was conducted in accordance with PRISMA guidelines [59].
The 24-step guide for systematic review and meta-analysis in medical research was fol-
lowed [60], including the definition of research question, team and search strategy, se-
lection criteria, data collection form, study protocol and registration (PROSPERO ID
CRD42021238668). The collection of all references and abstracts, searched in multiple
databases, was gathered in a single file, and elimination of duplicates was performed. Two
reviewers screening title and abstract were used. Collection, comparison and selection
for retrieval was developed by the two independent reviewers. The full texts of the refer-
ences selected based on titles and abstracts were retrieved and the quality of the studies
was considered. Articles were identified by searching for titles in Web of Science (WoS),
PUBMED and SCOPUS databases by using the following research terms: “schizophre-
nia” OR “psychosis” OR “neurodegeneration” OR “neurodegenerative disorders” OR
“neurodevelopmental disorders” AND “caspase inhibitor” OR “pan-caspase inhibitor”
OR “anti-apoptotic molecules” OR “cytochrome c inhibitor” OR “apoptotic inhibitor” OR
“mitochondrial apoptotic channel inhibitors”. The search was restricted to English, Spanish
or German language journal articles with in vitro, human and/or animal subjects, pub-
lished between 1990 and 2021. Blinding during data extraction between the review authors
was achieved making use of Rayyan software for systematic reviews (Qatar Computing
Research Institute, HBKU, Doha, Qatar) [61] which also helps expedite the initial screening
of abstracts and titles using a process of semi-automation while incorporating a high level
of usability.

The searches returned 917 records after duplicates were removed. Screening summary
showed 227 included articles, 647 excluded articles and 43 potential articles for reviewer 1,
and 243 included articles and 674 excluded articles, for reviewer 2. After blind was turned
off, discrepancies were further solved through additional rigorous assessment criteria.
The number of studies included throughout the identification, screening, eligibility and
inclusion processes (n = 124) is provided as a flow diagram (Figure S1).
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2.1. Inclusion and exclusion criteria

Those studies presenting neurological disorders, with a component of neurodegenera-
tion, using interventions with anti-apoptotic compounds were included, with special focus
on molecular findings at the neuronal level. Scoping, systematic and literature reviews
were considered for descriptive purposes. Similarly, those studies without quantifiable
data to be extracted (n = 54) and in silico studies (n = 2) were considered for descriptive
purposes. Ischemic or stroke models were excluded due to a distal etiopathogenic origin
with the disease of interest. Studies not controlling for major confounding factors such
as drug treatment, drug abuse, and different co-morbidities, or that lacked age or gender-
matched controls were not considered. Also, studies that did not allow access to the full
text were excluded.

2.2. Primary and Secondary Outcomes

The main primary outcome parameters of interest for this evaluation were of a bi-
ological nature, as measured by quantification of occurrence of local neuronal viability,
death, loss of dendritic arborization, spine shrinkage, synaptic pruning and function with
inclusion of both continuous and dichotomous data. Since some interventions of this nature
have a close relationship to mitochondria, mitochondrial parameters, such as mitochon-
drial respiratory chain function or oxidative stress parameters and intrinsic apoptosis with
involvement of Bax, Bcl-2 and cytochrome c release were considered. Thus, the literature
was selected in line with these primary outcomes: Molecular data related to mitochondrial,
oxidative and apoptotic pathways. All additional outcome measures not depicted here but
reported in the included studies were also examined. In addition, next to the parameters of
interest, information on adverse effects following the intervention were sought to provide
a full picture of the current state of knowledge and subsequent risks. The units of measure-
ment varied depending on the data extracted; e.g., if molecular data were extracted from
enzymatic activities, units would be nmol of produced or reduced substrate per minute
and mg of protein.

