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Abstract: Diabetic Retinopathy (DR) is one of the most important microvascular complications of
diabetes mellitus, which can lead to blindness in severe cases. Mitochondria are energy-producing
organelles in eukaryotic cells, which participate in metabolism and signal transduction, and regulate
cell growth, differentiation, aging, and death. Metabolic changes of retinal cells and epigenetic
changes of mitochondria-related genes under high glucose can lead to mitochondrial dysfunction
and induce mitochondrial pathway apoptosis. In addition, mitophagy and mitochondrial dynamics
also change adaptively. These mechanisms may be related to the occurrence and progression of DR,
and also provide valuable clues for the prevention and treatment of DR. This article reviews the
mechanism of DR induced by mitochondrial dysfunction, and the prospects for related treatment.
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1. Introduction

DR is one of the common complications of diabetes mellitus, which can lead to prolif-
erative retinopathy, macular edema, and eventually blindness [1]. The retina consists of
photoreceptor cells, horizontal cells, bipolar cells, amacrine cells, Miiller cells, and ganglion
cells. Embedded in the layered structure are astrocytes, microglial cells, and the retinal
vasculature, which is composed of endothelial cells and pericytes. These cells play an
important role in the homeostasis of the retina [2]. In diabetic patients, long-term hyper-
glycemia can cause damage to these cells, and microvascular endothelial cells injury can
lead to pathological changes such as vascular exudation [3], microaneurysm formation [4]
and thrombosis [5]. The damage of cone cells and glial cells affects the generation and
conduction of vision and destroys the blood-retinal barrier [6]. The mechanism of cell
damage under a high glucose environment may be related to oxidative stress [7], metabolic
abnormalities [8], epigenetic modification [9], etc., while mitochondrial dysfunction in-
duced by high glucose, as a well-known mechanism, has been widely studied. This article
reviews the mechanism of diabetic retinopathy induced by mitochondrial dysfunction.

2. Overview of Mitochondria

Mitochondria are energy-producing organelles in eukaryotic cells, which participate
in metabolism and signal transduction, and regulate cell growth, differentiation, aging and
death, have been widely studied in the field of biology and medicine.

Mitochondria are an important site for the metabolism of the three major nutrients in
the cell, and the tricarboxylic acid cycle (TCA) in the mitochondrial matrix is the common
hub of sugar metabolism and lipid metabolism. The energy in the saccharide and the
lipid molecules is transmitted in the form of protons and electrons through Nicotinamide
adenine dinucleotide (NADH) and reduced flavin adenine dinucleotide (FADH?2) to the
electron transport chain (ETC) on the inner mitochondrial membrane. Protons and electrons
are finally transferred to oxygen through complexes I-1V in the ETC (including coenzyme
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Q and a variety of cytochromes) to produce H,O and a large number of adenosine triphos-
phates (ATPs). Mitochondria have a bilayer phospholipid membrane structure, and the
molecule transport across the mitochondrial membrane undergoes a strict “quality control”
mechanism, which ensures the relative stability of the mitochondrial matrix environment
and the intermembrane space environment, so as to ensure the normal metabolism [10].

Unlike other organelles, mitochondria have their own separate set of genomes, namely
mitochondrial DNA (mtDNA). Mitochondrial proteins are partially encoded by nuclear
genes and transported from the cytoplasm to the mitochondria across the membrane, while
the other part is directly transcribed and expressed by mtDNA. This pattern reflects the
process of biological evolution, and also illuminates that the expression, modification, and
assembly of mitochondrial proteins are strictly and complexly regulated [11,12].

Mitochondria in cells undergo dynamic changes. The mechanism of mitochondrial
fusion and fission is essential to maintain its normal morphology, quantity, distribution,
and function, which can resist cell aging and play a compensatory or remedial role under
stress conditions [13]. Damaged or dysfunctional mitochondria can disrupt cellular home-
ostasis [14], and PINK1/Parkin-mediated mitophagy can clear these mitochondria [15],
exerting mitochondrial quality control and cytoprotective effects.

However, the number, size, structure and physiological functions of mitochondria
may change under pathological conditions such as ischemia and hypoxia, nutrient defi-
ciency or imbalance, endotoxin injury, calcium overload, and so on. ETC dysfunction and
(or) antioxidant deficiency can lead to oxidative stress [16,17], producing excessive ROS,
damaging cell structure and interfering with normal metabolism [3], while repressing ATP
production [18,19]. Oxidative stress and calcium overload induce mitochondrial perme-
ability transition (mPT) mediated by mitochondrial permeability transition pore (mPTP),
which leads to the extravasation of mitochondrial contents such as cytochrome C, causing
apoptosis and inflammatory response [20]. Prolonged opening of mPTP can lead to NADH
consumption, damage complex I, and further aggravate oxidative stress [21,22]. On the
basis of these processes, mtDNA can be damaged, and the mitochondrial dynamic regula-
tion and mitophagy mechanism will also be destroyed [23], further affecting mitochondrial
homeostasis and resulting in corresponding pathological changes in cells and tissues.

In a long-term hyperglycemic environment, the above mitochondria-related patho-
logical processes may exist in retinal cells, causing damage to various types of retinal cells
over time, leading to DR.

3. Mitochondrial Dysfunction Secondary to Diabetes Mellitus Induces Retinopathy
3.1. Metabolic Changes
3.1.1. Glucose Metabolism

Under the stress of hyperglycemia, the nerve cells, pigment epithelial cells, and capil-
lary endothelial cells in the retina can undergo glycometabolic reprogramming. Dysfunction
of the ETC, as the core change, results in energy generation disturbance [24], oxidative
stress, abnormal glucose metabolite production, retinal microcirculation disorders, and
other pathophysiological changes, inducing the occurrence of retinopathy [25].

