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Abstract: Sargassum fusiforme (SF) is a popular edible brown macroalga found in Korea, Japan,
and China and is known for its health-promoting properties. In this study, we used two sophisti-
cated models to obtain optimized conditions for high antioxidant activity and metabolite profiling
using high-resolution mass spectrometry. A four-factor central composite design was used to opti-
mize the microwave-assisted extraction and achieve the maximum antioxidant activities of DPPH
(Y1: 28.01 % inhibition), ABTS (Y2: 36.07 % inhibition), TPC (Y3: 43.65 mg GAE/g), and TFC
(Y4: 17.67 mg CAE/g), which were achieved under the optimized extraction conditions of X1:
47.67 %, X2: 2.96 min, X3: 139.54 ◦C, and X4: 600.00 W. Moreover, over 79 secondary metabolites
were tentatively identified, of which 12 compounds were reported for the first time in SF, including
five phenolic (isopropyl 3-(3,4-dihydroxyphenyl)-2-hydroxypropanoate, 3,4-dihydroxyphenylglycol,
scopoletin, caffeic acid 4-sulfate, and cinnamoyl glucose), two flavonoids (4’,7-dihydroxyisoflavone
and naringenin), three phlorotannins (diphlorethohydroxycarmalol, dibenzodioxin-1,3,6,8-tetraol,
and fucophlorethol), and two other compounds (dihydroxyphenylalanine and 5-hydroxybenzofuran-
2(3H)-one) being identified for the first time in optimized SF extract. These compounds may also
be involved in improving the antioxidant potential of the extract. Therefore, optimized models
can provide better estimates and predictive capabilities that would assist in finding new bioactive
compounds with improved biological activities that can be further applied at a commercial level.

Keywords: Sargassum fusiforme; microwave-assisted extraction; secondary metabolites; antioxidant
activity

1. Introduction

Phenolic compounds, which exhibit numerous biological and pharmacological ac-
tivities, are among the most interesting in plant fractions [1]. Phenolic compounds from
red, green, and brown seaweed have numerous health-promoting properties, including
antioxidant, anticancer, antiviral, and anti-inflammatory activities [2]. Among brown sea-
weeds, Sargassum fusiforme (SF) belongs to the family Sargassaceae and is widely found in
the coastal areas of Asia, especially in Korea, China, and Japan [3]. In Korea and Japan,
like other marine organisms, SF is consumed as a sea vegetable because it possesses nu-
merous nutritional components, such as proteins, minerals, phenolic compounds, dietary
fibers, and polysaccharides [4,5]. The potential applications of these bioactive moieties
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in the pharmaceutical, food, and chemical industries have led to growing interest in the
development and optimization of extraction techniques to isolate bioactive moieties from
natural sources, as extraction is the most important step that plays a significant role in the
quantity and quality of the result [6–8].

Recent advancements in extraction techniques have led to the development of efficient
and new approaches for extracting natural bioactive components with improved yields
and lower extraction times, temperatures, and solvent use. Numerous non-conventional
techniques, such as ultrasound-assisted extraction (UAE) [9,10], pressurized liquid extrac-
tion (PLE) [11], supercritical fluid extraction (SFE) [12], and microwave-assisted extraction
(MAE) [13], fulfill these requirements. In comparison with other techniques, MAE has
its advantages, such as low cost and lower extraction time; thus, it can be categorized
as “green technology” according to environmental policies [14,15]. The extraction time,
temperature, technique, solid-to-liquid ratio, and solvent concentration are significant
variables that, individually or in combination, alter the extraction efficiency. Optimizing
the extraction conditions using a traditional methodology (one factor at a time) is a difficult,
laborious, and time-consuming procedure. Empirical methods based on statistical or artifi-
cial intelligence methodologies have therefore been applied to overcome this problem [10].
RSM is a sophisticated statistical and mathematical approach used in the engineering field
to optimize and improve conditions by analyzing the interactions between independent
variables and response variables [16]. In RSM, a non-linear equation is used along with
other designs, that is, the central composite design (CCD) or Box–Behnken design, to fit
the experimental responses. Artificial neural networking (ANN) is a computational and
mathematical approach that works based on the principles of the human brain. ANN, in
comparison with RSM, is considered a superior and powerful tool because of its ability to
adapt itself from the observations and predict the outcome after training on the experimental
responses [17]. Moreover, optimized extraction conditions in combination with analytical
tools such as high-resolution liquid chromatography-mass spectrometry (HR-LC-MS) have
enabled the tentative identification of bioactive compounds in different species.

Previously, there was limited literature available that only focused on the optimization
of polysaccharides of SF using RSM [18] without using ANN and green extraction technol-
ogy, whereas in another trial, Li et al. [19] extracted and identified the phlorotannin fraction
without using non-conventional extraction techniques and also without sophisticated sta-
tistical models. Therefore, in order to overcome the gaps, the present study was designed
to optimize MAE-SF extracts using two sophisticated statistical tools (RSM and ANN) to
obtain optimal conditions for exhibiting higher antioxidant activity and to determine the
presence of bioactive compounds in SF using high-resolution tandem mass spectrometry
(HR-LC-MS).

2. Materials and Methods
2.1. Chemicals and Reagents

Chemicals, reagents, and standards were procured from Sigma-Aldrich (St. Louis,
MO, USA). Anhydrous sodium carbonate and acetic acid were acquired from Ducksan
Pure Chemicals (Ansan, Republic of Korea), while sodium hydroxide and aluminum chloride
hexahydrate were procured from Junsei Chemical (Tokyo, Japan) and Samchun Pure Chemical
(Pyeongtaek, Republic of Korea), respectively. Acetic acid and anhydrous sodium carbonate
were purchased from Ducksan Pure Chemicals (Ansan, Republic of Korea).

2.2. Sample Collection and Preparation

SF was collected from the coastal areas of Korea in mid-May 2021 and confirmed by a
specialist at the Department of Oceanography, Kyungpook National University, Korea. Sam-
ples were washed, dried for four days at 37 ◦C, ground to obtain powder (approximately
800 g), and stored at −20 ◦C in the polyethylene bags for further analysis.
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2.3. MAE Procedure

MAE was performed following the protocol of Kashif et al. [20] using a microwave-
assisted extractor (MARS 6; CEM, Matthews, NC, USA) fitted with 50 mL quartz vessels
with some minor modifications. Briefly, the SF sample was extracted three times by adjust-
ing the microwave power (150–750 W) and time. Ten g of SF powder was placed in 500 mL
Erlenmeyer flasks, and aqueous ethanol (150 mL) was added at different concentrations
(25–75%) 30 min before extraction. Extraction was performed using CCD (Supplementary
Table S1). After extraction, flasks were allowed to cool at room temperature for 1 h and
were filtered (Whatman No. 1; Schleicher & Schuell, Keene, NH, USA), followed by con-
centration to dryness in a rotary evaporator (Tokyo Rikakikai, Tokyo, Japan) at 40 ◦C and
50 rpm. In addition, samples were lyophilized using a freezer dryer and stored at −20 ◦C
in Falcon tubes (15 mL) for further analysis.