The risk of bias was assessed by two review authors guided by the criteria recom-
mended by the International Cochrane Collaboration: At least two external researchers
were aware of the process, methodological approaches and follow-up of the study. To
ensure the completeness of the outcome data, only treatment interventions using anti-
apoptotic molecules in processes of neurodegeneration and neuroprogression were consid-
ered, mainly conducted in research animal models. Blinding intervention was conducted by
two blinded researchers during the selection criteria and data extraction (Ryyan qcri). Dif-
ferent data storage (cloud and hardware) was used and access restricted to the researchers
involved throughout the study. During the selective outcome reporting, primary and sec-
ondary outcomes were listed and reported, for further comparisons. Molecular and clinical
findings were analyzed in order to elucidate the adequateness of the anti-apoptotic interven-
tions in each specific context of neurodegeneration and/or neuroprogression. Any potential
conflicts of interests were also explored. Any potential source of bias (risk of bias) was
considered, such as bias towards favorable outcomes that may have occurred in the study.
Finally, the assessment of publication bias was defined by identification of unpublished
outcomes and studies, when available. Unpublished findings were searched via meeting
abstracts tracked through Google Scholar, PhD theses available at the university repository,
informal sources and, if needed, by contacting the authors of the studies included.

During the strategy for data synthesis, the approach plan was defined as follows: data
were synthesized in a narrative manner and included studies were described according
to: (i) the type of intervention, including in vivo or in vitro research of neurodegeneration
and neuroprogression using anti-apoptotic molecules, and clinical trials; (ii) the type of
pharmacological agent, including pan-caspase inhibitors, as well as specific anti-caspase-3
and anti-cytochrome c release; (iii) the characteristics of the study population and (iv) type
of outcomes, including molecular parameters, such as neuroconnectivity, mitochondrial
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function and oxidative stress apoptotic markers and clinical findings of a global nature
with special attention to secondary off-target reported events.

3. Results

A large number of anti-apoptotic molecules targeting apoptosis have been tested in
different experimental neurodegenerative models. Most of them directly or indirectly target
apoptosis through different mechanisms (Figure 3).

Figure 3. Different mechanisms by which the anti-apoptotic molecules herein discussed could
target apoptosis, directly or indirectly through excitotoxicity, mitochondrial alterations and derived
oxidative stress and inflammation.

Some groups have suggested a neurodegenerative component of SZ [62]. In such cases,
whether cell death is involved in the neuronal loss in neurodegenerative processes has
important implications for the rational development of therapeutic strategies. The number
of studies related to the use of specific anti-apoptotic molecules at the level of caspases in
the classic neurodegenerative diseases (AD, PD, HD and ALS) vs. SZ is shown (Table S2).
The outcomes indicate the lack of studies using apoptotic inhibitors in SZ with respect to
those in classic neurodegenerative disorders.

3.1. Apoptotic Alterations in Classic Neurodegenerative Disorders

Accumulating data suggest essential roles for apoptotic pathways in the pathophys-
iology of a spectrum of neuropathological disorders [63]. Increased neuronal apoptosis
has been widely demonstrated in classic neurodegenerative disorders, often via grafted or
β-amyloid-induced-neurodegeneration in AD models [44,64] through 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine-(MPTP)-induced-neurodegeneration in PD models [65], through
3-nitropropionic acid (NP3)- or malonate-induced neurodegeneration in HD models [46,66]
and through superoxide dismutase-1 (SOD1)-mutations in ALS models [47,67].

Abnormal levels of apoptotic markers such as anti-apoptotic (Bcl-2/Bcl-xL) and pro-
apoptotic proteins (Bax/Bak/Bad), Bcl-2 protein family members, initiator caspases-8 and
-9 and the effector caspases-3 and -6 have been observed in experimental models of AD [68]
and PD [69–71]. The key role of Bax in MPTP-induced-neurotoxicity is illustrated by the
demonstration that mutant mice deficient in Bax are resistant to the induced toxicity of
PD models [39]. Caspase-1 has also been implicated in other neurodegenerative contexts,
such as HD [72]. Precisely in the context of HD, distinct studies investigated the harmful
influence of human mutant huntingtin in the apoptotic cascade, specifically by triggering
various Bcl-2 Homology 3 (BH3)-only proteins [73]. The functional role of caspase-1
and -3 has also been described in ALS [74]. Taking all these molecular events together,
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the etiopathogenesis of the four most representative classic neurodegenerative disorders
is widely associated with the dysregulation of apoptotic pathways, similar to the case
of SZ, for which ongoing apoptotic molecular alterations have been described in the
previous section.