In the case of continuous hyperglycemia, the overload of NADH and FADH?2 produced
by TCA can induce high mitochondrial membrane potential, which makes the ETC stagnate
in complex III, and the electrons and protons carried by coenzyme Q are difficult to transfer
to the downstream of the respiratory chain. At this time, oxygen molecules as electron
acceptors can generate superoxide, mediating changes in cell metabolism [26].

e  The activity of GAPDH is reduced, activating the polyol pathway

Excess accumulation of intracellular superoxide activates PARP with the depletion of
nicotinamide adenine dinucleotide (NAD") [27]. As a result, the activity of glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) is significantly reduced [28], and the glycolysis
process is inhibited. At this time, the polyol pathway of glucose metabolism is over-
activated; in other words, glucose is converted to sorbitol under the action of aldose
reductase, and then sorbitol can be oxidized to fructose [29]. Due to the decrease of the
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NAD*/NADH ratio, sorbitol, the intermediate product of polyol pathway, accumulates,
and its high hydrophilicity can lead to cell hypertonicity, damage retinal capillary en-
dothelial cells, and cause micro-circulation disorders [30]. The activation of the polyol
pathway is also accompanied by further depletion of NAD*, which has a positive feedback
effect on oxidative stress [31]. The C106T polymorphism in the aldose reductase gene is
associated with the severity of retinopathy in type 2 diabetes [32]. Inhibition of aldose
reductase reduces neuronal apoptosis, glial response, and complement deposition and
retinal ne-ovascularization in DR [33].

e  The inhibition of glycolysis also leads to overactivation of the hexosamine pathway

The inhibition of glycolysis also promotes the metabolism of fructose-6-phosphate via
the hexosamine pathway to UDP-N-acetyl glucosamine (UDP-GlcNAc), which promotes
the synthesis of proteoglycans and O-linked glycoproteins. O-GlcNAc can covalently
modify the transcription factor Sp1, which activates the expression of glucose-responsive
gene plasminogen activator inhibitor-1 (Pal-1) in vascular smooth muscle cells [34], thus
promoting DR [35]. It has been found that the level of hexosamine in the retinal tissue of
diabetic patients is increased [30], which promotes the downstream O-GlcNAc to play a role
in signal transduction, transcription regulation, regulation of cytoskeletal dynamics, and
cell division [36]. Glucosamine, a product of the hexosamine metabolic pathway, causes
retinal pericyte loss and the formation of acellular capillaries in non-diabetic animals by
inhibiting VEGFR2 and Ang? in the normal retina [37]. High hexosamine levels can also
enhance cellular oxidative stress by positive feedback, further damaging the mitochondrial
respiratory chain by promoting ROS generation [38]. However, oral administration of
glucosamine protected retinal neurons in a mouse model of DR. The mechanism of this
bidirectional regulation remains to be clarified [37].

e  Triose phosphate accumulates, activating several PKC-related pathways

Attenuation of GAPDH activity results in increased concentration of intracellular
triose phosphate, which can be decomposed and acylated to diacyl glycerol(DAG) [39], and
also participates in the formation of various advanced glycation end products (AGEs) [40],
all of which play an important role in the pathogenesis of DR. On the one hand, DAG
can directly activate protein kinase C (PKC) in the retina, mainly (3- and &-type isozymes,
while the activation of PKC-x and -¢ is also found in the retina of diabetic rats [39]. On
the other hand, AGE-mediated signaling pathways as well as metabolic products of the
polyol pathway are also associated with PKC activation [41,42]. Activated PKC increases
the activity of cytosolic phospholipase A2 and promotes the production of arachidonic
acid and prostaglandin E2 (PGE2); the latter inhibits the activity of Na+/K+ ATPase [43],
leading to cell edema. PKC-o is related to the increased permeability of vascular endothelial
cells under the condition of high glucose [44], and the activation of PKC-f can mediate
retinal vasoconstriction and blood flow reduction by inhibiting the production of nitric
oxide and increasing the activity of endothelin-1 [45]. These mechanisms may result in the
injury and necrosis of retinal cells and affect the function of the retina. In addition, PKC
can induce the expression of vascular endothelial growth factor (VEGF) in retinal tissue,
thus increasing vascular permeability and promoting angiogenesis, which is closely related
to the non-proliferative and proliferative changes in DR, respectively [46,47].

e  Massive synthesis of AGEs exerts pathological effects inside and outside cells

AGEs refer to a series of proteins, of which amino-groups are modified by intracellular
dicarbonyl products (including glyoxal, methylglyoxal, and 3-deoxyglucosone), can be
produced massively and secreted to extracellular medium when glycolysis is blocked.
AGEs can change the function of intracellular and extracellular proteins, and are associated
with intracellular signal transduction, metabolic regulation and cell adhesion [26]. Stitt et al.
found that the content of AGEs in retinal blood vessels of diabetic mice was increased [48],
and AGEs could interact with the receptor for advanced glycation end products (RAGE)
on the plasma membrane of adjacent cells, exerting pathological effects, including promot-
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ing the activation of nuclear factor Kappa B (NF-«B) in retinal pericytes to induce their
apoptosis, up-regulating the expression of VEGF in retinal capillary endothelial cells to
increase vascular permeability, and activating the RhoA /ROCK signaling pathway as well
as inducing moesin phosphorylation to promote retinal neovascularization [49-51]. AGEs
can also lead to retinal vascular hyperpermeability by disrupting intercellular adhesion
and tight junctions [52]. AGEs can up-regulate the expression of intercellular adhesion
molecule-1 (ICAM-1) on the surface of endothelial cells, resulting in leukocyte stasis in the
microcirculation and causing microcirculation disorders [53]. Ying et al. proposed that the
severity of DR can be predicted by measuring AGEs [54]. As a result, researchers have
begun to explore the possibility of delaying the progression of DR by inhibiting AGEs.
Hammes et al. found that AGE-inhibitor amino-guanidine can inhibit the proliferation of
abnormal retinal endothelial cells and significantly reduce pericyte shedding, thereby in-
hibiting the progression of DR [55]. Endogenous Glyoxalase I can inhibit the production of
AGEs, and Maisonpierr et al. have found that its overexpression could inhibit the increase
of Angiopoietin-2 (Ang-2) expression in Miiller cells induced by hyperglycemia, thereby
reducing damage to pericytes and capillary endothelial cells [56].