2.4. Antioxidant Activities

Folin-Ciocalteu reagent was used to assess the total polyphenolic content (TPC) using
gallic acid as a reference curve. It is a rapid and easy procedure based on the association
between the detected color change and reactive reagent attenuation as a result of phenolic
compounds present in the plant matrix. Total flavonoid content (TFC) was determined
using the aluminum chloride colorimetric procedure [21]. Similarly, the radical scavenging
activity of the SF extracts was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and
2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) [22].

2.5. Statistical Modeling and Data Calculation
2.5.1. Response Surface Methodology (RSM)

The RSM was implemented to assess the best possible combination of independent
parameters to maximize the output of the dependent variables. The dependent variables
DPPH, ABTS, TPC, and TFC were calculated in triplicate, and mean values were employed
for regression analysis, as shown in Table 1. Experimental results were analyzed using
Design Expert software to predict the optimal extraction conditions, and a second-order
polynomial model Equation (1) was used to fit the model between independent and de-
pendent variables. Various other tests, including the coefficient of variation (CV), adjusted
coefficient of determination (Adj. R2), lack of fit, and coefficient of determination (R2), were
employed to validate the RSM model [23].

y = β0 + ∑z
i=1 βiXi + ∑z

i=1 βiiX2
i + ∑j ∑

z
<i=2 βijXjXi + ε j (1)

where y represents the predicted variables; β0, βi, βii, and βij represent the regression coeffi-
cients of the intercept coefficient, linear, quadratic, and second-order terms, respectively; Xi
and Xj are the independent variables (j and I range from 1–z), z is the number of factors
(z = 4); εj is the error.

The Design Expert software package (11 STAT-EASE, Minneapolis, MN, USA) was
used for graphical, regression, and experimental designs. ANOVA was used to determine
the adequacy of the fitted model, the significance of the independent variables, their
association, and the statistical significance of the regression coefficients.
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Table 1. Central composite design (CCD) for independent variables and corresponding target responses (experimental).

Run
No

Parameter DPPH (% Inhibition) ABTS (% Inhibition) TPC (mg GAE/g) TFC (mg CAE/g)

X1
(%)

X2
(min)

X3
(◦C)

X4
(W)

Experimental
Value

RSM
Predicted

ANN
Predicted

Experimental
Value

RSM
Predicted

ANN
Predicted

Experimental
Value

RSM
Predicted

ANN
Predicted

Experimental
Value

RSM
Predicted

ANN
Predicted

1 70 4 140 600 18.94 ± 2.98 20.34 19.30 37.14 ± 0.54 38.87 37.08 33.88 ± 0.62 33.77 33.45 17.67 ± 0.16 18.15 17.68
2 50 3 130 150 26.13 ± 3.12 25.84 25.15 28.30 ± 2.13 28.51 28.20 25.40 ± 0.62 25.78 25.51 10.61 ± 0.44 9.67 9.96
3 30 2 110 300 20.95 ± 1.12 19.89 21.13 36.25 ± 1.87 34.58 36.20 29.55 ± 0.17 29.80 29.51 12.89 ± 0.65 13.36 12.90
4 50 3 130 450 25.75 ± 2.98 26.79 25.62 40.83 ± 1.35 41.80 41.61 36.02 ± 2.15 35.58 35.44 14.49 ± 0.16 14.03 14.47
5 10 3 130 450 17.42 ± 1.29 19.86 20.49 29.00 ± 2.34 31.46 28.96 22.29 ± 0.17 23.68 23.76 10.61 ± 0.33 9.61 10.60
6 90 3 130 450 7.31 ± 1.61 6.39 6.43 25.36 ± 1.77 23.30 26.08 21.50 ± 1.24 20.81 21.49 9.23 ± 0.42 8.45 9.33
7 50 3 130 450 26.13 ± 2.35 26.79 25.62 41.83 ± 1.35 41.80 41.61 35.05 ± 0.79 35.58 35.44 13.49 ± 0.95 14.03 14.47
8 50 3 90 450 14.76 ± 1.64 16.51 15.45 30.37 ± 1.51 31.39 30.26 21.44 ± 1.37 21.26 21.60 7.50 ± 0.75 7.50 7.51
9 30 4 110 300 23.39 ± 2.41 21.79 23.45 34.01 ± 2.07 34.03 34.68 30.55 ± 0.75 28.52 29.96 11.61 ± 0.88 11.42 11.60