3.2. Intervention of Apoptotic Molecular Pathways in Neurodegenerative Disorders

The implication of caspases has been proposed as a common therapeutic target for
multineurodegenerative disorders [75] and interfering at this molecular level has led to
promising results. The broad-spectrum cysteine protease inhibitors (cathepsin, calpain
and caspase) benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD-FMK) [76], and
peptide-inhibitors of caspases-2, -3 and -9 attenuated the loss of dopaminergic ventral
midbrain cell bodies (but not neurites) [77]. Similarly, Z-VAD-FMK attenuated mutant
SOD1-mediated cell death in transfected PC-12 cells and in transgenic SOD1 mice [74,78],
and also resulted in delayed disease onset and mortality in these ALS animals [74]. Inhibit-
ing caspase cleavage of huntingtin reduced toxicity and aggregate formation in neuronal
and non-neuronal events [79]. Expression of a dominant-negative mutant form of caspase-
1 in R6/2 mice extended survival and delayed the appearance of neuronal inclusions,
receptor alterations and the onset of symptoms [72], and was associated with increased
resistance to the neurotoxins used to model HD [80]. Pharmacological inhibition of par-
ticular members of the caspase family, such as caspases-2, -3, -8 and -12, protects against
β-amyloid-induced apoptotic cell death in vitro [38,81]. Beyond caspases, but still stick-
ing to anti-apoptotic interventions, overexpression of Bcl-2 protected dopaminergic cells
against MPTP-induced neurodegeneration [82]. The tumor suppressor protein p53, which
is activated after MPTP-intoxication [83], is one of the rare molecules known to regulate Bax
expression [84]. p53-inhibitors attenuated MPTP- induced Bax upregulation and the degen-
eration of dopaminergic neurons [85], and p53-null mice were resistant to MPTP-induced
death of dopaminergic neurons (Table S3).

3.3. Mitochondrial Anti-Apoptotic Targets against Neurodegeneration

The fact that apoptosis is mostly mediated by mitochondria explains why most pre-
viously mentioned intervened apoptotic molecules are mitochondrially-related. Bcl-2 is
located in the mitochondrial outer membrane, whereas cytoplasmic bax is translocated
to the mitochondria upon induction of cell death, and cytochrome-c and caspase-9 are
released by mitochondria [86]. Accordingly, most anti-apoptotic targets halting neuronal
damage found in the literature are aimed at mitochondria or are mitochondrially-driven
(Tables S4 and S5). Inhibition of cytochrome-c release was associated with therapeutic
benefits in HD mice [40]. Overexpression of Bcl-2 mitigated neurodegeneration in both
in vitro and in vivo models of ALS [78] and have been shown to prolong survival in
the classic model of the disease consisting of transgenic SOD1 mice [41]. The carbonic
anhydrase-inhibitor methazolamide, previously related to therapeutic events in HD models,
prevented β-amyloid-induced mitochondrial dysfunction and caspase activation, protect-
ing neuronal and glial cells in vitro and in vivo [87]. Microarray analysis revealed that
the cyclin-dependent kinase olomoucine promoted downregulation of the protein E1B
19-kDa-interacting protein 3 (BNIP3), a pro-apoptotic Bcl-2 family protein involved in
mitochondrial disruption in lipopolysaccharide and nitric oxide (NO)-cell death induced
microglial cells [88]. On the other hand, mitochondrial dysfunction promotes oxidative
stress which, in turn, may precede apoptosis, thus oxidative damage is an interesting
target in neurodegeneration. To date, mitochondrially targeted molecules against oxida-
tive stress is still one of the most effective therapeutic strategies in neurodegenerative
disorders [40,89,90], with the presentation of a wide array of molecules (Tables S4 and S5).
Anti-apoptotic-related natural compounds and antioxidants have also shown therapeutic
effectiveness in HD [91]. Withanolides exerted beneficial effects on cognitive functions
and ultimately neuroprotective effects in HD models [90]. Interestingly, withanolide A
promoted neuritic regeneration and synaptic reconstruction in other neurodegeneration
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models [92]. BN-82451, a newer antioxidant, improved motor ability and attenuated neu-
rodegeneration in a mouse model of HD [90,93]. Vitamin C and α-lipoic acid also had
beneficial effects on motor symptoms and extended survival rates in rodents [93]. Coen-
zyme Q10, a component of mitochondrial membranes and a free radical scavenger, which
has also been associated with anti-apoptotic effects [94], presents therapeutic effects in
HD models. Antioxidants have also been tested in the psychiatric field. Astaxanthin has
been related to antidepressant-like effects in different experimental models, including AD
and PD [95]. Importantly, nicotinamide, a precursor of the coenzymes NAD and NADP
involved in energy metabolism via redox reactions, protects against ketamine-induced
apoptotic neurodegeneration in the infant rat brain [96], which could mimic a prodromal
stage of SZ [96].