To sum up, the reprogramming of glucose metabolism, the activation of PKC, and the
production of AGEs may all contribute to the occurrence of DR (Figure 1), while the specific
mechanism remains to be clarified. It is worth mentioning that manganese superoxide
dismutase (MnSOD) and Uncoupling Protein 1 (UCP-1) can inhibit almost all of the above
cell biological changes to varying degrees [26], proving that oxidative stress plays a central
role in the process of glucose metabolism disorder and retinopathy.
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Figure 1. (A) Under the condition of high glucose, the overload of NADH and FADH2 produced by
the TCA cycle in retinal cells can induce high mitochondrial membrane potential, which makes the
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ETC stagnate in complex III, and the electrons and protons accepted by CoQ are difficult to transfer
to the downstream. At this time, O, can be used as electron acceptors to generate superoxide. (B) The
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accumulation of intracellular superoxide can consume NAD*, thus inhibiting the activity of GAPDH
and blocking the glycolytic pathway. (C) The polyol pathway of glycolysis is activated, that is,
glucose is converted into sorbitol under the action of aldose reductase, and sorbitol can be catalyzed
by NAD™ into fructose. Due to the consumption of NAD*, sorbitol accumulates, leading to cell
hypertonicity, damaging retinal capillary endothelial cells, and causing microcirculation disorders.
(D) The metabolic pathway of hexosamine is activated. The produced glucosamine can lead to the
loss of retinal pericytes and the formation of acellular capillaries by inhibiting VEGFR2 and Ang?2
in the normal retina. At the same time, the production of UDPGIcNACc increases, promoting the
synthesis of O-linked glycoprotein. The latter covalently modifies transcription factor Sp1, activating
the expression of glucose-responsive gene Pal-1 in vascular smooth muscle cells, thus promoting the
occurrence of DR. (E) The decrease of GAPDH activity leads to the increase of triose phosphate, which
can produce DAG and also participate in the formation of various AGEs. DAG can directly activate
PKC, increasing the activity of PLA2 and promoting the production of PGE2, thereby inhibiting
the activity of Na+/K+ ATPase. PKC itself is associated with increased permeability of retinal
vascular endothelial cells, angiogenesis, vasoconstriction, and decreased blood flow. (F) AGEs can
interact with RAGE to promote the activation of NF-kB, upregulate the expression of VEGF and
ICAM-1, and activate the RhoA /ROCK signaling pathway, thus promoting apoptosis, increasing
vascular permeability, causing microcirculation disorders, and inducing angiogenesis in the retina.
Abbreviations: NADH, nicotinamide adenine dinucleotide; FADH2, flavine adenine dinucleotide,
reduced; TCA cycle, tricarboxylic acid cycle; ETC, electron transfer chain; CoQ, coenzyme Q; NAD*,
nicotinamide adenine dinucleotide; VEGFR2, vascular endothelial growth factor receptor 2; Ang2,
angiopoietin-2; UDPGIcNAc, uridine diphosphate-N-acetylhexosamine; Pal-1, plasminogen activator
inhibitor-1; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; DAG, diacylglycerol; PKC, protein
kinase C; PLA2, phospholipase A2; PGE2, prostaglandin E2; AGE, advanced glycation end products;
RAGE, receptor for advanced glycation end products; NF-«B, nuclear factor kappa-B; VEGF, vascular
endothelial growth factor; ICAM-1, intercellular cell adhesion molecule-1; Cyt ¢, cytochrome c;
G-6-P, glucose-6-phosphate; F-6-P, fructose-6-phosphate. The figure is created with biorender.com
(https:/ /biorender.com/, accessed on 2 October 2022).

3.1.2. Lipid Metabolism

Abnormal lipid metabolism occurs in more than 75% of individuals with type 2
diabetes [57]. Excessive lipid accumulation and abnormal lipid metabolites have been
proved to be important mechanisms for the progression of DR. Mitochondria, as the
site of lipid metabolism, incur damage related to abnormal lipid metabolism [58]. High
concentration of palmitate culture and high glucose induction can play a synergistic role
in retinal endothelial cells, aggravating mtDNA damage [59]. Excessive production of
ceramide, acrolein and incomplete 3-oxidation products of fatty acids in retinal cells under
high glucose environment are also associated with mitochondrial damage.

Under physiological conditions, activated fatty acids generate acyl-CoA, which en-
ters mitochondria for -oxidation, followed by terminal metabolism through the Krebs
cycle [60]. In mice with DR, the (3-oxidation of fatty acids in the mitochondpria of retinal
cells is incomplete, and excessive intermediate products accumulate to produce toxic lipid
peroxidation products, which in turn cause mitochondrial damage [61,62].

e  Ceramide accumulation causes ETC disorder and mitochondrial pathway apoptosis

There are many kinds of sphingolipids in mitochondria, including sphingomyelin
and ceramide [63,64], as well as metabolism-related enzymes, such as ceramide synthetase,
acidic and neutral sphingomyelinase, and neutral ceramidase [58]. In normal cells, ceramide
is minimally expressed in the cytoplasmic membrane, while a high glucose level induces
ceramide accumulation in a concentration- and time-dependent manner [65-67]. Levitsky
et al. found that ceramide induced by acid sphingomyelinase increased in mitochondria of
retinal pigment epithelial cells in streptozotocin-induced diabetic rats, resulting in respira-
tory chain dysfunction. Inhibition of acid sphingomyelinase restores the function of the
respiratory chain [68]. In terms of mechanism, excessive ceramide can inhibit the electron
transfer function of complex III [69], promote the production of Sphingosine-1-Phosphate
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(51P) and hexadecenal and the activation of BAX/BAK, increasing the permeability of
the mitochondrial outer membrane and the release of cytochrome C. Finally, apoptosis is
induced [70,71].

e Acrolein overproduction promotes oxidative stress, causing mitochondrial damage

