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Abstract: Inflammation of the human lung is mediated in response to different stimuli (e.g., physical,
radioactive, infective, pro-allergenic or toxic) such as cigarette smoke and environmental pollutants.
They often promote an increase in inflammatory activities in the airways that manifest themselves
as chronic diseases (e.g., allergic airway diseases, asthma, chronic bronchitis/chronic obstructive
pulmonary disease (COPD) or even lung cancer). Increased levels of oxidative stress (OS) reduce the
antioxidant defenses, affect the autophagy/mitophagy processes, and the regulatory mechanisms of
cell survival, promoting inflammation in the lung. In fact, OS potentiate the inflammatory activities in
the lung, favoring the progression of chronic airway diseases. OS increases the production of reactive
oxygen species (ROS), including superoxide anions (O2

−), hydroxyl radicals (OH) and hydrogen
peroxide (H2O2), by the transformation of oxygen through enzymatic and non-enzymatic reactions.
In this manner, OS reduces endogenous antioxidant defenses in both nucleated and non-nucleated
cells. The production of ROS in the lung can derive from both exogenous insults (cigarette smoke or
environmental pollution) and endogenous sources such as cell injury and/or activated inflammatory
and structural cells. In this review, we describe the most relevant knowledge concerning the functional
interrelation between the mechanisms of OS and inflammation in airway diseases.
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1. Introduction

Asthma and Chronic Obstructive Pulmonary Disease (COPD) are usually distinct;
however, these lung diseases have overlapping features. They are inflammatory diseases of
the airways, and both asthma and COPD have two common characteristics: inflammation
and airway obstruction. The increase in inflammation in asthma and COPD occurs through
the activation and alteration of normal activity of both structural cells (epithelial cells,
fibroblast, etc.) and infiltrating cells (eosinophils, neutrophils, lymphocytes, etc.). However,
the precise mechanisms by which the inflammatory response is regulated in each of these
diseases are not clear. Environmental factors such as allergen, cigarette smoke or pollutants
can drive the origin of chronic inflammatory lung diseases affecting cellular and molecular
mechanisms of oxidative stress (OS). In this scenario, the knowledge of the cellular and
molecular mechanisms regulated by OS could be useful to develop new pharmacological
treatments useful for the resolution of inflammation in chronic inflammatory diseases of
the lung such as severe asthma and COPD.

An imbalance between prooxidative and antioxidative processes define the cell OS in
the airway inflammation. The enzymatic and non-enzymatic pathways produce reactive
oxidative species (ROS) and compounds related to OS and affect the activities of cells and
tissues of the airways. Therefore, the OS is a dynamic and continuous process linked to
a wide range of adverse biological effects such as the production of prooxidants, airway
infiltration of inflammatory cells, metabolic deregulation and reduced levels of antioxi-
dants. Nonetheless, the lung has several mechanisms to prevent an excessive degree of OS
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associated with adaptive responses and with resolution of inflammation. The increased
levels of OS in the airway promote the progression of disease toward higher disease sever-
ity, damaging the lung function and the response to the conventional drug used in the
treatment of the disease. However, often the treatment of inflammatory airway diseases
with an antioxidant as an additional drug is not sufficient to obtain the welfare of the
patients. However, a therapeutic action of the antioxidants might be used in the treatment
of asthma and COPD by an approach that considers the individual and environmental
risk factors.

2. Mechanism of Oxidative Stress

The definition of OS indicates “an imbalance between pro-oxidants and antioxidants
with concomitant dysregulation of redox circuits and macromolecular damage” [1]. OS
involves the chemistry of the reactions of so-called reactive oxygen species (ROS), reactive
nitrogen species (RNS), reactive lipid species and free radicals [2]. ROS and RNS are
metabolites of oxygen and nitrogen that have been partially reduced and have a high
reactivity and oxidizing capacity. ROS and RNS are composed of free radicals such as
superoxide radicals (O2

−), hydroxyl radicals (OH) and nitric oxide (NO) radicals, as well
as non-free radicals such as hydrogen peroxide (H2O2) and peroxynitrite (ONOO) [3]. The
free radical is a chemical species with an unpaired electron in its valence shell, highly
unstable and reactive, that interacts with and damages the cellular biomolecules (proteins,
lipids, DNA and carbohydrates) [4]. NO is a lipophilic gaseous transmitter also secreted by
the epithelial cells [5].

ROS are produced by normal cells at low concentrations to ensure cellular signal-
ing and prolonged homeostasis [6]. ROS and RNS can have a dual function, depending
on whether they are present at low or high concentrations. In the first case, they are in-
volved in redox cell signaling by regulating some normal physiological processes such as
phagocytosis, vasodilation, tissue repair and regeneration [4,7,8]. On the other hand, at
high concentrations, they lead to the onset of cell and tissue damage that can cause the
onset of inflammatory diseases (such as respiratory diseases and cancer) [9–13]. There
are two sources of ROS and RNS in the lungs: an endogenous source represented by cells
that produces free radicals and an exogenous source whose main representatives are atmo-
spheric particulate matter and cigarette smoke [14]. In general, ROS/RNS are produced
as intermediates or by products of cellular metabolism catalyzed by enzymes localized in
different organelles, primarily plasma membrane, cytosol, mitochondria, peroxisomes and
endoplasmic reticulum [15].

The key enzymes that produce ROS/RNS in the lungs include NADPH oxidase,
myeloperoxidase (MPO), xanthine oxidase and NO synthase (NOS). NADPH oxidases
(NOX) are a class of a multicomponent transmembrane enzyme complex that transports
electrons across biological membranes to reduce oxygen to superoxide [8,10–12,16]. There
are seven isoforms of NOX—(NOX-1, NOX-2, NOX-3, NOX-4, NOX-5, Dual oxidases
(DUOX)-1 and -2) [17]. Many of them are expressed in various cell types of human
lung [18,19]. NOX-2 is localized in the phagosome of macrophages and neutrophils, the
first cells of the immune systems recruited at the site of infections producing ROS to kill
the phagocytized bacteria [20].