Herein we provide quantitative data of mitochondrial outcomes related to the adminis-
tration of anti-apoptotic compounds, indicating less oxidative stress biomarkers in AD [97],
PD [98] and HD [99], increased mitochondrial biogenesis and ATP levels in PD [100] and
increased mitochondrial respiration in AD [101], among others (Table S6).

3.4. Other Anti-Apoptotic-Related Molecular Pathways Associated with Neuroprotection

Often, also related to oxidative stress, hormone metabolism plays an important role in
neurodegenerative processes. This is in line with the classical use of hormone withdrawal
as a model of neurodegeneration [102]. Melatonin, the circadian hormone with antioxidant
features, reversed H-89 induced spatial memory deficit with involvement of oxidative stress
and mitochondrial function [103]. Recent clinical trials with melatonin in PD have not led
to conclusive results as yet [104], although previous studies showed a significant improve-
ment in clinical global impression (CGI: 6.1 versus 4.6; p= 0.024) [105]. Neuroprotection
by estrogen takes place in the brain, and the mitochondrial compartment is considered
the presumed therapeutic target [106]. 17β-Estradiol protected retinal nerve cells against
H2O2-induced apoptosis by significantly inhibiting Bax-involved mitochondrial apoptosis
via the activation of the protein kinase (AKT) signal pathway [107]. Hormones involved in
glucose metabolism, known to be disrupted in comorbidity with several neurodegenerative
processes, have also been associated with anti-apoptotic properties and improvement of
several neurodegenerative features [108], and there is even a clinical trial in PD patients that
showed promising initial results [109]. The neuroprotective effects of hormonal interven-
tions go far beyond the molecular level, leading to the improvement of neurodegenerative
clinical manifestations associated with the intervention of apoptosis [110].

In summary, the wide array of aforementioned caspase-inhibitors, mitochondrial,
antioxidant and hormonal molecules included in this study interact with distinct biological
pathways and have been associated with anti-apoptotic properties in neurodegeneration.
The multitarget effects of such compounds underlie the pharmacological mechanisms of
action to tackle neurodegeneration by converging in cell death. This common anti-apoptotic
link is the requirement for their inclusion in this study, and the specific mechanisms of action
against cell death have been tested in several models of neurodegeneration (Table S3). This
is in line with the wide array of compounds that have been studied to treat the quadriad
neurodegenerative disorders by interfering with apoptosis [111] at both the mitochondrial
level (Table S4) and through the interaction with a variety of targets at distinct cell death
signaling pathways (Table S5).

Both representative, qualitative (Table S5) and quantitative (Table S6) outcomes us-
ing apoptotic-inhibitors in neurodegenerative models, including AD, PD, HD and ALS
have been summarized. First, quantitative data of molecular outcomes showed significant
improvement of synaptic function in mice [112] and decreased neuronal death in neurob-
lastoma in AD [113] increased neuronal survival in PD neuroblastoma [114], HD [46] and
ALS rodents [115], increase of neurotransmitters [116] and decreased proinflammatory
cytokines in PD rodents [117], among others. Importantly, significant quantitative findings
were not restricted to molecular data but also to symptom improvement, since quantitative
clinical outcomes showed significant amelioration of behavioral parameters assessed in
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different neurodegenerative models including AD mice [72], HD rats [109,118], as well as
time of survival, time before disease onset or disease progression in ALS mice [115], upon
applying anti-apoptotic approaches (Table S6).