Acrolein is overproduced in the retinal cells of diabetic individuals, and the produc-
tion of its protein-bound products is associated with the progression of DR [72]. As a
biomarker, FDP-lysine can reflect the content of acrolein, which is increased in hemoglobin
and vitreous humor in patients with proliferative diabetic retinopathy [73,74], and its
level in retinal Miiller cells of diabetic animal models also parallels the progress of the
disease [75]. Polyamine oxidation and lipid peroxidation are the main intrinsic pathways
of acrolein generation during DR pathology [72,76]. By depleting antioxidants such as glu-
tathione [77] and promoting oxidative stress by forming protein carbonyls [78], excessive
acrolein reduces the membrane potential of mitochondria and the activity of complexes
I, II, and IV, resulting in mitochondrial damage in retinal pigment epithelial cells [79,80].
The corresponding metabolic and biochemical changes also occur in pathological processes
such as retinal inflammatory response, ganglion cell degeneration, blood-retinal barrier
damage, and Miiller cell dysfunction [72].

e  Extracellular accumulation of modified lipoprotein induces apoptosis

Extracellular accumulation of abnormal lipid metabolites can also promote DR. Highly
oxidized and glycosylated low-density lipoprotein accumulation in the lumen and extrava-
sation of retinal capillaries is an early feature of DR [81]. Abnormally modified lipoproteins
can induce apoptosis by increasing mitochondrial outer membrane permeability through
the Bax pathway [82].

3.2. Epigenetic Changes

High glucose can not only reprogramme the metabolism of cells, but also regulate
epigenetics by changing the activity of corresponding modifying enzymes, resulting in
changes in gene expression, including a number of nuclear-encoded mitochondrial function-
related genes and mitochondrial genome genes. The reprogramming of the expression of
these genes is closely related to mitochondrial damage.

The most prominent epigenetic change is increased methylation levels [9]. Among
patients with type II diabetes, DNA methylation of key genes in islets increases, which
inhibits their expression [83-86], and DNA methylation levels are altered in adipose tissue,
liver, and skeletal muscle [87-92]. Methylation of these genes may be directly induced by
high glucose and HbA1C [85,86,93]. Kowluru et al. found that in the rat model of type 2
diabetes induced by high-fat diet, DNA Methyltransferase 1 (DNMT1) in retinal capillaries
was highly expressed in the early stage of diabetes, which could affect the methylation of a
series of genes related to retinal damage [94].

Ras-related C3 botulinum toxin substrate 1 (Racl) is a component of the NADPH
oxidase 2 (Nox2) holoenzyme [95], and the latter is able to induce ROS production in
mitochondria [96], mediating oxidative stress. In the rat model of type 2 diabetes mellitus
induced by a high-fat diet, the Racl promoter was methylated in retinal microvascular
endothelial cells, and a large number of Nox2 produced promoted the accumulation of
intracellular ROS, resulting in the damage to mtDNA and the respiratory chain [94]. In
retinal cells of DR patients, methylation of H3K4 in the Keap1 promoter was significantly
increased, which activated Keapl transcription, blocking the nuclear transport of nuclear
factor erythroid-2 related factor 2 (Nrf2), thereby inhibiting its antioxidant effects and
exacerbating mitochondrial damage [97-99]. Histone hypermethylation occurred in Sod2
promoter under high glucose conditions (H3K4 monomethylation and dimethylation
decreased, while trimethylation increased), accompanied by an increase in acetylation
level (H3K9ac). As a result, the down-regulation of Sod2 expression and the reduction of
intracellular antioxidant MnSOD content also promote oxidative stress damage [100-102].
Mitofusin 2 (Mfn2), which mediates mitochondrial outer membrane fusion, is down-
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regulated in retinal endothelial cells cultured in high glucose due to hypermethylation of
the promoter, interfering with mitochondrial homeostasis [103].

Mitochondrial DNA (mtDNA), which does not bind to histones, encodes a total
of 13 proteins, all of which are important components of the respiratory chain. DNA
polymerase v, encoded by the nuclear gene POLG, is responsible for mtDNA replication.
In DR, the CpG island of POLG regulatory region is highly methylated, which inhibits
the transcription of POLG and affects the replication of mtDNA [104]. MutL homolog
1 (MLH]1) is involved in mismatch repair during mtDNA replication. In human retinal
endothelial cells cultured with high glucose, the methylation level of MLH1 promoter is
increased, down-regulating its transcription and affecting the replication accuracy and
function of mtDNA [105], which may reduce the activity of respiratory chain complex I
and the antioxidant capacity of mitochondria [106].

The mtDNA itself is also susceptible to methylation under high glucose conditions.
This mostly occurs in the Displacement loop (D-Loop) of mtDNA, which, as a non-coding
region, contains transcription elements and also controls DNA polymerase y-dependent
mtDNA replication. D-Loop has a loose structure and is susceptible to various modifying
enzymes [107]. Mitochondrial DNA methyltransferase (DNMT) is also highly expressed in
retinal cells under high glucose condition, which can highly methylate the D-Loop region
of mtDNA and cause mitochondrial damage in retinal cells [108,109]. Inhibition of DNMT
can reduce mtDNA damage, improve transcriptional repression of mtDNA induced by
high glucose, and restore ETC function [110]. At the same time, inhibition of promoter
methylation may restore the activity of Sod2 (see above), which can inhibit the methylation
of D-Loop in mouse retinal microvascular endothelial cells and ensure the operation of
base mismatch repair mechanism [111].

Interestingly, Zhong et al. found that the promoter methylation level (H3K9me2) of
Matrix Metalloproteinase-9 (MMP-9) in retinal microvascular endothelial cells of diabetes
mice decreased, while the acetylation level (H3K9Ac) increased [99,112-114], resulting
in high expression of MMP-9, damaging mitochondria and inducing apoptosis of retinal
microvascular cells [112,115]. In view of this, the influence of a high glucose environment
on epigenetic modification of the genome may be diverse and complex. More studies are
needed to clarify the expression patterns of mitochondria-related nuclear coding genes and
mitochondrial genome in retinal cells under high glucose environment, and the exploration
of omics can also provide valuable reference.