Myeloperoxidase (MPO) belongs to the heme peroxidase family and is abundantly
expressed in neutrophils and macrophages. It generates hypochlorous acid (HOCl), a
damaging reactive oxygen species (ROS) utilizing hydrogen peroxide (H2O2) and chloride
(Cl−) and, therefore, it is an important enzyme in the host defense against bacteria, viruses
and fungi [21]. The production of HOCl and other reactive oxidants by MPO may also
damage tissues. The formation of chlorotyrosine residues that MPO induced is used
as a marker of neutrophilic inflammation [22]. In addition, MPO uses as a substrate
NO and nitrite, leading to the formation of nitrogen dioxide (NO2) that induces a post-
translational modification contributing to inflammatory disease through protein nitration,
lipid peroxidation and the oxidation of tyrosine yielding nitrotyrosine [23].
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Other enzymes that catalyze chemical reactions that are ROS-generating are xanthine
oxidase (XO), localized in the plasma membrane, and cytosol, which under normoxia
catalyzes oxidation of hypoxanthine to xanthine and to uric acid; however, under hypoxic
conditions, hypoxanthine is formed from adenosine triphosphate, and oxygen is reduced
to hydrogen peroxide and superoxide anion [24,25].

The lipoxygenases (LOXs) are non-heme iron enzymes catalyzing dioxygenation of
polyenoic fatty acids yielding hydroperoxyl derivatives including hydroperoxyeicosate-
traenoic acids (HPETEs); cyclooxygenases (COXs) are bifunctional enzymes (having both
COX and peroxidase activities) that release arachidonic acid (AA) from membrane phos-
pholipids and catalyze conversion of AA to prostanoids; and nitric oxide synthase (NOS) is
a heme-containing monooxygenase that catalyzes oxidation of L-arginine to citrulline and
nitric oxide (NO) [26]. Moreover, NO is involved in multiple biological processes including
vasodilation and inflammatory processes, and in several airways’ epithelial physiologic
functions as mucociliary function and ciliary frequency, in the modulation of inflammation
by inflammatory mediators release and bronchial epithelial barrier integrity [27]. There
are three isoforms of NOS, namely, NOS1 (neuronal NOS, nNOS), NOS2 (endothelial
NOS, eNOS) and NOS3 (inducible NOS, iNOS). Pulmonary cells constitutively express
NOS1 (in neurons and endothelial cells) and NOS2 (in the human airway epithelium, lung
endothelium and alveolar macrophages), while NOS3 (in bronchiolar epithelial cells and
the endothelium) is elevated in the lung during inflammation [28,29]. NOS catalyzes the
transformation of l-arginine, molecular oxygen (O2) and NADPH-derived electrons to
nitric oxide (NO) and l-citrulline. Under some conditions, however, NOS catalyzes the
reduction of O2 to superoxide (O2

−) instead, a phenomenon that is generally referred to as
uncoupling [30].

3. ROS Inflammation and Autophagy/Mitophagy Processes

ROS have impacts on several signaling pathways and mechanisms. In response to
growth factors and cytokines, they affect a variety of cell processes [31] associated with the
development of several pathogenetic mechanisms, including inflammatory processes and
tumorigenesis. ROS generate DNA damage, immune response, immune evasion, signaling
pathway regulation involved in the control of autophagy, and apoptosis, angiogenesis and
drug resistance [32]. The massive production of ROS leads to inflammation status capable
of altering the tumor microenvironment (TME), promoting DNA damage as well as the
upregulation of growth factors, cytokines and genes involved in cell survival, underlining
their impact on several signaling pathways and mechanisms [33,34]. In response to growth
factors and cytokines, ROS can act as secondary messengers for specific signaling pathways
as well as regulatory molecules for gene expression [32]. In most of the lung disorders,
the primary source of ROS excess are the mitochondria [5,10,35]. Superoxide produced
by mitochondria is a result of incomplete reduction of oxygen to water due to leakage of
electrons by a mitochondrial respiratory chain, which is represented by four complexes
composed of proteins, labeled I through IV: respiratory complexes I (aka NADH:ubiquinone
oxidoreductase), II (aka succinate-coenzyme Q reductase), III (aka ubiquinol:cytochrome c
oxidoreductase) and complex IV (aka cytochrome c oxidase) [5,35,36]. In the mitochondrial
electron transport chain, the electrons are being passed from Complex I or Complex II
to Complex III via ubiquinone, and some of these electrons can escape and react with
oxygen to form superoxide. The superoxide can convert to hydrogen peroxide through
enzymes’ superoxide dismutase, which can then exit the mitochondria. In the cytoplasm,
metabolism reactions such as those of the cytochrome P450 family of enzymes (CYP)
produce ROS [37,38].

Mitochondria are, also, essential organelles within the cells where most ATP is pro-
duced via oxidative phosphorylation (OXPHOS) [39,40]. Mitochondrial ROS (MtROS)
stimulates redox-sensitive transcription factors such as hypoxia-inducible factor-1 (HIF-1),
NF-kB and pro-inflammatory cytokines to activate inflammatory caspases (caspase-1 and
-12) and to promote tumor progression activating TNF-converting enzymes, which is re-
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quired for the progression of inflammation [41–44]. As mentioned, the principal sites
of ROS production are mitochondria, the principal site of the regulation of autophagy
mechanisms. Autophagy plays a major role in the first line of defense against antioxidant
damage and regulates cell homoeostasis via the lysosomal pathway by eliminating and
recycling proteins and organelles within the cells [45]. ROS influences autophagy both
directly and indirectly. Direct regulation occurs when key proteins Atg4, Atg5, and Beclin
are damaged in their autophagic function. Instead, indirect ROS regulation involves al-
teration of signaling pathways that can induce autophagy such as the JNK, p38. [41,42].
Moreover, the ROS range of actions encompasses the direct activation of the redox sensor
nuclear factor erythroid 2-related factor (Nrf2). Nrf2 is a primary cell survival regulator
involved in the control of antioxidant mechanisms, drug metabolism and anti-inflammatory
detoxification, and promotes cancer progression as well as protecting the cells from OS and
DNA damage [46]. In fact, Nrf2 serves two purposes: it promotes inflammation and cancer
by enhancing OS and mitochondrial dysfunction, and it strengthens the antioxidant system
to suppress tumors and inflammation [47].

OS is reduced through the Nrf2 / Keap1 (Kelch Like ECH Associated Protein 1)
and SQSTMI / p62 pathways that induce the expression of antioxidants regulated by
Nrf2. [48]. The p62 pathway increases binding affinity to Keap1 and induces selective
autophagy activating Nrf2 that consequently activates the antioxidant enzymes such as
catalase, glutathione peroxidase, peroxire-doxin and glutathione [49]. OS is, also, regulated
by carbonyl reductase 1 (CBR1), an enzyme that regulates Nrf2 expression. However, Nrf2
hyperactivation may create an environment favoring both normal and malignant cells,
protecting them from OS [50]. Moreover, in the presence of elevated ROS, the deletion of
some autophagy genes such as ATG5, ATG7 or BECLIN1 establishes defective autophagy
or autophagy inhibition, which promotes tumor initiation and progression through chronic
OS, inflammation and tissue damage. [51].