3.5. Targeting Apoptosis in SZ

Despite the involvement of apoptotic pathways in SZ and the evidence of anti-
apoptotic therapeutic effectiveness in the classic neurodegenerative disorders, the number
of studies investigating anti-apoptotic molecules is lacking in SZ (Table S2). Currently, the
positive symptoms of SZ are clinically attenuated through a known battery of antipsychotics.
Interestingly, certain second-generation antipsychotics could have a neuroprotective role
in vitro via an anti-apoptotic action, as demonstrated in a previous study from our group
using a neuroblastoma cell model. The results indicated that haloperidol induces apop-
tosis, while risperidone and paliperidone may afford protection against it [119]. Both
olanzapine and clozapine present antioxidative and anti-apoptotic activities [120]. Accord-
ingly, antipsychotics have been related to functional changes in mitochondria as the main
apoptotic orchestrator. Clozapine has been specifically reported to improve mitochondrial
function by altering mitochondrial membrane potential [121]. Conversely, haloperidol, a
first-generation antipsychotic, is linked to destructive changes in mitochondria [90,121]. A
recent study also found that clozapine may have a neuroprotective effect on adult neural
stem cells from ketamine-induced cell death in correlation with decreased apoptosis [122].

Other widespread pharmacological options, beyond antipsychotics and related to anti-
apoptotic mechanisms, have been associated with neuroprotection in the context of SZ at
the mitochondrial level (Table S4), mainly as adjunctive therapies in patients. Adjuntive N-
acetylcysteine has been reported to reduce negative and general symptoms in SZ patients in
several clinical trials [123]. N-acetylcysteine was associated with neuroprotective effects and
prevented apoptosis mediated signals in various rodent models underlying mitochondrial
malfunctioning in SZ pathology [121]. It protects against cadmium-induced ROS toxicity
marked by reduced mitochondrial membrane potential, reduced Bcl-2 expression and p53
expression and a reduction in the caspase pathways [121].

Despite the lack of studies using caspase and apoptotic-inhibitors in SZ (Table S2),
a limited proportion of previously expounded substances associated with anti-apoptotic
mechanisms have been tested in this psychiatric disease (Table S7). Melatonin has been
reported both as a surrogate marker and therapeutic agent in SZ [124]. SZ-like behavior
was reported to be unchanged by melatonin supplementation in rodents [125], whereas
other studies report attenuation of SZ-like symptoms and a protective effect on the pre-
frontal cortex region of brain by mitigating the alteration of neurotoxicity markers [126].
Another double-hit compound in SZ, considered both a surrogate marker and a therapeutic
approach, is retinoic acid [127]. Retinoic acid, described to protect against proteasome
inhibition-associated cell death in neuroblastoma cells via the survival protein kinase B
(AKT) pathway [128], has been used as an add-on with antipsychotic treatment and showed
a significant reduction of positive symptoms in SZ patients [129]. Finally, other adjunctive
therapies with antipsychotics have also been tested with other anti-apoptotic-like sub-
stances, including estradiol, quercetin and erythropoietin, among others, all leading to
promising outcomes [130–132] (Table S7). However, the experience using anti-apoptotic
molecules exclusively rather than as an adjunctive treatment in SZ patients is null.

4. Discussion

Despite the high number of studies and growing evidence of the effectiveness of
anti-apoptotic therapeutic strategies in classic neurodegenerative disorders, there is very
little research on anti-apoptotic targets in SZ. This would likely be explained by the limited
investment in the psychiatric field, even in developed countries [133], rather than by the
lack of scientific evidence of the potential positive effects of these surrogate anti-apoptotic
therapies in SZ. Considering both the neuroprogressive and dendritic apoptotic nature
of SZ [20,62], through excessive synaptic pruning derived from glutamatergic storm and
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associated excitotoxicity, the use of apoptotic-inhibitors in SZ is likely to be a promising
approach. This study arose as a proposal for the use of anti-apoptotic drugs and their
potential therapeutic effect in SZ. In summary, experimental SZ models via ketamine
and MK801 induction, interacting with GABA/NMDA receptors, promote subsequent
apoptotic molecular pathways underlying the symptomatology of SZ. Such molecular
events, related to neuronal death, may be inhibited by anti-apoptotic compounds that
eventually protect against excessive synaptic pruning in the SZ brain, preventing the clinical
symptoms of the disease. Specifically, anti-apoptotic molecules inhibit ROS production and
promote mitochondrial membrane potential maintenance, mainly by blocking several key
elements of the apoptotic cascade, including cytochrome-c release or caspase activation,
ultimately resulting in protection against the accelerated dendritic apoptosis seen in SZ.
The scientific evidence for the therapeutic effectiveness of anti-apoptotic strategies in
neurological disorders is striking and goes far beyond the data presented herein. Targeting
programmed cell death in ischemia/stroke [134] has been a common strategy which has
not been considered in this study, as such mechanical models are most likely far from the
molecular neurodevelopmental triggers in SZ and, subsequently, fall outside the scope of
this review.