3.3. Mitophagy Changes

Autophagy is a highly conserved biological process, which can be induced by growth
factor deficiency, hypoxia, cell starvation, oxidative stress, and other conditions, and
maintains cell survival and homeostasis by degrading and reusing some intracellular
proteins and organelles.

Mitophagy is a process in which cells selectively degrade damaged mitochondria
by acting on themselves to control the number and quality of mitochondria, mediate cell
differentiation and metabolic reprogramming [116], and the most typical pathway is PINK1-
Parkin-mediated ubiquitin-dependent mitophagy [117]. Under stress conditions, when
the mitochondrial outer membrane is damaged, the transmembrane transport of PINK1 is
blocked and retained on the outer membrane, which recruits and activates the ubiquitin
ligase Parkin1; the latter constructs a polyubiquitinated modification chain on the mitochon-
drial outer membrane protein, recruits the adaptor protein, and then the adaptor protein
binds to LC3 to form a double-membrane-wrapped autophagosome. Autophagosomes
subsequently bind to lysosomes and damaged mitochondria are engulfed [118].

Retinal cells can also protect themselves through mitophagy in the environment of
high glucose.

Many studies have shown that mitophagy is upregulated during DR [119]. Devi et al.
found that Parkin accumulated in mitochondria of retinal Miiller cell line rMC1 under high
glucose induction, and then induced autophagy [120]. Mitophagy plays a protective role
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in DR, and notoginsenoside R1 (NGR1) can alleviate the damage of retinal Miiller cells by
further enhancing PINK1-Parkin-dependent mitophagy [121]. Mitophagy is also critical
for the function and survival of cone cells under hyperglycemic conditions [122]. In retinal
vascular endothelial cells, activating bile acid G-protein-coupled membrane receptor (TGR5)
enhances mitophagy, thereby reducing endothelial dysfunction and slowing the progression
of DR [123]. In retinal pigment epithelial cells, Sirt3, a deacetylase in mitochondria, can
activate mitophagy through Foxo3a/PINK1-Parkin pathway and protect the retina in a
high glucose environment [124]. Normal mitophagy is essential for the maintenance of
mitochondrial oxidative phosphorylation and ATP synthesis, which may be one of the
mechanisms for mitophagy to exert cytoprotective effects in DR [125].

Thioredoxin-interacting protein (TXNIP) plays an important role in the maintenance
of cellular homeostasis in the pathological process of DR. Under high glucose stress, the
expression of TXNIP increases, which can antagonize the oxidative stress [126]. On the
other hand, TXNIP can also play a cytoprotective role in promoting mitochondrial division
and autophagy [127]. Up-regulated TXNIP in high glucose induces nitroso-modification of
dynamin related protein 1 (Drp1) to promote mitochondrial fission [128], while modified
Drp1 promotes TXNIP translocation to mitochondria, mediating mitophagy through mul-
tiple pathways [129]. For example, TXNIP can promote LC3BII-mediated mitophagy in
retinal Miiller cells of diabetic rats [120]. TXNIP causes nitrosylation, nuclear export, and
cytoplasm localization of high mobility group box 1 protein (HMGB1), which competes
with the cytoplasm-localized anti-apoptotic protein B-cell lymphoma 2 (BCL-2) for binding
to the autophagy-related protein Beclin 1 [130], thereby inducing autophagy.

However, some scholars have observed the inhibition of mitophagy pathway in DR.
For example, Xie et al. observed that under a high glucose environment, the expression
of voltage-dependent anion channel 1 (VDAC1) was significantly down-regulated in the
mitochondrial membrane of human retinal capillary endothelial cells [131]. VDACI1 can
recruit adaptor proteins such as OPTN and p62 after ubiquitination, thereby promoting
Pink1-Parkin-mediated mitophagy [120].

In this regard, the highly accepted explanation is that the level of mitophagy depends
on the degree of hyperglycemia. Zhang et al. observed in retinal pigment epithelium
cultured in vitro that a slight increase in glucose concentration (15 mM) induced the upreg-
ulation of mitophagy, while a large increase in glucose concentration (50 mM) inhibited
mitophagy, and the cells tended to apoptosis [132]. The corresponding mechanism may be
that mild hyperglycemia induces stress response, which makes cells “self-protect” through
mitophagy. Severe or persistent hyperglycemia can cause cell damage, resulting in mi-
tophagy disorder [119].

3.4. Mitochondrial Pathway Apoptosis

As mentioned previously, oxidative stress is prone to occur in cells under high glucose
conditions. Antioxidant substances in retinal cells of diabetic individuals are reduced (e.g.,
MnSOD is reduced [133,134]), while the oxidative system is hyperactive (e.g., Nox2 is
increased [135]), and a large amount of ROS is generated to cause mitochondrial damage.
Mitochondrial damage can induce apoptosis of retinal capillary endothelial cells, pericytes,
and neurons through content extravasation and activation of apoptosis-related signaling
pathways [136-139]. Among them, pericytes are more sensitive to high glucose and more
prone to apoptosis than endothelial cells [140].

e  Extravasation of proapoptotic substances

The opening of the PT pore in the outer mitochondrial membrane and the extrava-
sation of proapoptotic substances are considered to be the characteristic events of mito-
chondrial pathway apoptosis. In retinal endothelial cells, high glucose can induce the
release of mitochondrial cytochrome C, which may be related to the decrease of Cx43
channel activity in the outer mitochondrial membrane [104]. The release of cytochrome
C triggers a caspase-mediated cascade that ultimately induces apoptosis. Santiago et al.
found that high glucose-induced apoptosis in retinal neurons was related to the release
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of apoptosis-inducing factor (AIF) by mitochondria, but not dependent on the activa-
tion of caspases [141]. It is worth mentioning that RNA in mitochondria can also be
released into the cytosol during mitochondrial damage induced by high glucose and exist
as double-stranded RNA [142], which can interact with RNA-dependent protein kinase
(PKR), mediating apoptosis of retinal neurons [143]. High glucose activates the NF-«B sig-
naling pathway, enhances oxidative stress in Miiller cells, and is also involved in inducing
apoptosis in the mitochondrial pathway [144]. As a transcription factor, NF-kB can promote
the expression of Matrix Metalloproteinase-2 (MMP-2) and MMP-9 [145], both of which are
involved in inducing apoptosis of retinal microvascular endothelial cells [112,115,146]. In
the diabetic state, MMP-2 is activated, which promotes the production of superoxide, accel-
erating mitochondrial membrane damage and cytochrome C leakage [146]. MMP-9 is also
upregulated in high glucose and accumulates in mitochondria, increasing mitochondrial
membrane permeability, which in turn promotes the entry of the pro-apoptotic protein
BCL2-associated X protein (Bax) into mitochondria [112,115], mediating the occurrence of
apoptosis.