10 30 4 140 300 20.76 ± 2.32 21.00 20.18 29.40 ± 3.70 28.78 29.39 20.48 ± 1.72 21.83 20.88 7.45 ± 0.65 8.40 7.44
11 50 3 130 750 27.63 ± 2.61 29.44 28.90 42.61 ± 0.63 42.80 42.49 35.99 ± 0.52 36.31 36.85 18.95 ± 0.44 18.11 18.90
12 70 2 140 600 19.58 ± 2.20 19.53 19.64 34.20 ± 2.40 34.47 32.69 26.99 ± 2.25 28.54 26.76 16.85 ± 0.36 17.82 17.13
13 30 2 140 600 29.21 ± 2.60 29.48 28.40 42.29 ± 2.38 40.85 42.16 30.94 ± 0.17 29.27 30.85 16.65 ± 0.38 17.60 17.45
14 30 4 140 600 32.59 ± 1.12 29.20 31.87 39.39 ± 3.39 39.50 39.31 31.44 ± 1.64 30.23 31.59 13.19 ± 1.10 13.90 13.18
15 70 2 110 300 13.97 ± 2.03 15.08 13.22 25.61 ± 2.02 25.61 25.66 20.74 ± 2.03 21.51 20.74 6.44 ± 1.01 6.47 6.46
16 50 3 130 450 27.25 ± 1.75 26.79 25.62 41.83 ± 1.35 41.80 41.61 36.08 ± 0.34 35.58 35.44 13.49 ± 0.58 14.03 14.47
17 50 5 130 450 27.71 ± 2.62 28.68 29.97 38.89 ± 1.59 37.40 38.84 28.55 ± 1.20 27.74 28.67 12.45 ± 0.98 11.80 12.43
18 70 4 140 300 16.77 ± 2.11 17.89 15.43 28.19 ± 1.90 29.89 28.21 23.41 ± 0.12 23.44 23.56 9.24 ± 0.45 9.96 9.32
19 30 2 140 300 30.79 ± 3.26 31.07 30.40 32.37 ± 1.35 31.97 32.25 25.23 ± 1.30 23.89 27.72 11.82 ± 0.65 12.54 11.78
20 70 2 110 600 11.96 ± 2.20 11.85 11.66 27.48 ± 0.97 27.40 24.64 22.63 ± 0.60 21.06 22.61 6.94 ± 0.74 7.00 8.54
21 70 4 110 300 18.51 ± 0.79 18.08 19.66 30.64 ± 1.78 30.82 30.56 23.41 ± 0.89 24.49 25.33 8.43 ± 0.68 8.55 8.43
22 30 2 110 600 24.84 ± 1.20 22.39 27.18 38.94 ± 1.05 38.11 38.90 27.56 ± 1.64 27.43 27.64 11.21 ± 0.77 11.21 11.21
23 50 1 130 450 29.42 ± 2.33 29.96 27.75 32.54 ± 1.60 34.43 32.56 22.55 ± 0.62 24.06 22.56 15.28 ± 0.36 14.15 15.28
24 70 4 110 600 26.77 ± 1.15 24.64 26.70 34.49 ± 2.10 34.44 32.63 26.55 ± 0.37 27.06 25.76 9.42 ± 0.12 9.54 9.44
25 30 4 110 600 32.74 ± 1.55 34.09 32.34 39.87 ± 1.16 39.39 40.81 27.88 ± 1.26 29.18 28.04 9.52 ± 0.45 9.71 9.72
26 50 3 150 450 27.71 ± 2.30 26.24 27.96 39.33 ± 0.64 37.81 39.19 27.67 ± 0.66 28.95 27.73 15.35 ± 0.64 15.97 15.38
27 70 2 140 300 27.44 ± 1.44 28.85 27.89 27.36 ± 2.30 27.33 27.32 22.80 ± 0.76 21.24 22.72 9.23 ± 0.39 10.08 9.31
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2.5.2. ANN

ANN is a statistical machine learning technique that predicts nonlinear relationships
between dependent variables and input parameters [24]. The model was constructed using
the deep learning toolbox MATLAB R2020a (Mathworks, Minneapolis, MA, USA). The
model was trained, tested, and validated using the experimental outputs obtained from the
27 experimental runs (Table 1). The multilayer perceptron topology is comprised of three
layers. The first (input) layer contains four independent parameters, and the middle layer
comprises 16 neurons to achieve the optimal conditions to obtain the maximum output
results. The third (output) layer contains four dependent variables, as shown in Figure 1A.
The hit and trial technique was adopted to train the data and to lower the mean square error
(MSE) calculated from Equation (2). The feed-forward and cascade feed-forward networks
with the Broyden—Fletcher—Goldfarb—Shanno (BFGS) and Levenberg—Marquardt back-
propagation (trainlm) algorithms were used [21,25]. The model exhibits a higher coefficient
of determination (R2) calculated from Equation (3), a lower standard error of prediction
(SEP) from Equation (4), absolute average deviation (AAD) from Equation (5), and root
mean squared error (RMSE) from Equation (6), which are considered optimal ANN models.

MSE =
1
N ∑N

i=1 (YANN −YExp)
2 (2)

where YExp is the experimental data, YANN is the predicted value, and N is the number of
samples.

R2 = 1− ∑n
i=1 (xi − xik)

2

∑n
i=1 (xik − xz)

2 (3)

RMSE =

√
1
n ∑n

i=1 (xi − xik)
2 (4)

ADD % =

[
∑n

i=1(|xik − xi|/xik)

n

]
× 100 (5)

SEP % =
RMSE

ym
× 100 (6)Antioxidants 2022, 11, x FOR PEER REVIEW 6 of 20 

 

 
Figure 1. Optimal topology of optimized MAE-assisted SF extracts. Best architecture of a developed 
MAE-ANN model with the lowest mean square error (MSE) (A); The results of Levenberg-Mar-
quardt algorithm with optimum numbers of neurons for best validation performance compared 
with training, testing and validation data for dependent variables DPPH (B) ABTS (C), TPC (D), 
and TFC (E), and comparison among experiment run (*), RSM (blue line), and ANN (red line) for 
DPPH (F), ABTS (G), TPC (H), and TFC (I) using deep learning toolbox MATLAB software. 
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Figure 1. Optimal topology of optimized MAE-assisted SF extracts. Best architecture of a developed
MAE-ANN model with the lowest mean square error (MSE) (A); The results of Levenberg-Marquardt
algorithm with optimum numbers of neurons for best validation performance compared with training,
testing and validation data for dependent variables DPPH (B) ABTS (C), TPC (D), and TFC (E), and
comparison among experiment run (*), RSM (blue line), and ANN (red line) for DPPH (F), ABTS (G),
TPC (H), and TFC (I) using deep learning toolbox MATLAB software.

2.6. Process Optimization Using RSM-GA, ANN-GA and RSM-DF

To optimize the MAE process, three different techniques were applied to the developed
models, i.e., RSM-GA, RSM-DF (desirability functions), and ANN-GA. Data from the
developed models (ANN and RSM) were subjected to GA (as initial input) using the
optimization toolbox of MATLAB R2020a (Mathworks, Inc., Minneapolis, MA, USA).
In GA, the RSM and ANN data were added as a fitness function to achieve the highest results
for all the target responses. The initial population size, mutation fraction, evolutionary algebra,
and crossover percentage were selected based on the current situation, while the remaining
parameters were left at their default settings. The objective function was trained using the
model data generated by the RSM-ANN, and the GA was implemented by maximizing the
problems [26]. The RSM-DF was achieved by using the “Design Expert” software.

2.7. Cell Viability Assay

The effects of SF extracts on RAW 264.7 cells (American Type Culture Collection, Manas-
sas, VA, USA) were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assays described by [27]. Briefly, RAW 264.7 cells were seeded in a 96-well
plate and incubated at 37 ◦C for 18 h. LPS (1 µg/mL) was induced in cells with SF extracts
(10–30 mg) and incubated further for 20 h. The medium was sucked and, before incubation
at 37 ◦C for 1 h, cells were treated with 100 µL MTT (10%) solution. Then, 100% dimethyl
sulfoxide (DMSO) was added after the removal of the solution, and optical density (OD) was
calculated at 590 nm using a microplate reader (Victor3, PerkinElmer, Waltham, MA, USA).
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2.8. Intracellular Reactive Oxygen Species (ROS) Measurement

ROS generation as a result of cellular oxidative stress was assessed using the DCFH-DA
method following the protocol of [28]. Briefly, RAW 264.7 cells were seeded for 24 h and
then treated with samples at different concentrations. After 1 h, the cells were treated
with 2, 2′-azobis (2-amidinopropane) dihydrochloride (AAPH) and incubated again for
30 min. With the help of PBS, cells were washed followed by treatment with DCFH-DA
(25 µM), the plate was placed in the incubator at 37 ◦C for 30 min. The fluorescence intensity
was determined at both the excited (485 nm) and emitted states (528 nm) using a Victor
fluorescence microplate reader (PerkinElmer).