Targeting cell death is not only useful as a novel therapeutic option but also to elucidate
the etiopathogenic basis of the disease. Therefore, by the use of X-linked apoptotic inhibitor
(XIAP), a new relevant role of caspase-9 was elucidated in ALS [135]; or, by using the pan
caspase inhibitor Z-VAD-FMK, a new role for caspase activation as a potential route rather
than an obligatory initiation step of tubulin associated unit (TAU) aggregation was defined
in AD [136]. The fact that the molecular basis of SZ is not fully established gives rise to
another argument encouraging the use of anti-apoptotic molecules to further shed light on
the unknown molecular nature of this disease.

The available anti-apoptotic approaches with great potential to restore biological
pathways do not only include anti-caspase molecules, but also other apoptotic targets
that could actively intervene, such as calpains [137] or cathepsins [138], among others.
Upstream targets at the mitochondrial level deserve special attention [139], as well as
antioxidative strategies, since they target oxidative damage preceding subsequent apop-
tosis [140]. Such is the case of N-acetyl-cysteine that has been tested in SZ leading to
promising results [141,142]. The phosphodiesterase-type-5-inhibitor sildenafil modulated
the expression of pro- and anti-apoptotic proteins of the extrinsic and intrinsic pathways
and promoted remyelination in the spinal cord [143], indicating neuroprotective effects in a
placebo-controlled study on cognition in SZ [144]. Thus, this review has considered multi-
target molecules ultimately targeting cell death while hypothesizing that an anti-apoptotic
prodromal and upstream intervention via bax inhibition and cytochrome-c release would
prevent SZ-like symptoms.

There is evidence of the interaction of antipsychotic drugs with the apoptotic path-
ways [120]. The dopamine-stabilizer pridopidine protected cells from apoptosis, and
resulted in highly improved motor performance in the HD model using R6/2 mice [145].
Chlorpromazine, an antipsychotic agent, induces G2/M phase arrest and apoptosis via
regulation of the PI3K/AKT/mTOR-mediated autophagy pathways in human oral can-
cer [146]. Prototypical antipsychotic drugs protect hippocampal neuronal cultures against
cell death induced by growth medium deprivation [147]. Additionally, the literature
also reports a close interaction between some drugs altering neurotransmitter levels and
mitochondria [148]. In contrast to these neuroprotective effects of some antipsychotics,
haloperidol has been recently found to present pro-apoptotic features [149], which, in a
paradoxical manner, would eventually aggravate the disease. Interestingly, erythropoietin
prevented haloperidol-induced neuronal apoptosis through the regulation of brain-derived
neurotrophic factor (BDNF) [150], and protective effects against haloperidol-toxicity have
also been reported for cystamine [151]. Regardless of such controversial anti- or pro-
apoptotic effects associated with different antipsychotic drugs depicted in the literature,
the antipsychotic-apoptotic relationship suggests that the apoptotic pathways are indeed
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involved in the course of SZ and, therefore, in line with the rationale of the present study,
anti-apoptotic strategies could serve as the optimal therapeutic option for SZ. However,
adequate therapeutic drugs targeting apoptosis that allow us to more effectively halt, pre-
vent or revert the development of SZ are yet to be discovered. In addition, as reviewed,
the current anti-apoptotic approaches in SZ have been mainly tested as adjunctive treat-
ments included within antipsychotic schedules rather than as exclusive interventions in SZ
patients [129], probably due to the lack of preliminary in vitro and in vivo research studies.