e  Disequilibrium of calcium homeostasis

High glucose can also induce apoptosis through the mitochondrial pathway by trigger-
ing disequilibrium of calcium homeostasis. Liu et al. found that sarcoplasmic/endoplasmic
reticulum calcium ATPase 2 (SERCAZ2) is inactivated by irreversible oxidative modifica-
tion of Cys674 residue, which disrupts intracellular calcium homeostasis and promotes
apoptosis [147,148].

e  Mitochondrial dynamic imbalance

In addition, the dynamic imbalance of mitochondrial fusion and fission is also closely
related to apoptosis. High glucose stimulation can change the activity of related enzymes,
reducing the fusion process of mitochondria in cells, and increasing the division, eventually
stimulating the release of cytochrome C, and causing apoptosis of retinal cells (such as
vascular endothelial cells and Miiller cells) [149]. At the molecular level, high glucose can
down-regulate the expression of mitochondrial fusion protein Mfn2 and fusion-related
optic atrophy protein 1 (OPA1) in human retinal capillary endothelial cells [131,150], re-
sulting in the reduction of mitochondrial fusion [151]. High glucose can also promote
the phosphorylation and activation of PKCb as well as upregulate TXNIP, regulating the
phosphorylation and nitroso modification of a motility related protein Drp1, respectively,
thus activating Drp1, which is related to mitochondrial fission [128,129]. Overexpression of
Mifn2 or knockdown of Drp1 can inhibit apoptosis of retinal endothelial cells induced by
high glucose [152-154].

4. Conclusions and Future Perspectives

As mentioned above, under the condition of high glucose, retinal cells will undergo
reprogramming of glucose metabolism, including overactivation of the polyol pathway and
hexosamine pathway, while generating AGEs to mediate a variety of pathological changes.
Excessive lipid accumulation and the production of abnormal lipid metabolites, such
as ceramide and acrolein, also exert damaging effects. The hypermethylation of nuclear-
encoded mitochondrial function-related genes and mitochondrial genome genes under high
glucose stress promotes the expression of oxidative stress related genes, while inhibiting
the expression of antioxidant genes and mtDNA repair genes. Many factors can cause
mitochondrial dysfunction and eventually induce mitochondrial pathway apoptosis. In
addition, high glucose stress can also affect mitophagy, and affect cell activity by disrupting
the balance of mitochondrial fusion and division. These mitochondria-related mechanisms
may play an important role in the pathogenesis of DR.

Systemic treatment of diabetes to stabilize blood glucose levels is undoubtedly the most
effective way to prevent DR or delay its progression [155]. In view of the above mechanisms
of high glucose-induced retinopathy, people have begun to explore the possibility of
treatment by inhibiting these mitochondria-related pathophysiological processes.
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Oxidative stress induced by metabolic disorder in a high glucose environment is the
most critical factor that causes mitochondrial damage and even induces mitochondrial
pathway apoptosis. Therefore, scavenging ROS, inhibiting their production, or enhancing
the antioxidant capacity of cells are the most commonly strategies. In order to delay
the progression of DR, scientists have carried out many animal experiments and clinical
studies, and have obtained some encouraging outcomes [156]. Many ROS scavengers and
antioxidants, such as ubiquinone, lipoic acid, taurine, polyphenols, and trace elements such
as zinc, manganese and selenium, have been proved to be able to improve the mitochondrial
function of retinal ganglion cells and pigment epithelial cells, reduce hypoxia-induced
angiogenesis, and thus slow down the progress of DR [30,157-162]. Exogenous L-carnitine
and plant flavonoid quercetin can promote the expression of antioxidant substances such
as GSH, SOD and catalase in the retina of diabetic rats, exerting anti-apoptotic effect
and preventing diabetic retinal neurodegeneration [163,164]. Fenofibrate and simvastatin
can inhibit retinal endothelial cell apoptosis and pericyte loss by targeting peroxisome
proliferator-activated receptor (PPAR) and its coactivators to inhibit ROS production. It has
a protective effect on retinal blood vessels under a high glucose environment [165-167].

Other drugs or methods against mitochondrial pathway apoptosis have also been
studied in the prevention and treatment of DR. MTP-131 and 17§3-estradiol can stabilize the
mitochondrial membrane, inhibit the release of pro-apoptotic factors such as cytochrome
C, Bax, and the production of cleaved-caspase-3, and significantly reduce the apoptosis of
retinal ganglion cells [168,169]. Epigallocatechin-3-gallate (EGCG), a major component of
tea polyphenols, can stimulate the autophagy of retinal Miiller cells, resulting in reactive
glial hyperplasia and having an anti-apoptotic effect [170], as well as inhibiting the NF-
kB signaling pathway and reducing the formation of MMP-9, thereby exerting an anti-
apoptotic effect (see Section 3.4, Mitochondrial Pathway Apoptosis) [171]. Human 8-OXoG
DNA glycosylase/apurinic lyase (hOGG1) plays a protective role in mitochondria by
promoting the repair of damaged mtDNA [172].