2.9. Western Blotting and Cell Lysate Preparation

Cell lysates were prepared following the standard methodology and then treated with
5X SDS-PAGE (3M Science, Seoul, Republic of Korea) sample buffer, and proteins were
denatured by heating it at 95 ◦C for 10 min. Proteins were separated according to their
molecular weight using 10% SDS gel electrophoresis, followed by the transfer of bands to
nitrocellulose membranes for 2 h. A 5% bovine serum albumin (BSA) was added to the
membrane and incubated overnight at 4 ◦C with the first antibody, followed by incubation
with a secondary antibody (anti-goat IgG). Bands were detected using a chemiluminescence
system (PerkinElmer) [29].

2.10. Compounds Identification Using ESI-MS/MS

The SF extract was analyzed to profile the secondary metabolites by following the
protocol described by Choi et al. [21] using a Q-Executive Orbitrap mass spectrometer
(Thermo Fisher Scientific, San Jose, CA, USA). Briefly, the SF sample was inserted at a
rate of 15 µL/min using a 500 µL graduated syringe (Hamilton, Reno, NV, USA) and a
syringe pump (Model 11, Harvard, Holliston, MA, USA) in the ESI source. The other
parameters of ESI-MS (negative mode) were set as follows: the flow rates of auxiliary gas,
sheath gas, and seep gas were set at 0, 5, and 0, respectively, spray voltage was set at
4.20 kV, capillary temperature was set at 320 ◦C, mass resolution of 140,000 (full width at
half maximum, FWHM), S-lens at Rf level, and automatic gain control of 5 × 106. Three
different normalized collision energies (10, 30, and 40 eV) were applied stepwise using the
same instrument [30].

2.11. Data Processing

The mass spectral data was analyzed with Xcalibur 3.1 with Foundation 3.1 (Thermo
Fisher Scientific, Rockford, IL, USA). The detected m/z peaks were identified by comparing
the exact masses of monoisotopic (negative mode) masses and ESI-MS/MS breakage
patterns from an online database and as in-house MS/MS database. The online databases
included FooDB [31], METLIN [32], and CFM-ID 4.0 [33].

2.12. Statistical Analysis

The final results were analyzed using MATLAB and Design Expert 11 software. All
data is presented as the mean ± standard deviation of at least three independent experi-
ments (n = 3), where each experiment had a minimum of three replicates for each sample.
Differences were considered significant at p < 0.001, p < 0.01, and p < 0.05.

3. Results and Discussion
3.1. RSM Modeling

Table 1 shows a comparison between dependent response variables (DPPH, ABTS,
TPC, and TFC) and predicted outcomes of RSM and ANN for all 27 runs obtained after
MAE according to CCD as shown in Figure 1C. The DPPH, ABTS, TPC, and TFC con-
tents of SF extracts varied in the ranges of 7.31–32.74% inhibition, 25.36–42.61% inhibition,
20.48–36.08 mg GAE/g, and 6.94–18.95 mg CAE/g, respectively. The ANOVA results
are depicted in Table 2. For a well-fitted model, R2 values should be close to 1, and, in
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our trial, all four variables, that is, DPPH (0.95), ABTS (0.96), TPC (0.95), and TFC (0.97),
exhibited higher R2 values, which shows that our model fits the second-order polynomial
equation well. Similarly, other factors, including the CV, regression coefficient (β), F-value,
adjusted correlation factor (R2), adequate precision, and lack of fit (probability), also con-
tributed to the significance of the model. In the current study, lack of fit (0.09–0.35), F-values
(2.18–9.58), Adj R2 (0.89–0.94), adequate precision (12.92–19.08), and CV (4.81–8.90)
indicated that the fitness of the RSM model outcomes are in line with Simic et al. [6],
as they checked the total polyphenolic compounds in the chokeberries using RSM and
ANN. Likewise, Ameer et al. [26] also checked the parameters, including (R2, CV, adeq.
Precision) during the recovery of stevioside and rebaudioside-A from Stevia rebaudiana
leaves using MAE, which also supports our results. High F-values (p < 0.05) indicate that
the lack of fit is non-significant, and our RSM model had higher F-values, showing that it
was well-fitted, and these results are similar to Choi et al. [21].

Table 2. ANVOA analysis for well-fitted RSM model.

Source DF DPPH ABTS TPC TFC

Model 14 1068.95 *** 804.11 *** 635.00 *** 302.80 ***

Intercept (β0) 1 26.34 41.84 35.80 13.26

Linear terms

X1 (β1) 1 0.6782 0.9626 * −0.9867 ** −0.4032 **

X2 (β2) 1 1.72 ** 0.4558 0.1990 1.67 ***

X3 (β3) 1 −3.42 *** −2.40 *** −1.19 ** −0.6597 **

X4 (β4) 1 1.24 * 3.13 *** 1.99 *** 1.51 ***

Quadratic terms

X1
2 (β11) 1 0.6328 −1.47 *** −2.42 *** 0.1636

X2
2 (β22) 1 −1.07 * −1.72 *** −2.58 *** −0.4717 **

X3
2 (β33) 1 −3.42 *** −3.60 *** −3.33 *** −1.15 ***

X4
2 (β44) 1 0.2118 −1.54 *** −1.13 *** 0.0652

Interaction terms

X1X2 (β1β2) 1 −2.99 *** −0.6606 −0.1952 −0.5511 **

X1X3 (β1β3) 1 0.2740 1.44 * 1.06 ** 1.01 ***

X1X4 (β1β4) 1 2.45 *** 0.4581 0.7562 0.1127

X2X3 (β2β3) 1 0.1471 1.0 8* 1.41 ** 1.11 ***

X2X4 (β2β4) 1 −1.02 1.34 ** 1.94 *** 1.80 ***

X3X4 (β3β4) 1 −1.43 ** −0.4356 0.4797 0.6715 **

Lack of fit
(probability) 10 0.1138 0.0981 0.1025 0.3556

F-value 8.18 9.58 9.15 2.18

R2 0.9543 0.9608 0.9533 0.9745

Adj. R2 0.9009 0.9151 0.8989 0.9447

Adeq. precision 17.9849 15.8235 12.9272 19.0817

C.V. (%) 8.90 4.81 5.90 6.86
The level of significance is expressed as *** p < 0.001, ** p < 0.01, and * p < 0.05.