From the main co-treatment of anti-apoptotic approaches combined with antipsy-
chotics reported in SZ, minocycline is probably one of the most representative candidates.
This antibiotic with anti-apoptotic effects has been widely studied in different neurological
disorders including AD [152], PD [153], HD [154] and ALS models [155], among others,
leading to promising findings in most cases [156]. The anti-apoptotic action of minocycline
consists in the inhibition of cytochrome-c release from mitochondria by attenuating the mi-
tochondrial permeability transition pore and inhibiting caspase-1 and -3 [153]. Minocycline
inhibited Aβ-fibril formation [152], attenuated amyloid-induced microglial activation [157]
and reduced the inflammatory events associated with the prevention of cognitive deficits.
Minocycline has also been used in several clinical trials in the main neurodegenerative
disorders, including AD, although, in the most recent clinical trial, it did not delay the
progress of cognitive or functional impairment in people with mild AD during a two-year
period [158]. Minocycline administration has also been associated with beneficial effects
in HD [93] and related to delayed mortality in a transgenic mouse model of HD [159] and
of ALS [155]. Accordingly, it is one of the few anti-apoptotic approaches conducted in
SZ [160]. While some studies do not report any improvement associated with minocy-
cline administration and failure of inhibition of cytochrome-c release [101], others report
promising findings preventing neurodegeneration [153,156]. Controversial data have been
found for the use of minocycline in SZ as well. Whereas some studies do not support
a therapeutic role of minocycline in SZ [161], others cautiously report that minocycline
may be helpful in treating negative and cognitive symptoms in SZ [162]. Minocycline
administration has been associated with an amelioration of cognitive deficits and correlated
with the remission of negative symptoms and reduction of inflammatory parameters [163].
Robust clinical improvements with minocycline treatment have also been described via the
Positive and Negative-Syndrome-Scale (PANSS) for SZ [164]. Controversial data regarding
minocycline administration extends to other molecules with anti-apoptotic properties in SZ.
SZ-like behavior was not altered by melatonin supplementation in rodents [125]. However
this compound has been reported to improve sleep disturbance, antipsychotic side effects
and benzodiazepine discontinuation in SZ [124]. Together, these data demonstrate the
scarcity of conclusive data and the lack of research targeting apoptotic molecules in SZ,
underpinning the urgent need to further investigate this unexplored field.

When proposing anti-apoptotic therapeutic targets in SZ, special attention should be
addressed to potential side effects related to such treatments, especially those concerning
teratogenesis, carcinogenesis and cytotoxicity, considering their ability to intercede in cell
death. Most of the studies conducted in in vitro and in vivo experimental interventions,
herein reviewed, mainly investigate molecular events related to the drug-derived mech-
anism of action, without reporting any off-target effect [165,166]. On one hand, the FMK
group of general cysteine protease inhibitors (cathepsin, calpain and caspase) cause irre-
versible enzyme inhibition making them unsuitable for clinical use. However, interestingly,
most of the anti-apoptotic interventions addressed in other neuropathological contexts are
commercially available and, therefore, their adverse secondary events have already been
tested. Minocycline clinical trials demonstrated adequate tolerability and did not report
adverse events after two years of administration [154]. Memantine, used in AD [167,168],
has been mainly related to headache, constipation, sleepiness, and dizziness and severe
side effects may include blood clots, psychosis, and heart failure [167]. High doses of
methylene blue (>10µM) have been associated with cytotoxic effects in vitro [169]. It seems
that all proposed uses of methylene blue entail levels that block monoamine oxidase, so
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cessation of serotonin reuptake inhibitors should be very carefully considered before using
methylene blue [170]. Cytoprotective effects and cytochrome-P450 toxicity has been studied
in a library of anti-apoptotic compounds leading to some safe molecules such as selective,
reversible, small-molecule caspase-3-inhibitor (RBC1023) [171].

It is important to emphasize the challenging nature of anti-apoptotic interventions in
neurological contexts. Numerous pharmacological compounds have been investigated due
to their potential ability to reduce neuronal injury. Despite promising data from laboratory
work, most of these agents presented disappointing clinical results. This is mainly due
to the complex mechanisms involved in neuronal injury and the difficulty in controlling
physiological factors, probably hampering the availability of a “perfect model of the disease”
(current SZ models may be far from the real biological processes underlying the disease).
One of these complexities relies on the time framework in which both the investigations and
the interventions are conducted. It is most likely that prodromal interventions represent the
most effective therapeutic option for SZ, before the apoptotic cascade leading to irreversible
excessive synaptic pruning occurs. Moreover, heterogeneity of SZ could impact on the
therapeutic efficacy of anti-apoptotic drugs when considering the loss of dendritic spines in
the prefrontal cortex, while other brain regions present opposite results (such as dorsal and
ventral striatum, where there are more synapses and spines). The combination of multiple
strategies, including prodromal intervention, especially in patients with prominent deficit
symptoms, and the use of compounds targeting different apoptosis-related pathways and
the control of physiological variables, may afford the most meaningful results focused on
neuroprotection in SZ.
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