As mentioned earlier (see Section 3.4, Mitochondrial Pathway Apoptosis), the re-
duction of mitochondrial fusion or increased mitochondrial fission is closely related to
apoptosis, and the imbalance dynamics of mitochondria also plays an important role in the
DR process. As a result, drugs that inhibit excessive mitochondrial division have attracted
attention in recent years, including mitochondrial division inhibitor-1 (mdivi-1), dynasore,
P110, 15-oxospironolactone, and tanshinone, all of which are likely to have protective
effects on mitochondria in a high glucose environment [173,174]. Their protective effect
on the retina of diabetic individuals needs to be further explored. Melatonin can maintain
mitochondrial homeostasis and protect the blood-retinal barrier by down-regulating the
expression of genes related to mitochondrial fission (such as DRP1, hFis1, MIEF2, MFF) and
up-regulating the expression of genes related to mitochondrial biogenesis (such as PGC-1«,
NRF2, PPAR-vy), thus inhibiting the development of diabetic macular edema [175]. Serum
copper level is increased in DR patients, which is associated with abnormal mitochondrial
morphology. The copper chelator penicillamine increases the level of the mitochondrial fu-
sion protein mfn2, thereby restoring normal mitochondrial morphology and function [176].
A summary of drugs and means targeting mitochondpria to treat DR is presented in Table 1.
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Table 1. Drugs and means targeting mitochondria to treat DR.

Drugs or Means

Mitochondria Related Mechanisms
and Targets

Effect in DR

Experimental Objects and Methods

Ubiquinone [161]

Short-Chain Quinones [177]

Zeaxanthin [178]

Lactucaxanthin [179]

Lutein [180,181]

Lipoic acid [160,162]

N-acetylcysteine
(+5S31,mitochondrial antioxidant)
[182-184]

Edaravone [185]

US3836E [186]

Hydrogen sulfide donor GYY4137
[187]

AMPXK agonists (e.g., metformin) [188]

Wnt inhibitory factor 1 [189]

670 nm photobiomodulation [190,191]

miR-451a [192]

Genipin [193]
Notoginsenoside R1, NGR1 [121]

Taurine [194]

Polyphenols [159,170,195]

L-carnitine [163]

Quercetin [196]

Promote electron transfer and ATP
synthesis in mitochondrial respiratory
chain

Antioxidant effect

Inhibit the formation of lipid
peroxides, maintain the activity of
complex IIT and the level of
mitochondrial SOD
Resist oxidation and restore
mitochondrial membrane potential
Resist oxidation, restore
mitochondrial membrane potential,
enhance AMPK phosphorylation, and
upregulate the expression of PGC-1«,
NRF1 and TFAM, so as to maintain
the integrity of mtDNA and normal
mitochondrial biogenesis
Resist oxidation and prevent the
formation of ROS
Enhance the interaction between
cytochrome c, facilitate better electron
transfer from complex III to complex
IV, relieve mitochondrial dysfunction,
oxidative stress and reduce
mitophagic flux to lysosomes
Clear ROS and restore mitochondrial
membrane potential

Restore the level of mitochondrial
SOD and maintain the normal
morphology of mitochondria

Relieve oxidative stress, reduce
MMP-9, and maintain mitochondrial
integrity

Restore mitochondrial membrane
potential and abnormal morphology
Downregulate AMPK/mTOR
pathway, improve mitochondrial
function, restore mitochondrial
membrane potential, and resist
oxidation

Increase the membrane potential and
maintain the integrity of
photoreceptor mitochondria

Target ATF2 on the outer membrane
of mitochondria to stabilize
mitochondrial membrane potential
and respiratory function
Promote AKT signal pathway and
regulate miR-4429 /JAK2 signal axis
Enhance PINK1/Parkin dependent
mitophagy
Reduce the expression of
mitochondrial dependent apoptosis
genes

Inhibit the production of
mitochondrial ROS and the expression
of mitochondrial related pro-apoptotic

factors; Adjust mTOR pathway

Reverse the change of mitochondrial
membrane potential and the release of
Cyt ¢; inhibit ROS production and
lipid peroxidation; down-regulate
apoptosis related proteins
Promote the expression of antioxidant
enzymes and inhibit the expression of
mitochondrial related pro-apoptosis
factors

Improve mitochondrial function of
platelets in patients with NPDR

Inhibit retinal ganglion cell loss,
reactive glial hyperplasia, vascular
leakage and retinal thinning

Inhibit oxidative stress of retina

Prevent the damage of RPE cells

Prevent the damage of RPE cells

Prevent damage to microvessels and
pericytes

Prevent the damage of RPE cells

Protect retinal ganglion cells

Improve the electrophysiological
function of retinal ganglion cells,
thereby relieving neurodegeneration
in DR

Inhibit the apoptosis of RECs

Delay photoreceptor degeneration
caused by diabetes

Inhibit neovascularization and protect
RPE cells

Protect Miiller cells and
photoreceptors from damage

Inhibit the abnormal proliferation and
migration of RPE cells in PDR

Maintain normal metabolism and
membrane stability of mitochondria

Alleviate the damage of Miiller cells

Prevent retina cells from apoptosis

Inhibit the oxidative damage and
apoptosis of optic nerve cells; Inhibit
the formation of acellular capillaries

and pericyte ghost; Promote
autophagy and inhibit the apoptosis
of Miiller cells

Inhibit the apoptosis of retinal
ganglion cells

Prevent diabetic retinal
neurodegeneration and oxidative
stress injury

Clinical trials

Animal Experiment
(rat)

Animal Experiment
(rat)

Cell Experiment
(ARPE-19)

Cell Experiment
(ARPE-19)
Animal Experiment
(rat)

Animal Experiment
(rat)

Cell Experiment
(ARPE-19)

Cell Experiment
(Primary Miiller cell)

Animal Experiment
(rat)

Animal Experiment
(mouse)

Cell Experiment
(HREC)
Animal Experiment
(mouse)

Cell Experiment
(ARPE-19)
Animal Experiment
(mouse)

Animal Experiment
(mouse)
Cell Experiment
(rat Miiller cell)
Clinical trials

Cell Experiment
(293T, ARPE-19)

Cell Experiment
(APRE-19)
Cell Experiment
(rMC-1)

Animal Experiment
(rat)

Animal Experiment
(mouse, rat)
Cell Experiment
(Primary rat Miiller cell)

Cell Experiment
(Primary rat RGC)

Animal Experiment
(rat)
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Table 1. Cont.