High levels of ROS impair the mitochondrial function, and consequently they trigger
a signal of self-removal through a process called mitophagy.

The mitophagy process acts to remove dysfunctional mitochondria by fusion with
lysosomes and to control the number of mitochondria maintaining energy metabolism
stability [51–53]. The activation of phosphatase and tensin homology deleted on chromo-
some 10 (PTEN) regulated through the putative kinase 1 (PINK1)/Parkin pathway can
induce the ROS to trigger the mitophagy mechanism [54]. Under normal physiological
conditions, cellular prion protein (PrPc) binds PINK1 through ubiquitin kinase and enters
the mitochondrial inner membrane, degrading it. Under oxidative stress, PINK1(PTEN-
induced kinase 1) can act as a molecular sensor of damaged mitochondria; PINK1 facilitates
aggregation and clearance of depolarized mitochondria through interactions with Parkin
and possibly Beclin1 that are involved in the clearance of damaged mitochondria [53,55].
Ubiquitous mitochondria are encapsulated to form mitophagosome, which are fused with
lysosomes and reduced by hydrolases [53,56] (Figure 1).
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Figure 1. ROS led to activation of several signaling events including mitogen- activated protein
kinase (MAPK) pathways, NF-E2-related factor (Nrf2)-mediated activation of nuclear factor-kB
(NF-kB). In addition, ROS through Nrf2 influences proteins involved in autophagy/mitophagy (like,
ATG5, ATG7, Beclin, and PTEN). Thus, ROS signaling events play a central role in regulation of
proinflammatory events, proliferation, epithelial-mesenchymal transition and autophagy/mitophagy
mechanisms. (A) Endogenous factors leading to reactive oxygen species (ROS) generation through:
(I) highly reactive free radicals, including the superoxide anion (O2

_), the hydroxyl radical (•OH)
and (II) non-radical species such as hydrogen peroxide (H2O2), singlet oxygen (O2) [4,5], ozone
(O3), hypochlorite anion (OCl−) and nitric oxide (NO). (B) Schematic depiction of multiple signaling
pathways that generate ROS and the intracellular events activated by ROS accumulation.

4. Oxidative Stress in Asthma

Different immune endotypes associated with eosinophilia (atopic or non-atopic Th2
type immune response) or neutrophilia (non-Th2 response) characterize the heterogeneity
of inflammation in asthma. Inflammatory processes in asthma accompany airway hyper-
responsiveness and guide airway remodeling. Furthermore, OS is present in the airways
and in the blood circulation of asthmatic patients; however, it is not clear whether OS is the
cause or the consequence of chronic changes in inflammation and in the related remodeling.
Moreover, the oxidant “burst” in asthma is probably a self-propagating nonspecific process
due to the concomitant action of several inflammatory pathways. Asthma mediators such
as cytokines, lipid mediators, adhesion molecules and granulocyte granule proteins are po-
tential stimuli or promoters of ROS. In addition to endogenous mechanisms, environmental
factors such as allergens and air pollutants may induce the increase of ROS production in
the airways.

The increase in oxidative damage of biomolecules and the presence of high concen-
trations of arachidonic acid oxidation products such as 8-isoprostane in exhaled breath
condensates (EBC), as well as the increased levels of lipid peroxidation compounds in
EBC of asthmatic patients, support the presence of high levels of OS in asthma [57,58],
often associated with diseases’ severity, and amplify the inflammatory response reducing
responsiveness to corticosteroids.

The imbalance between the production of pro-oxidants (e.g., ROS or RNS) and antioxi-
dant defense mechanisms generates OS in the body. As discussed above, the endogenous
sources of ROS are mitochondria, peroxisomes, endoplasmic reticulum of the immune
(phagocytes, activated eosinophils and neutrophils, monocytes and macrophages) and
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structural cells (epithelial cells, smooth muscle cells, endothelial cells) or enzymes and
enzymatic complexes (e.g., NO synthase, NADPH oxidases, xanthine oxidase). At the same
time, ROS can be generated by exogenous sources, such as cigarette smoke, pollutants,
allergens, ozone, organic solvents, metals, ultraviolet light, ionizing radiation and some
drugs. Both endogenous and exogenous sources of ROS are involved in initiation and acti-
vation of intracellular signaling promoting inflammatory and immunological mechanisms
in the airways [59].

ROS are strongly reactive and at low concentrations in the tissues. ROS show a short
half-life, and this characteristic makes difficult its direct measurement in vivo. The biomark-
ers of OS in asthma are lipid peroxidation (including malondialdehyde, 8-isoprostane),
protein oxidation (protein carbonylation) and DNA damage or general antioxidant capacity.
Accordingly, non-invasive biomarkers of OS, such as ROS, markers of lipid peroxidation,
NO metabolites and organic compounds, are detected in EBC recovered from the air-
ways of asthmatic patients [60–64]. EBC higher levels of H2O2 and NO indicate increased
levels of nitrites (NO2) and nitrates (NO3) in patients with asthma. Furthermore, the
levels of H2O2 and NO positively correlate with eosinophil counts from induced sputum
and inversely correlate with lung function in asthmatic patients [61,65,66]. Finally, EBC
levels of 8-isoprostane and malondialdehyde are significantly higher in mild-moderate
and severe asthmatics in comparison with healthy subjects, in both adult and paediatric
patients [57,67–69].

OS is evident at systemic level in asthma. Blood leukocytes from asthmatic patients
produce higher O2

− levels and contain lower GSH levels. High levels of lipid peroxides
and nitrites/nitrates, and low GSH concentration and glutathione peroxidase activity
are present in patients with asthma [70–72]. Moreover, OS markers increase in asthmat-
ics and correlate with disease severity, exacerbation frequency and phenotype [73,74].
Numerous in vitro and in vivo studies indicate ROS as important mediators of asthma
pathogenesis. In fact, ROS drive many aspects of diseases as inflammatory responses,
airway remodelling and airway hyperresponsiveness [67,75–77]. Both eosinophils and
neutrophils, via the oxidative burst dependent on O2

− produced by NOX-2, play a relevant
role in ROS production in asthma [77]. In particular, eosinophil peroxidase (EPO) and
neutrophilic myeloperoxidase (MPO) convert O2

− to H2O2 to induce protein nitration and
halogenation [73]. The imbalance of redox activity is observed in airway epithelial cells
from asthmatics. DUOX-1 and DUOX-2, and NOX-4 overexpression is observed in airway
epithelial cells and airway smooth muscle cells in asthma [78,79]. These enzymes mediate
ROS production in the lung.