3.1.1. Effect of MAE-SF Parameters on DPPH and ABTS

To better understand the association between the independent and response variables,
contour plots were produced, as shown in Figure S1. As shown in Table 2, linear terms of
X3 exerted negative effects on ABTS and DPPH. In quadratic terms, X2

2 and X3
2 hurt DPPH,
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whereas, for ABTS, all four quadratic terms showed significant negative effects. In terms
of interactions, X1X2, X2X4, and X3X4 had negative effects on both ABTS and DPPH. The
maximum activity (32.74 mg GAE/g) for DPPH was calculated at run 25 (X1: 30%, X2: 4 min,
X3: 110 ◦C, X4: 600 W), whereas the ABTS highest activity (42.61 mg CAE/g) was recorded at
run 11 (X1: 50%, X2: 3 min, X3: 130 ◦C, X4: 750 W). The lack of fit for DPPH (0.1138) and ABTS
(0.0981) and the coefficients of regression of 0.9543 and 0.9608 for DPPH and ABTS, respectively,
suggest that the RSM model fits well. The fitted second-order polynomial equations for DPPH
(% inhibition) and ABTS (% inhibition) are shown in Equations (7) and (8) as follows:

Y1 = 26.34 + 0.6782X1 + 1.72X2 − 3.42X3 + 1.245X4 − 2.99X1X2 + 0.2740X1X3 + 2.45X1X4 + 0.1471X2X3
−1.02X2X4 − 1.43X3X4 + 0.6328X2

1 − 1.07X2
2 − 3.42X2

3 + 0.2118X2
4

(7)

Y2 = 41.84 + 0.9626X1 + 0.4558X2 − 2.40X3 + 3.13X4 − 0.6606X1X2 + 1.44X1X3 + 0.4581X1X4 + 1.08X2X3
+1.34X2X4 − 0.4356X3X4 − 1.47X2

1 − 1.72X2
2 − 3.60X2

3 − 1.54X2
4

(8)

3.1.2. Effect of MAE-SF Parameters on TPC and TFC

Similar to DPPH and ABTS, contour plots were generated for TPC and TFC to de-
termine the relationship between the independent variables by varying the conditions.
TPC (36.06 mg GAE/g) and TFC (16.85) exhibited the highest activities in runs 16 and 12,
respectively (Table 1). ANOVA results show that TPC had significant effects in terms of
linear (X1, X3, X4), interaction (X1X3, X2X3, X2X4), and quadratic relationships (X1

2, X2
2,

X3
2, X4

2). The TFC exhibited significant effects in terms of linear (X1, X2, X3, X4), interaction
(X1X2, X1X3, X2X3, X2X4, X3X4), and quadratic relationships (X2

2, X3
2) (Table 2). Likewise,

the lack of fit for TPC (0.1025) and TFC (0.3556), along with the coefficient of determination
for TPC (0.9533) and TFC (0.9745), show that our model could be fitted well. The relation-
ship between TPC, TFC independent, and response variables can be determined using
Equations (9) and (10), as follows:

Y3 = 35.48− 0.980X1 +0.1990X2 − 1.19X3 + 1.99X4 + 0.1952X1X2
+1.06X1X3 + 0.7562X1X4 + 1.41X2X3 + 1.94X2X4
+0.4797X3X4 − 2.42X2

1 − 2.58X2
2 − 3.33X2

3 − 1.13X2
4

(9)

Y4 = 13.26− 0.4032X1 +1.677X2 − 0.6597X3 + 1.51X4 − 0.5511X1X2
+1.01X1X3 + 0.1127X1X4 + 1.11X2X3 + 1.80X2X4
+0.6715X3X4 + 0.1636X2

1 − 0.4717X2
2 − 1.15X2

3 + 0.0652X2
4

(10)

3.2. ANN Modeling

The ANN architecture topology for MAE-SF conditions is shown in Figure 1. For a
well-developed model, the testing and training errors should be minimal, and the epochs
should be kept optimal. Lower epoch levels result in an under-fitted model, whereas
high epochs result in model over-fitting. In this study, an ANN topology of 4–16–4 was
found to be sufficient, with the least MSE and a higher R2 for better model reliability
and precision, as shown in Figure S2. Figure 1B–E shows the performance of DPPH,
ABTS, TPC, and TFC, which gradually reached the best validation performance of 2.54 at
epoch 3, 5.70 at epoch 1, 6.09 at epoch 3, and 5.67 at epoch 2, respectively. Figure 1F–I
shows a comparison between the experimental response and both the RSM and ANN
predictions. Our outcomes are inconsistent with the results reported by Ameer et al. [26] for
the recovery of bioactive components from Stevia rebaudiana leaf extracts using ultrasound-
assisted extraction conditions with a hybrid RSM-ANN-GA model. Table 3 presents the
model validation parameters. For an optimal model, the values of RMSE, SEP, and AAD
should be lower, whereas R2 should be higher. In our study, for all four response variables,
SEP, RMSE, and AAD values were lower, whereas R2 was higher in the ANN model than
in the RSM model, which validated the superiority of the ANN model.
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Table 3. Comparison of the prediction abilities of the RSM and ANN models.

Parameters
DPPH ABTS TPC TFC

RSM ANN RSM ANN RSM ANN RSM ANN

RMSE 1.38 1.15 1.10 0.78 1.15 0.56 0.66 0.46
R2 95.43 96.84 96.08 98.03 95.33 97.72 96.27 98.19

AAD 5.18 4.17 2.40 1.26 3.52 1.68 4.66 2.12
SEP 0.22 0.18 0.12 0.08 0.15 0.10 0.21 0.14

3.3. Process Optimization and Model Validation

The data generated by the RSM and ANN models was used to optimize the extraction
conditions by using a genetic algorithm. A scalar technique was used in the objective
function instead of using second-or first-order derivatives [34]. GA is adopted by maxi-
mizing the outputs of RSM and ANN in the objective function. For the fitness function,
the rank method was used, whereas a stochastic uniform was utilized for the selection
method. In GA with constraint dependence, 90 population sizes were initially taken, while
for the survival of the next generation, the elite count in the reproduction option was put
on default. Moreover, for genetic variation and also to achieve new individual formation,
constraint dependent mutation and crossover functions were applied (Table S3). A La-
grangian solver was adopted for better accuracy as the nonlinear constraint algorithm,
whereas Design Expert software was adopted to achieve the optimal condition by keeping
the independent variables in their maximum range. Table 4 depicts the optimized process
results for RSM-GA, RSM-DF and ANN-GA. ANN-GA and RSM-DF showed higher values
in comparison with RSM-GA. All of the three methods exhibited similar values; however,
the ANN-GA conditions were further used to validate the model and make the comparison.
The final extraction was also carried out by modifying the conditions as follows: ethanol
concentration (50%), extraction time (3 min), extraction temperature (140 ◦C), and power
(600 W) for further confirmation, and the results are presented in Table S2.