Drugs or Means

Mitochondria Related Mechanisms
and Targets

Effect in DR

Experimental Objects and Methods

Fenofibrate [165,167]

hOGG1 [172]

GSK-3f3 inhibitor [197,198]

Hu-Zhang-Qing-Mai-Yin [199]

Astragalus Polysaccharide [200,201]

MTP-131 [169]

E2 [168]

Exendin-4 [202]

TSHR-siRNA [203]

Prohibitin (PHB) [204]

Dixipamine [68]

Simvastatin [166]

Tanshinone Ila [173]

Melatonin [175]

Mdivi-1 [129]

TGR5 [123]

Overexpress SIRT3 [124]
Penicillamine [176]

SNGH16 [205]

PPAR-o Agonists, inhibit
mitochondrial ROS production

Promote the repair of mtDNA damage

Inhibit the hyperphosphorylation of
tau protein and maintain the normal
transport and function of
mitochondria in nerve cells
Increase p-P38 and ROS, decrease ATP
level, and downregulate the
expression of BCL-XL and BCL-2
Adjust miR-182/Bcl-2 axis and
miR-195/Bcl-2 axis to alleviate
mitochondrial damage
A novel mitochondrial targeting
peptide that inhibits H,O, induced
mitochondrial damage and
cytochrome c release
Stabilize mitochondrial membrane
potential, reduce intracellular ROS
level, up regulate Bcl-2 expression,
inhibit Bax expression, and reduce the
leakage of cytochrome ¢
Resist oxidation, downregulate
NADPH, inhibit ¢-Jun N-terminal
kinase, and downregulate protein
kinase-{3 and p66Shc
Block TSH receptors in retinal
microvascular pericytes
Inhibit ROS production and maintain
mitochondrial homeostasis
Inhibit acid sphingomyelinase, inhibit
the production of ceramide, and
restore the normal metabolism of
mitochondria
Upregulate PGC-1« and inhibit
mitochondrial ROS/PARP pathway
Inhibit excessive fission of
mitochondria and increase mRNA
levels of mfn1 and opal
Downregulate the expression of
mitochondrial fission related genes
and upregulate the expression of
mitochondrial biogensis related genes
Suppress PKC & /Drpl signal pathway
and prevent excessive fission of
mitochondria
Suppress PKC & /Drp1 signal pathway
and prevent excessive fission of
mitochondria; regulate PINK1/Parkin
signal pathway and enhance
mitophagy
Activate mitophagy via
Foxo3a/PINK1-Parkin pathway
Chelate copper ions and increase the
level of mitochondrial fusion protein
mfn2
Target miR-195 to increase the protein
level of mfn2

Inhibit the apoptosis of retinal
vascular endothelial cells and pericyte
loss

Inhibit the apoptosis of RECs

Regulate the apoptosis of retinal glial
cells and inhibit synaptic
neurodegeneration in early DR

Promote mitochondrial apoptotic
pathway of RECs

Inhibit the apoptosis of RPEs

Prevent retinal ganglion cells from
apoptosis

Prevent retinal ganglion cells from
apoptosis

Prevent mitochondrial apoptotic
pathway of RPEs

Prevent mitochondrial apoptotic
pathway of retinal pericytes

Prevent RECs from apoptosis

Restore normal function of RPEs

Inhibit retinal vascular damage in
early stage of diabetes

Inhibit methylglyoxal-induced injury
of RECs

Inhibit the apoptosis of RPEs and treat
DME

Reverse retinal vascular leakage,
acellular capillary formation and
apoptosis

Inhibit the apoptosis of RECs

Inhibit the apoptosis of RPEs

Increase the activity of retinal pigment
cells; inhibit ER stress and
inflammation

Inhibit pathological angiogenesis

Cell Experiment
(RF/6A)
Animal Experiment
(mouse)

Cell Experiment
(rREC)

Cell Experiment
(Primary rat neurons and glial cells)

Cell Experiment
(HRECs)

Cell Experiment
(ARPE-19)

Cell Experiment
(RGC-5)

Cell Experiment
(RGC-5)

Cell Experiment
(ARPE-19)

Cell Experiment
(HRMVPCs)
Cell Experiment
(HRECs)

Animal Experiment
(rat)

Animal Experiment
(rat)

Cell Experiment
(BREC)

Cell Experiment
(ARPE-19)

Cell Experiment
(HRECs)

Cell Experiment
(HREC)

Cell Experiment
(ARPE-19)

Cell Experiment
(ARPE-19)

Cell Experiment
(HRECs)

Regarding mitochondrial dynamic homeostasis, in addition to mitophagy, fusion and

fission, recently, scholars have begun to focus on mitochondrial extrusion and intercellular
transfer in many fields such as stroke, cardiovascular disease, and cancer [206]. On one
hand, damaged or senescent mitochondria can be extruded from cells to maintain cellular
homeostasis and prevent apoptosis. This can occur under both physiological and patho-
logical conditions. Retinal ganglion cell axons can shed mitochondria at the optic nerve
head, which are internalized and degraded by adjacent astrocytes [207]. Mitochondrial
transfer between retinal photoreceptor cells can also occur through intercellular tunneling
nanotubes (TNTs), which ensures the normal metabolism and function of cells under light
stimulation [208]. Under the stress of ischemia and reperfusion, the damaged mitochondria
(decreased membrane potential and ATP synthesis ability) can be extruded, which may
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serve as a quality-control mechanism to ensure cellular homeostasis [209]. Mitochondria
are damaged under high glucose conditions, and it has not been revealed whether a similar
phenomenon also exists in retinal cells as an adaptive protective mechanism. On the other
hand, exogenous mitochondrial transplantation can rescue the activity of damaged cells in
many disease models, and has potential therapeutic value in neurodegenerative diseases,
tumors, myocardial injury and other diseases [210-212]. Therefore, whether mitochondrial
transplantation can improve the activity of damaged cells to delay the progression of DR is
also worth exploring.
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