Oxidation and nitration of manganese-superoxide dismutase (MnSOD) are present in the
asthmatic airways, and these modifications correlate with clinical features of asthma severity.
Tyrosine nitration and chlorination from eosinophil and neutrophil activation cause inhibition
of MnSOD activity and catalase, impairing antioxidant defenses in asthma [72,80–84]. Re-
dox imbalance and redox-dependent mechanisms engage inflammatory mediator release,
epithelial damage, reduced lung function and airway hyperresponsiveness in asthma patho-
genesis [85,86]. The activation of redox-sensitive pathways such as nuclear factor (NF)-κB,
activating protein (AP)-1, phosphatidylinositol 3-kinase (PI3K)/Akt, Janus Kinase/Signal
Transducer Activator of Transcription (JAK/STAT) and MAPKs drive transduction and
signaling mechanisms involved in asthma [67].

There is evidence that allergens promote ROS production in the lungs indirectly, via
immune and structural cells’ activation or by directly intrinsic mechanisms. Pollens are
complex structures that in addition to having antigenic properties contain NOX enzymes
involved in airway ROS production [75]. DUOX enzymes affect crucial PAMPs and DAMPs
activation in airway epithelium of allergic subjects. IL-4 and IL-13 activate non-canonical
autophagy and generate DUOX-2 trafficking through apical membrane of airway epithelial
cells of the airways [87]. DUOX-2 interacts with TLR2 and TLR4 as well as conversely
the activation of TLR2, TLR3, TLR5, and TLR6 drives increased expression of DUOX-
1, 2 in airway epithelial cells [88,89]. NOX-1 and NOX-2 are involved in the activation
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of innate immune effector promoting the immunological cell response in asthma [90].
TLR4 activation upregulates NOX-1 expression via leukotriene B4 receptor-2-dependent
mechanisms and ROS-dependent NF-κB activation and Th2 cytokine release [59,91,92].

ROS production in response to allergens increases the expression of the NOX-1 and
NLRP3 inflammasome complex, consisting of the NLRP3 receptor, caspase-1 and the
adaptor ASC. In addition, it detects exogenous PAMPs and DAMPs and modulates the
release of active IL-1β and IL-18 [93]. Moreover, ragweed pollen extract enhances the
IL-1β production endotoxin-dependent in human macrophages and dendritic cells via the
NLRP3 inflammasome activation NOX-dependent. In this context, the priming of NLRP3
inflammasome complex is also mediated by ROS production [94].

ROS are involved in the orchestration of adaptive immune responses. T-cell mat-
uration occurs via the T cell receptor (TCR)-MHC-antigen complex, and the interaction
between co-stimulatory molecules and the antigen presenting cells provides signals to
the innate immune cells for the production of cytokines and ROS [95]. Intracellular ROS
production due to NOX-2 activation in T cells TCR-mediated regulates T cell lineage
commitment and activation [96,97]. Indeed, NOX-2-deficient mice exposed to an aller-
gen have Th2 differentiation of CD4 T cells, lung eosinophilia, goblet cell metaplasia and
hyperresponsiveness [98].

The complexity of redox signaling, involved in allergic immune responses and asthma
disease, suggests the necessity to identify the phenotype of patients that benefit from the
use of pharmacological treatment with an antioxidant drug for an individual approach of
precision medicine.

5. Oxidative Stress in COPD

COPD is a chronic inflammatory disease associated with an irreversible airway ob-
struction. COPD represents one of the most important causes of mobility problems and
mortality. In fact, it is the third leading cause of death worldwide, with enormous human
and social costs. The inflammatory processes of COPD patients are activated and amplified
not only via the “conventional” pro-inflammatory pathways, including innate response,
but also via the coagulation pathways and via the release of neurotransmitters. Chronic
inflammatory processes may determine tissue destruction and interfere with physiological
repair mechanisms, promoting tissue architectural alterations, leading in turn to respiratory
failure [99,100]. In the Western world, the most important etiologic factor in causing COPD
is cigarette smoking with inhalation of combustion products. The sources of OS in the
lung also involve gases and ultrafine particulate material, and nanoparticles’ inhalation
from industrial and car pollution [101]. The lung is particularly exposed to injury due to
environmental factors; however, it is also subjected to endogenous OS generated by mito-
chondrial respiration, and by the immunological and inflammatory responses to bacterial
and viral infections within airways [102]. A range of 15%–20% of smokers develop COPD,
and cessation of smoking does not stop disease progression with continued evidence of
inflammatory cell recruitment to the lungs and the presence of OS [103].

COPD has as a feature neutrophilia [104]. The neutrophils to sites of injury or infection
are activated and induce the release a cytotoxic and proteolytic cocktail that allows effective
killing of invading micro-organisms by enhancing ROS and NO generation and subse-
quently undergoing apoptosis [105]. The excessive recruitment of neutrophils and poor
clearance of apoptotic neutrophils by macrophages can cause secondary necrosis, whereby
they release lysosomal constituents affecting resident lung cells [105]. This indicates self-
perpetuating endogenous inflammation processes in susceptible individuals [106,107] with
persistent release of inflammatory mediators such as leukotriene B4 (LTB4) and interleukin
(IL)-8 [108], and continued recruitment and activation of neutrophils to the lungs. The
release of proteases, free radicals, cytokines and pro-inflammatory mediators from these
activated cells plays a key role in COPD airways leading to the destruction of surrounding
tissues, a loss of lung elasticity and mucus hypersecretion and emphysema [109,110]. As
described above, OS occurs when exposure to free radicals, such as ROS, arising during
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mitochondrial respiration, cell signaling and in response to tissue injury and pathogens,
overwhelms antioxidant defenses. Potential targets for damage by ROS include DNA, pro-
teins and lipids. There is significant theoretical and experimental support for the potential
relationship between ROS lung damage and pathogenesis of COPD. The assessment of
OS presence in the lungs of COPD patients has been evaluated with a variety of methods,
and there is clear evidence of an increase of oxidative burden in COPD compared with
non-smoking healthy controls [111].

EBC is a helpful method used to identify OS products found in the airways [112].
Several studies have shown that H2O2 is significantly increases in the EBC of COPD patients
compared to healthy control subjects [113,114], and levels of H2O2 increase even further
during disease exacerbations. Isoprostanes, formed from in vivo free radicals’ peroxidation
of arachidonic acid [115], can be measured in EBC and have been found to be higher
in COPD [116]. Malondialdehyde (MDA), another product of fatty acid peroxidation,
significantly increases in the EBC of COPD patients in comparison to healthy control
subjects, asthmatics and subjects with bronchiectasis. Moreover, MDA levels inversely
correlate with FEV1 [117], suggesting a relationship with disease severity. In addition, in a
further study, serum levels of MDA correlated with COPD severity [118].