Table 4. Process optimization using three different methods.

Variables RSM-GA ANN-GA RSM-DF
(0.92)

Independent
variables

Concentration 47.75 47.67 47.36
Time 2.76 2.96 2.94

Temperature 140.79 139.54 139.71
Power (W) 599.99 600.00 599.99

Dependent
variables

DPPH 26.31 28.01 27.94
ABTS 35.99 36.07 36.00
TPC 42.90 43.65 43.58
TFC 17.84 17.67 17.63

3.4. Cell Viability, ROS Scavenging, and Antioxidant Enzyme Activity

SF extracts obtained after optimizing the MAE conditions did not exhibit any RAW
264.7 cellular toxicity up to 300 µg/mL (Figure 2A). Figure 2B shows that ROS production
was enhanced by LPS induction; however, SF extracts scavenged ROS in a dose-dependent
manner (approximately two-fold). Similarly, SF extracts also increased antioxidant enzyme
activity, that is, catalase (CAT), glutathione peroxidase-1 (GPx-1), and superoxidase-1 (SOD-1)
levels in a concentration-dependent pattern (Figure 2C). Wang et al. (2022) stated that
fermented fucoidan isolated from SF attenuates ROS levels and improves SOD levels in
zebrafish induced by H2O2 [35], which is consistent with our results.
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Figure 2. Cellular viability and antioxidant activity of optimized Sargassum fusiforme (SF) extracts. Cell
viability of optimized SF extracts (A), ROS scavenging activity of SF extracts (B), glutathione peroxidase 1
(GPx-1), catalase (CAT), and superoxide dismutase 1 (SOD-1) protein expression (C) in RAW cells were
measured as described in materials and methods. Results are expressed as the mean± SD of three separate
experiments. LPS: 1 µg/mL. ** p < 0.01 as compared with LPS alone.

3.5. Metabolite Profiling of SF Extracts Using High-Resolution LC-MS/MS

Metabolite profiling of the optimized SF extract (Supplementary Table S2) was con-
ducted in the negative mode of HRLC-ESI-MS/MS. As shown in Table 5, 79 secondary
metabolites were tentatively verified, and 12 of them were reported for the first time in SF,
which were as follows.



Antioxidants 2022, 11, 2246 12 of 20

Table 5. Identified compounds of the optimized extract of Sargassum fusiforme by ESI-MS/MS.

Group No. Compound Name EF CM (m/z)−/+ OM (m/z)−/+ MS/MS (Negative Mode)

Ph
en

ol
ic

ac
id

s
an

d
de

ri
va

ti
ve

s 1. Gallic acid C7H6O5 169.0134 169.0137 125.02

2. Vanillic acid C8H8O4 167.0343 167.0344 108.02, 152.011

3. Isopropyl 3-(3,4-dihydroxyphenyl)-2-
hydroxypropanoate # C12H16O5 239.0929 239.0925 173.03, 123.04

4. 3,4-Dihydroxyphenylglycol # C8H10O4 169.0500 169.0506 151.03, 123.00

5. Scopoletin # C10H8O4 191.0349 191.0350 175.03, 147.04

6. Caffeic acid 4-Sulfate # C9H8O7S 258.9899 258.9912 215.00, 179.03, 135.04

7. Cinnamoyl Glucose # C15H18O7 309.0974 309.0974 147.04, 131.04, 103.05

Fl
av

on
oi

ds 8. 3’-O-Methylcatechin C16H16O6 303.0862 303.0868 271. 07, 163.05

9. 4’,7-Dihydroxyisoflavone # C15H10O4 253.0493 253.0500 225.05,197.06, 143.03

10. Naringenin # C15H12O5 271.0581 271.0606 229.05, 177.01, 151.00, 119.06

Ta
nn

in
s

11. Phloroglucinol C6H6O3 125.0237 125.0238 97.04

12. Fucophlorethol-A C18H14O9 373.0557 373.0559 247.05, 233.02, 229.07, 125.03

13. Bifuhalol C12H10O7 264.0345 264.0348 247.03, 141.07, 111.03, 123.01, 125.03,

14. Diphlorethohydroxycarmalol # C24H15O13 511.0510 511.0506 385.00

15. Dibenzodioxin-1,3,6,8-tetraol # C12H7O6 246.9919 246.9914 203.05, 121.01

16. Fucophlorethol # C36H26O14 680.1154 680.1179 610.05,601.03, 495.07, 469.06, 229.03

Te
rp

en
es

17. Glycyrrhizin C42H62O16 821.3951 821.3959 777.40, 627.35, 469.33, 451.32

18. β-Glycyrrhetinic acid C30H46O4 469.3330 469.3317 451.32, 423.32, 409.31

19. Isololiolide C11H16O3 195.1021 195.1021 161.09, 179.10, 133.10, 105.07

20. Lupenone C30H48O 423.3620 423.3626 408.33,381.33,365.27,257.24
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Table 5. Cont.

Group No. Compound Name EF CM (m/z)−/+ OM (m/z)−/+ MS/MS (Negative Mode)

C
ar

bo
xy

lic
ac

id
s

21. Fumaric acid C4H4O4 115.0050 115.0037 71.01

22. Threonic acid C4H8O5 135.0290 135.0299 117.01, 91.04, 72.99

23. Cinnamic acid C9H8O2 147.0442 147.0452 129.03, 103.05

24. Gentisic acid C7H6O4 153.0187 153.1287 152.74, 108.07, 81.05

25. Behenic acid C22H44O2 339.3268 339.3263 321.31, 295.33,211.24

26. Kainic acid C10H15NO4 212.0922 212.0922 168.2, 194.1, 150.2

27. Mannuronic acid C6H10O7 193.0353 193.0348 175.02, 103.00, 72.99

28. Diethyl phthalate C12H14O4 221.0818 221.0813 193.08, 177.09, 149.09, 121.02

29. Vanillylmandelic acid C9H10O5 197.0449 197.0450 153.05, 137.02,123.04, 107.01

30. Phthalic acid C8H6O4 165.0188 165.0187 121.1 26, 119.15, 58.91

31. 3-Oxooctanoic acid C8H14O3 157.0863 157.0876 139.07, 113.09, 97.06

32. D-Glucaric acid derivate C12H14O10 317.0544 317.0509 209.08

33. Fukic acid C11H12O8 271.0459 271.0453 227.05, 197.04, 179.03

34. Mono-(3-carboxypropyl) phthalate C12H12O6 251.0556 251.0555 233.04, 207.06, 165.01

35. Azelaic acid C9H16O4 187.0969 188.0976 187.31, 124.91, 169.20, 111.20
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Table 5. Cont.