Using the immunohistochemistry technique, it is possible to identify some products of
OS within distinct cellular components of the lungs of COPD patients [119,120]. The cellular
key sources of ROS in COPD are represented by neutrophils, monocytes/macrophages
and lung epithelial cells. Neutrophils are key effector cells in COPD. They are significantly
increased in COPD lungs [121], correlate with disease severity, and their products have been
shown to cause several immunopathological and functional features of disease [122,123]. It
has been shown that neutrophils from COPD release increased amounts of ROS sponta-
neously and following stimulation [124–126].

Lung epithelial cells of COPD patients are primarily subjected to exogenous OS
but also produce endogenous OS products derived from mitochondrial respiration [127].
The NADPH oxidases (NOX) of membrane, the xanthine/xanthine oxidase system and
neutrophils derived myeloperoxidase (MPO) are enzymes generating ROS in cellular
cytoplasm [111]. NOX produce superoxide anions in the cells. They are weak oxidizing
agents that in the presence of NO are rapidly converted in damaging ROS species as
H2O2 and hydroxyl radical or the peroxynitrite radical [86]. MPO levels, obtained from
activated neutrophils, increase in the lungs of COPD patients. They cause the production
of hypochlorous acid, chlorinates protein tyrosine residues contributing to the formation of
3-chlorotyrosine in sputum of COPD patients [128]. Interestingly, intracellular antioxidant
defenses can eliminate the damaging ROS species in the airways of healthy subjects,
limiting the pro-oxidative effects. Conversely, the mechanisms of antioxidant defenses are
overwhelmed in COPD [111].

ROS generation affects the reactive carbonyl production by lipid peroxidation and
sugar glycoxidation. The result is aldehydes and protein carbonylation [129]. The “carbonyl
stress”, due to the formation of reactive carbonyls and subsequently of protein carbony-
lation, is associated with the age and chronic diseases in the airway, leading to cell and
tissue mechanism dysfunctions. It is present in both smokers and COPD patients and is
correlated with disease severity [130]. High levels of XO are detected in COPD patients
and correlate well with the levels of cytokine expression in the bronchial mucosal lining
fluid of COPD subjects [86,128].

Increased OS drives several mechanisms of COPD pathophysiology with different
effects in the lungs. The inflammatory cascades are sensitive to OS. They involve redox-
sensitive molecular targets as signaling molecules such as Ras/Rac, Jun-N-terminal kinase
(JNK), p38 mitogen-activated protein kinase (MAPK), the transcription factor nuclear factor-
κB (NF-κB) and protein tyrosine phosphatases [111]. The treatment with antioxidant GSH
(L-Glutathione reduced) reduced IkB Kinase/NF-kB pathway activation in an in vitro study
on peripheral blood cells from COPD patients [131].
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OS activates the TGF-β signaling pathway and promotes small airway fibrosis [132].
This is the result of the reduction of endogenous antioxidant activities in the lung via
the inhibition of Nrf2 signals [133]. OS increases the expression of MMP9, an enzyme
primarily involved in elastin degradation and collagen hydrolyzation, and lung emphysema
enhancing elastolysis through oxidative inactivation of α1-antitrypsin and the secretory
leukoprotease inhibitor [134].

Corticosteroids control gene expression of pro-inflammatory markers impaired in
COPD patients, as the result of OS inhibition, via the reduction of histone deacetylase-2
(HDAC2) activity involved in inflammatory gene suppression [135]. HDAC2 function is
reduced by OS activation of phosphoinositide-3-kinase (PI3K)-δ, which leads to phospho-
rylation and ubiquitination of HDAC2 [136] and the formation of peroxynitrite [137]. This
results in amplified inflammation and corticosteroid resistance. Currently, there are no
clinically available treatments that prevent COPD progression. As discussed, OS is a major
driving mechanism for the chronic inflammation, disease progression and exacerbations of
COPD, and induces corticosteroid resistance [131,138], so targeting OS is crucial in order to
develop important therapeutic strategy in the future [139,140]. Based on these concepts,
it is necessary to improve our knowledge of the prevention and on the diagnostic and
therapeutic strategies associated with OS in the early steps of the disease.

6. Environmental Pollution and OS in the Airways

Environmental pollution derives from combustion processes of human activities
(industrial emissions, domestic heating, vehicular traffic) and of natural phenomena (e.g.,
volcanic eruption) [141–143]. The particles present in the air as pollutants are a range of
liquid or solid particles present in the atmosphere with different chemical and physical
characteristics. The source, the size, the mechanisms of production and the chemical nature
generate the different properties of pollutants. Gases such as O3, sulfur dioxide (SO2),
NO, NO2, carbon monoxide (CO), carbon dioxide (CO2) or volatile organic compounds
such as benzene, particulate matter (PM), metals, nitrates, sulphates, organic carbon,
microbial components and pollen are present in the air [144–147]. The size and the chemical
composition of pollutants affect the effect environmental pollution on human health [148].

Air pollution generates both acute and long-term effects to human health world-
wide [149]. Adult and children subjects absorb air contaminants through the respiratory
tract and skin that subsequently reach the bloodstream to target the human organs, caus-
ing damage to human health [141–143]. Air pollution is associated with a higher risk of
premature death due to cardiovascular diseases, stroke, dementia, diabetes, asthma, COPD,
lower respiratory tract infections and lung cancer [150–155].

The World Health Organization (WHO) reports that PMs, SO2, O3 and NO2 lev-
els are higher than those of the national standard and criterion concentration of many
cities. High concentration of particles and toxic compounds dramatically impair the pul-
monary functions of human beings, consequently resulting in respiratory disorders or even
death [156–158]. In fact, long-term exposure to air pollutants affects airway diseases in
adults, children and adolescents [159]. The environmental contamination weakens the
immune response of the human body and interferes with the defense mechanisms of the
lung [160]. Finally, air pollutants carried by the floating aerosol particles and delivered
deep in the lung cause fiber hyperplasia of the alveolar wall, promoting lung fibrosis and
emphysema involved in COPD processes [161].