Group No. Compound Name EF CM (m/z)−/+ OM (m/z)−/+ MS/MS (Negative Mode)

Fa
tt

y
ac

id
s

36. Caprylic acid C8H15O2 143.1070 143.1072 125.09, 99.11, 59.01

37. Stearic acid C18H36O2 283.2641 283.2637 265.25, 239.27, 237.25

38. cis-Vaccenic acid C18H34O2 281.2486 281.2487 263.23, 223.17, 163.14, 71.01

39. α-Linoleic acid C18H32O2 279.2331 279.2330 261.22, 235.24, 233.22

40. Oleic acid C18H34O2 281.2487 281.2486 263.25, 181.21, 127.25

41. Palmitic acid C16H32O2 255.233 255.233 237.23, 211.24, 197.22

42. Myristic acid C14H28O2 227.2015 227.2017 209.19, 183.21,179.18

43. Arachidic acid C20H40O2 311.2958 311.295 297.04, 275.84, 200.85

44. Eicosapentaenoic acid C20H30O2 301.2176 301.2173 299.20, 283.20, 229.15, 131.08, 71.01

45. Arachidonic acid C20H32O2 303.2333 303.233 285.2218, 259.24, 257.22

46. 5,8,11-Eicosatrienoic acid C20H34O2 305.2491 305.2486 287.23, 261.25, 207.21

47. 11,14-Eicosadienoic acid C20H36O2 307.2643 307.2643 289.25, 249.18, 233.19, 153.09, 71.01

48. Octadecendioic acid C18H32O4 311.223 311.2239 299.25, 269.24, 251.23, 223.24

49. Methyl arachidonate C21H34O2 317.2487 317.2486 315.23, 301.21, 243.17, 191.18, 121.10, 73.02

50. 13-keto-9Z,11E-Octadecadienoic acid C18H30O3 293.2125 293.2122 275.20, 195.13, 113.09

51. 10-Oxooctadecanoic acid C18H34O3 297.2436 297.2435 279.23, 209.15, 141.12, 127.11

52. 10,16-Dihydroxy-palmitic acid C16H32O4 287.2227 287.2222 269.21, 257.21, 239.20, 185.11

53. Vernolic acid C18H32O3 295.2278 295.2273 277.21, 251.23, 195.13, 127.11

54. Octadeca-2,4-dienedioic acid C18H30O4 309.2072 309.2071 291.19, 265.21, 247.20

55. Palmitaldehyde C16H32O 239.092 239.0925 237.22, 207.21, 153.12, 127.14

56. Myristic aldehyde C14H28O 211.2064 211.2067 209.19, 167.14, 127.14, 99.11, 71.08

57. Heptanal C7H14O 113.0962 113.0972 95.08, 85.10

58. 9-Octadecenal C18H34O 265.2544 265.2537 249.22, 247.24, 235.24

59. 2,4-Decadienal C10H16O 151.1119 151.1128 133.10, 123.11, 119.08, 93.07

60. Nonanal C9H18O 141.128 141.1285 123.11, 113.13, 95.08

61. Ethyl oleate C20H38O2 309.2798 309.2799 291.26, 281.24, 263.23, 237.25, 45.03

62. 1-Docosanol C22H46O 325.3475 325.3476 309.31, 307.33, 295.33, 267.30

63. (9R,10S,12Z)-9,10-Dihydroxy-8-oxo-12-octadecenoic acid C18H32O5 327.2178 327.2177 309.20, 283.22, 187.09, 157.08

64. 5,8,12-Trihydroxy-9-octadecenoic acid C18H34O5 329.2338 329.2333 311.22, 285.24, 267.23, 243.12, 195.17, 145.08

65. 13-Docosenamide C22H43NO 336.3274 336.3272 319.30, 293.3214, 58.02

66. Lauric acid C12H24O2 199.1697 199.1698 181.1062; 155.0336
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Table 5. Cont.

Group No. Compound Name EF CM (m/z)−/+ OM (m/z)−/+ MS/MS (Negative Mode)

A
m

in
o

A
ci

ds 67. L-Proline C5H9NO2 114.0560 114.0555 70.06

68. Glutamic acid C5H9NO4 146.0451 146.0453 70.06

69. D-Histidine C6H9N3O2 154.0628 154.0616 82.3,
71.9

Su
ga

rs

70. D-Galactose C6H12O6 179.0568 179.0555 161.04, 143.03, 113.02, 101.02,

71. Mannitol C6H14O6 181.0712 181.0718 165.01, 147.03, 129.05, 111.00

72. Gluconic acid C6H12O7 195.0517 195.0504 177.05, 159.02, 129.05, 98.90

73. Xylitol C5H12O5 151.0618 151.0612 119, 131, 89.1

74. Maltitol C12H24O11 343.1248 343.124 283.10, 265.09, 179.05, 161.04, 143.03

O
th

er
co

m
po

un
ds 75. 4-Octylphenol C14H22O 205.1593 205.1592 135.08, 119.05, 107.05, 93.03

76. 2,4-Dibromophenol C6H4Br2O 248.8649 248.8550 248.85, 168.92

77. Dihydroconiferyl alcohol C10H14O3 181.0864 181.0864 163.07, 135.04

78. Dihydroxyphenylalanine # C9H10O7NS 276.0185 276.0184 259, 231, 215, 196, 179, 150, 135

79. 5-Hydroxybenzofuran-2(3H)-one # C8H6O3 149.0237 149.0238 121.02, 67.01, 65.00

EF: elemental formula; OM: observed mass; CM: calculated mass; (-): Negative mode; # First time identification in SF.
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3.5.1. Phenolic Acids