The multifactorial respiratory diseases have various risk factors, including OS of
the cells related to air contamination [159,162,163] (Figure 2). Air pollution increases
inflammation-related cascade and oxidation stress in the lung, vascular and heart tissue.
Initially, OS mechanisms are increased in the lung as a protective mechanism involved in the
removal of the injurious stimuli by ROS production to activate the cell killing. Furthermore,
during the early phase of inflammation, OS mechanisms induce the transcription of anti-
oxidant gene stress without cell damage [164]. PM10 affects the production of inflammatory
mediators and OS markers in lung epithelial cells and alveolar macrophages. The cytokines
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and chemokines released in the lung reach the marrow and stimulate the migration of
neutrophil precursors into blood circulation [165].
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Figure 2. Effects of environmental pollution on OS damaging the activity of immune and structural
cells in the airways of patients with chronic inflammatory diseases.

PM, NO2 and SO2 are potent oxidants, either through direct effects on lipids and
proteins or indirectly by the activation of intracellular oxidant pathways [163,166–168],
and by the production of highly reactive hydroxyl radicals they initiate oxidative DNA
damage [169,170]. PM10, PM2.5 and SO2 induce short- and long-term effects on lung
function [171] and through a variety of mechanisms such as direct oxidative injury promote
inflammation in the airways [172]. In this manner, they exert a negative effect in the
respiratory system, especially in the cardiopulmonary system [173].

The exposure of a human lung epithelial cell line to PM10 promotes ROS genera-
tion and decreases the activity of the antioxidant enzymes (superoxide dismutase and
glutathione reductase) [174]. The exposure of primary cultures of human bronchial ep-
ithelial cells to PAH (polycyclic aromatic hydrocarbon) adsorbed on PM2.5 induce the
persistence of a prolonged inflammation state and affect the OS mechanisms delaying
repair processes in injured tissues [175]. PM (ranged from 0.25 to 2.5 µm) and O3 are
positively associated with exhaled NO. PM 0.25, CO and NO are positively associated
with IL-6 and ROS in elderly subjects enrolled [176]. Both Vanadium pentoxide (V2O5), a
component of PM derived from fuel combustion (source of occupation-related exposure
in humans), and chromium (VI) (detectable in PM2.5) affect oxidative DNA damage in
human lymphocytes [177].

Particles bound to benzo(a)pyrene are bioavailable and induce oxidative DNA dam-
age in target organs including the lung [178,179]. Moreover, O3 and NO2 are usually
present in air and promote oxidative stress and DNA damage in the lung tissue [159,163].
Organic compounds adsorbed on particle surfaces promote inflammation through CYP1A1-
mediated ROS generation, and favor the release of cytokines after activation of transduction
pathways involving MAPK and the transcription factor NFkappaB in human airway ep-
ithelial cells [180]. NF-κB, activator protein 1 (AP-1) and CAATT/enhancer binding protein
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(C/EBP) regulate ROS production and proinflammatory gene transcription (TNF-α and IL-8,
etc.) in human alveolar and bronchial epithelial cells in response to PM exposure [181–183].

Epidemiological data show that patients with asthma and COPD are sensitive to O3
exposure and exhibit increased morbidity with a higher risk of mortality [184,185]. O3 is a
toxic photochemical air pollutant causing respiratory and cardiovascular exacerbation. It
increases the cases of mortality and hospital admission rates [186]. O3 is a compound that is
highly reactive, with the capacity to oxidize proteins and lipids in the lining fluid compart-
ment of the lung [184,185]. O3 reacts with biological tissues and causes detrimental health
effects such as harming lung function, irritation of the respiratory system and impairing
tissues [187]. The oxidized species arising from the reaction between O3 contributes to the
acute bronchoconstrictor response and hyperresponsiveness in asthmatic subjects [188,189].
Furthermore, O3 induces apoptosis, DNA damage and cytotoxicity in human alveolar
epithelial type I-like cells and in mice exposed to O3 for 6 weeks [190,191]. Finally, ozone
induces the OS in the lung, promoting the mechanism of chronic inflammation and emphy-
sema in COPD patients [192].

The environmental exposure to the heavy metals cadmium (Cd), lead (Pb), mercury
(Hg), nickel (Ni), metalloid arsenic (As), and transition metal chromium (Cr), induce
reactive oxygen species (ROS) production, and OS mechanisms’ activation in various
organs [193]. These elements are known to damage human tissues and organs at low
concentrations, including the lung [193]. In fact, the heavy metals exhibit their harmful
effects, including inflammation and carcinogenicity, and affect the oxidative response
in airway epithelial cells [194] and organs in various diseases by Nrf2 signaling [195].
The activation of OS mechanisms in the lung by the exposure of the subjects to heavy
metals generates free radicals, reduces antioxidant levels, alters DNA structure and miRNA
expression; inhibits ion channels, ATP-ases and other transporters; increases cytoskeleton
and cell polarity; or even determines the impairment of endocytosis and intracellular vesicle
recycling in airway diseases regulating the mechanisms of cell communication [196–198].

7. New Pharmacological Perspectives in Airway Diseases: Antioxidants

The antioxidants have different chemical structures that distinguish them in respect
to solubility in water (hydrophilic) or fat (hydrophobic or liposoluble). Generally, the
hydrophilic antioxidants found in the cytosol or cytoplasmic matrix react with ROS within
cells or body fluids (blood serum, extracellular fluid, seminal plasma), while the liposoluble
antioxidants are present in cell membranes and are more prone to protect cell membranes
from ROS-mediated lipid peroxidation [199,200]. They are defined as “free radical scav-
engers”, acting as a hydrogen donor, electron donor, peroxide decomposer, singlet oxygen
quencher, enzyme inhibitor, synergist, and metal-chelating agent.

The human natural antioxidant defense system is distinguished into two categories:
exogenous and endogenous (enzymatic and non-enzymatic) antioxidants. The first class is
obtained from diet and the repair of free radical damage from the inside by stimulating cell
regeneration; the second class is made by our body and repairs free radical damage from
the inside by initiating cell regeneration [201]. Endogenous antioxidants are known as enzy-
matic and non-enzymatic depending on their activity. Endogenous enzymatic antioxidants
consist of glutathione peroxidase, superoxide dismutase, thioredoxin and catalase, while
endogenous non-enzymatic molecules include melatonin, bilirubin, uric acid, polyamines
and glutathione (GSH) [202]. On the other hand, the group of exogenous non-enzymatic
antioxidants includes vitamins E, A and C, flavonoids, carotenoids, plant polyphenols,
theaflavin, allyl sulfides, selenium and curcumin [203,204]. Enzymatic antioxidants convert
oxidized metabolic products in hydrogen peroxide (H2O2) and then in water by cofactors as
iron, zinc, copper and manganese. Instead, non-enzymatic antioxidants work by blocking
free radical chain reactions [205–207].

Many studies show that OS is quite prevalent in many diseases, among which is
chronic inflammatory lung disease, but also in the systemic circulation of asthmatics due to
proximity of pulmonary vasculature with blood capillary network [208]. The lung contains
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high levels of antioxidant resources to prevent oxidant-induced injury, including both
enzymatic and non-enzymatic systems [209]. In the past years, the interest in the use of
antioxidants as pharmacological treatment of airway diseases has grown [210].

To foster a close antioxidant network, non-enzymatic and enzymatic antioxidants
are needed to be considered at the same time. In the airways, the first line of defense
is respiratory-tract lining fluid (RTLF), a thin fluid layer covering the respiratory epithe-
lium [209]. RTLF is constituted by vitamin C, urate, reduced glutathione (GSH), vitamin
E, bilirubin, extracellular superoxide dis-mutase (SOD), catalase and extracellular glu-
tathione peroxidase (GPx), and protects from oxidative injury caused by inhaled environ-
mental/endogenous oxidants [209]. Additional antioxidants include mucopolypeptide
glycoproteins, caeruloplasmin and Fe-binding proteins [202,211]. Recently, other enzymes
playing a crucial role in the antioxidant mechanisms of defense were found in the lung:
heme oxygenase-1, small molecular weight redox proteins such as thioredoxins, peroxire-
doxins and glutaredoxins [202]. It is known that the pathogenesis of many lung diseases
is induced by oxidative imbalance and the generation of ROS [212]. ROS and oxidative
imbalance are used as therapeutic targets for therapeutic strategies in the lung [213].

Based on the mechanism of action, we can distinguish three groups of antioxidants’
drugs: (1) enhancers of endogenous antioxidant enzymes, such as superoxide dismutase
(SOD), catalase (CAT) and glutathione peroxidase (GPx), which accelerates the conversion
and inactivation of free radicals; (2) non-enzymatic scavengers of excess free radicals and
lipid peroxyl radicals, which keep the cell membrane intact; and (3) drugs with other
mechanisms [214]. N-acetyl cysteine (NAC) is an enzymatic antioxidant drug that acts as
(1) a reductant of disulfide bonds, (2) a scavenger of reactive oxygen species and/or (3) a
precursor of glutathione biosynthesis. This is a pleiotropic drug with various pharmacologic
characteristics [215]. NAC provides cysteine for the increased intracellular production of
glutathione. NAC is used as a mucolytic agent since it hydrolyzes the disulfide bonds
of mucus proteins and decreases its viscosity, thereby facilitating its clearance and lung
secretions [216]. NAC also directly inactivates reactive electrolytes and free radicals in a
non-enzymatic manner and maintains the oxidant/antioxidant balance in cells. Moreover,
NAC reduces the formation of some proinflammatory cytokines, such as IL-9 and TNF-
α [217]. For many years, it was believed that NAC had only mucolytic properties [218],
but in more recent times it was discovered that this antioxidant has positive effects as an
anti-inflammatory and reduces the acute exacerbations in COPD with greater effect in
smokers and in subjects not treated with inhaled corticosteroids [219–221]. It is now known
that the sum of all these effects describes the effectiveness of NAC.

As we have previously described, NOX is a major source of ROS especially in COPD
patients. Several NOX inhibitor drugs have been developed, and these can be useful in
respiratory diseases. Examples are: apocynin, which by nebulization reduces H2O2 and
the reduction of nitrites in the exhaled breath condensate of COPD patients [222,223]; se-
tanaxib, which is an NOX1/4 inhibitor currently under development that has demonstrated
excellent tolerability and reduction of various markers of chronic inflammation [224]. In
the lung, other major enzymic antioxidants are superoxide dismutases (SOD), catalase and
glutathione peroxidase (GPx). Recently, other enzymes have been found that play a crucial
role in the lung antioxidant defense mechanisms: heme oxygenase-1 and small molecular
weight redox proteins such as thioredoxins, peroxiredoxins and glutaredoxins [204].

The dismutation by SOD is of primary importance for each cell and is widely expressed
in human lung/blood. The SOD enzyme helps convert superoxide to H2O2 and enzymes
such as catalase and glutathione peroxidase (GPx) metabolized it [225]. SOD exists in three
kinds of forms: (1) Copper zinc superoxide dismutase (Cu, Zn SOD) is mainly a cytosolic
enzyme and abundant in most tissues. In particular, it is highly expressed in bronchial
and alveolar epithelial cells and in mesenchymal cells, fibroblasts, and endothelial cells;
(2) manganese superoxide dismutase (MnSOD) is mainly a mitochondrial enzyme and is
expressed in alveolar type II epithelial cells and alveolar macrophages; and (3) extracellular
superoxide dismutase (ECSOD) is primarily an extracellular enzyme that has been detected
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in plasma, airway epithelial cells (AEC) and alveolar macrophages (AM) [226]. Some
studies show that SOD activity is reduced in the bronchial epithelium, in the cells in the
bronchoalveolar fluid and in bronchial brushing of asthmatic patients compared with
control subjects [217,227]. The newly characterized SOD mimetics appear to have beneficial
effects for lung disorders caused by oxidants in animal models [217].

The CAT enzyme is an antioxidant found in many living tissues that use oxygen.
It uses iron or manganese as a cofactor and catalyst and reduces hydrogen peroxide
(H2O2) in water and molecular oxygen. Thus, the CAT enzyme completes the dismutation
reaction affected enzymatically from SOD [228]. Studies indicate that metformin improves
the levels of gene and enzymatic activities of CAT by protein kinase activated by AMP
(AMPK), reducing OS [229–231]. The AMPK activator increased Nrf2 activation in an
in vitro model of normal human bronchial epithelial cells (NHBE) stimulated with cigarette
smoke extract, suggesting its potential protective action on lung inflammatory responses in
severe COPD [232].

Glutathione peroxidase (GPxs) is an important enzyme, belonging to the oxidoreduc-
tase family, containing selenium that protects cells from damage caused by lipid peroxide
and H2O2 [233]. In subjects with asthma and COPD, GPx activity is significantly reduced,
and this is related both to the FEV1 values and to the body mass index of these sub-
jects [234]. An example of antioxidant that exploits this mechanism is Ebselen [235], an
organic selenium compound that acts as a GPx mimetic, effective in reducing inflamma-
tion and the release of inflammatory cytokines in the lungs of mice exposed to cigarette
smoke. Although there are no data yet on its protective role in asthma or COPD, Ebselen
could provide a new means of treating the life-threatening pulmonary and cardiovascular
manifestations associated with cigarette smoking and COPD [236].