During collisions, phenolic acids exhibit certain breakage patterns and loss-specific
molecules, such as methyl (15 Da) and carboxyl (44 Da) [36]. Based on the fragmentation
pattern, compounds 1–2 were previously identified as gallic acid and vanillic acid, respec-
tively [21]. Compound 3, reported in Dasya sp., yielded two daughter ions at m/z 179.03
(isopropanol group) and m/z 123.04 by cleaving the α, β carbon–carbon bond, and was
identified as isopropyl 3-(3,4-dihydroxyphenyl)-2-hydroxypropanoate [37]. Compound 4
(3,4-dihydroxyphenylglycol) yielded a precursor ion at m/z 169.0506, which was further
fragmented into two major daughter ions at m/z 151.03 (losing H2O) and 123.00 (losing
CO). Similarly, compound 5 was previously reported in Codium and Grateloupia sp., and
produced a parent ion at m/z 191.0352 and was fragmented further by losing methyl
(15 Da) ([M-H-CH3]) and carboxyl (44 Da) ([M-H-CH3-COO]) at m/z 175.03 and 147.04,
respectively [38]. Compound 6, with a monoisotopic mass [M-H]− at m/z 258.9912, forms
fragmentation ions at m/z 215.00 by losing [M-H-CH3-COO], followed by further cleav-
age into a caffeic acid ion (135.04 Da) by losing SO3 (80 Da). Fragmentation of phenolic
acid glycoside started at the glycosidic link and yielded a sugar moiety (−162 Da), which
tentatively confirmed the presence of compound 7 (cinnamoyl glucose) in SF by having a
characteristic ion at m/z 303.08 [38]. Compounds 3–7 have been reported for the first time
in SF extracts.

3.5.2. Flavonoids

Compound 8, previously known as 3′-O-methylcatechin, produced an ion peak at
m/z 303.0868 with characteristic peaks at m/z 271.07 and m/z 163.05, corresponding to
a loss of 30 Da (CH3O) and 109 Da (C6H5O2), respectively, identified for the first time in
this species. Compound 9, previously known as 4’,7-dihydroxyisoflavone, had a precursor
ion peak at m/z 253.0500 and fragment peaks at m/z 225.05 and m/z 197.06, owing to
the loss of two CO molecules [M-H-2CO], followed by the removal of water molecules
from the B ring at m/z 143.03. Similarly, compound 10 (naringenin) was previously
found in Ulva intestinalis and tentatively identified by Choi et al. [21]. Naringenin exhibits
various biological properties, including anti-inflammatory and anticancer activities [39].
Compounds 9 and 10 were also reported for the first time in SF-optimized extracts.

3.5.3. Tannins and Terpenoids

Compounds 11–16 were tentatively identified as tannins and compounds 17–21 as
terpenoids, as shown in Table 5. Tannins have a complex structure and, in seaweeds, this
complexity pertains specifically to phlorotannins, including phlorethols, fuhalos, fucols,
and eckols. In the SF extract, compounds 11–14 were previously identified as phloroglu-
cinol, fucophlorethol-A, bifuhalol, and diphlorethohydroxycarmalol, respectively [19,40].
Diphlorethohydroxycarmalol exhibits protective effects against oxidative stress in retinal
pigment epithelial cells and was tentatively reported for the first time in SF extracts [41].
Compound 15, previously identified in Fucus sp., yielded a monoisotopic mass [M-H]−

at m/z 246.9914 with corresponding minor peaks at m/z 202 and 121, indicating that the
compound was dibenzodioxin-1,3,6,8-tetraol, which was reported for the first time in SF
extracts [42]. Similarly, compound 16 (fucophlorethol), previously reported in Laminaria dig-
itate, was identified for the first time in SF extracts based on the fragment pattern reported
by [43]. Compounds 17–20 were previously identified as glycyrrhizin, β-glycyrrhetinic
acid, isololiolide, and lupenone, respectively, in SF [44,45].

3.5.4. Carboxylic Acid, Fatty Acids, Sugars, and Amino Acids

Compounds 21–35 were previously reported in a variety of seaweeds and were identi-
fied as carboxylic acids based on their fragmentation patterns. Compounds 36–66 were fatty
acids, compounds 67–69 were amino acids, and compounds 70–74 were sugars [30,46–51],
as shown in Table 5. Additionally, compounds 75 and 76 (phenols), and compound 77
(alcohol) were identified. Compound 78 was previously identified in Ascophyllum nodosum
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as dihydroxyphenylalanine, based on its fragmentation pattern. Dihydroxyphenylalanine
is a large neutral amino acid with a catecholamine precursor that has a neuroprotective
effect, especially against Parkinson’s disease [52]. Compound 79 (5-hydroxybenzofuran-
2(3H)-one) yielded a monoisotopic mass at m/z 149.0238, which represented an aromatic
alcohol group. To the best of our knowledge, compounds 78 and 79 have been tentatively
reported for the first time for SF.

4. Conclusions

In this study, the effects of MAE parameters on the antioxidant potential of Sargas-
sum fusiforme were investigated using two sophisticated techniques: RSM and ANN-GA.
A comparative overview of both statistical models based on SEP, RMSE, R2, and AAD
revealed that the ANN-GA models were superior to the RSM model. The optimized MAE
conditions (X1: 47.67%, X2: 2.96 min, X3: 139.54 ◦C, and X4: 600.00 W) exhibited maximum
response for four dependent variables: Y1:28.01% DPPH inhibition; Y2:36.07% ABTS inhibi-
tion; Y3:43.65 mg GAE/g TPC; Y4:17.67 mg CAE/g TFC content. The optimized extracts
showed no toxicity to RAW 264.7 cells up-to 300 µg/mL and had increased CAT, GPx-1,
and SOD-1 levels in a dose-dependent manner. After optimizing the MAE conditions,
optimized extracts were analyzed by HR-LC-MS and identified 79 secondary metabolites;
among them, 12 new bioactive compounds (five phenolic compounds, two flavonoids,
three tannins, and two other compounds) were also tentatively reported for the first time
in optimized SF extracts. The current investigation may not only provide an alternative
statistical technique, but it could also support the preferred extraction technology for iden-
tifying important bioactive components that can be used in broad commercial applications
as promising ingredients for the development of functional foods and nutraceuticals and in
the cosmetic industry, shedding light on the bright side of human health. However, several
other aspects that might affect the extractability of bioactive components, including kinetic
behavior, type of solvent, pH, ultrasound frequency, and quantitative measurement of
bioactive components, should be investigated, as this study provides the basis for further
future trials.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox11112246/s1. Table S1: Independent process variables
with experimental ranges and levels for MAE of SF, Table S2: Comparison between optimized
model and experimental values, Table S3. Setting parameters of genetic algorithm used in the
optimization of process for SF, Figure S1: The three-dimensional (3D) response surface plots of MAE-
SF extraction condition displaying the influence of independent parameters (Ethanol Concentration,
Time, Temperature, and power) on dependent variables (DPPH radical-scavenging activity, ABTS,
TPC, and TFC) as a function of significant interaction factors for RSM, Figure S2: Regression of
experimental and predicted values in ANN model of MAE for SF using the training, testing and
validation datasets to optimized the extraction conditions.
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