Antioxidant enzyme defense systems (including SOD, CAT, GPx, reduced glutathione
and heme oxygenase 1) are directly regulated by Nrf2, which becomes a potential ther-
apeutic target in lung diseases such as Idiopathic Pulmonary Fibrosis, asthma, COPD
and acute respiratory distress syndrome [237,238]. Sulforaphane (a compound extracted
from broccoli, cabbage and Brussels sprouts) was found to be an Nrf2 activator; exper-
iments on human macrophages or mouse models suggest a preventive effect on COPD
exacerbation [239]. Moreover, it modulates various signaling pathways associated with
oncogenic EMT (epithelial-mesenchymal transition) [240]. Clinical studies have evidenced
elevated Nrf2 expression in the lungs of patients with IPF, but these data need to be further
supported by larger studies [241]. The intake of a dietary antioxidant such as vitamin
C (ascorbic acid), vitamin E (α-tocopherol), resveratrol and flavonoids are suggested as
antioxidant treatments in airway diseases [242,243]. Various epidemiological studies show
that lung function (in terms of FEV1 and FVC) is improved by a high intake of antioxidants
in the diet, resulting in a lower prevalence of chronic bronchitis and dyspnea [244]. Sub-
jects with COPD (compared to healthy controls) who follow a diet with lower antioxidant
content (low proteins, defective intake of iron, calcium, potassium, zinc, folate, vitamin B6,
retinol) show a reduction in lung function with a higher risk of developing COPD [244,245].
The in vivo and in vitro models of inflammation induced by bleomycin, lipopolysaccharide
and cigarette smoke demonstrate the antioxidant and anti-inflammatory properties of these
compounds [246,247]. Additionally, some researchers show that high-intake dietary antiox-
idants protect against the progression of lung disease but this increases in mice exposed to
cigarette smoke. These data suggest that indiscriminate use of dietary supplements could
be a risk for the cure of lung diseases. For example, excessive use of vitamin E results
in increased mortality in COPD patients [248]. OS activates kinases and redox-sensitive
transcription factors, thereby modulating epigenetic changes in chromatin and causing
changes in genetic transcription in COPD [249]. ROS (directly or indirectly) influence and
potentiate inflammation in the lung via the activation of stress kinases such as JNK, MAPK,
p38 and PI3K, or transcriptional factors as NF-κB, AP-1 and Nrf2 [241,250], strongly related
with the pathogenesis of COPD, and asthma. Antioxidant agents are drug candidates
useful to control these targets in various lung diseases [251].
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The pharmacological treatment of COPD involves the administration of oxygen and
oral or inhaled bronchodilators [252]. These last affect the redox balance, giving relief from
the symptom, but are not resolutive. OS is one of the main causes of COPD by inducing
PI3K activation and reducing activity of HDAC2 (histone deacetylase 2). HDAC2 interacts
directly with proinflammatory transcription factors (TFs), such as NF-κB and AP-1, which
alter the action of corticosteroids [253]. In fact, OS contributes to steroid resistance, as
occurs for example in COPD [254]. However, corticosteroids are a powerful and universal
drug treatment used in many lung diseases [213].

The action of corticosteroids is altered as interacting with glucocorticoid receptors
(GR) form a complex that translocates into the nucleus and modulates the expression
of NF-kB and AP-1 [250]. In normal conditions, HDAC2 deacetylates the GR, form-
ing a protein–protein complex that represses the NF-kB pathway and attenuates the
inflammation [255,256]. Hence, a reduction in HDAC2 expression does not deacetylatele
the GR, which in turn cannot repress the NF-kB pathway [60]. Thus, OS is thought to be
closely related to the development of steroid insensitivity in COPD [257]. One strategy
used to bypass steroid resistance in airway diseases involves activating HDAC2 and revers-
ing the post-translational oxidative modifications of HDAC2, which represents a possible
therapeutic principle for the treatment of asthma and COPD [213,258] (Figure 3).
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The excess of OS can be toxic to cells and tissues; it is true that cellular homeostasis and
ROS synthesized by normal cells are crucial for maintaining health. Current knowledge
of the increased activity of OS in the airway diseases suggests the relevant contribution
of antioxidants in the treatment of asthma and COPD. The use of antioxidant also may
help the resolution of the inflammation as coadjuvant of the conventional therapy in the
mechanism of corticosteroid resistance often present in patients with severe asthma and
COPD. However, the pharmacological manipulation of antioxidants and the development
of truly effective new drugs target ROS regulatory mechanisms, which could provide a ray
of relief in the challenging context of chronic inflammatory lung disease.
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8. Conclusions

In this review, we give a general and extensive overview of OS, oxidative sources
and antioxidant mechanisms concerning the chronic inflammatory diseases of the airways.
There is much evidence showing that the mechanisms of OS are heavily involved in
the pathogenesis of airway diseases. In fact, the lung is constantly exposed to external
oxidative compounds (cigarette smoke, allergen, toxicants, etc.) present in contaminated
air or released from inflammatory cells recruited and activated in the airways during
inflammatory processes.

We tried to summarize the complexity and the variability of the mechanisms of OS in
inflammatory diseases of the lung such as asthma and COPD. This complexity, associated
with many oxidative compounds, prevents an adequate standardization of OS biomarkers
useful for detecting the levels of activation of OS mechanisms in the lungs of asthmatic and
COPD patients. This aspect makes it extremely difficult to assess and to define the general
contribution and the role of OS metabolites in the development or progression of airway
diseases leading to the origin of asthma and COPD. In fact, often the increased levels of
OS biomarkers in the airway promote the progression of disease toward higher disease
severity damaging the lung function and the response to the conventional drugs used in
the treatment of chronic inflammatory diseases of the lung. However, often the treatment
of inflammatory airway diseases with antioxidants as additional drugs is not sufficient to
obtain the welfare of the patients, and it is necessary to deepen the research in the field of
OS mechanisms.

Generally based on our research experiences, in this review we describe some knowl-
edge on the mechanisms of OS that are especially associated with inflammation of the
lung. Our aim is to stimulate the curiosity of readers to generate new scientific perspectives
concerning the therapeutic action of antioxidants in the treatment of asthma and COPD,
developing approaches that consider individual and environmental risk factors of patients
that are useful in defining some concept of precision medicine.
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Abbreviations

Oxidative stress OS
Reactive oxygen species ROS
Reactive nitrogen species RNS
Cytochrome c oxidase COX
NADPH oxidase NOX
Myeloperoxidase MPO
Xanthine oxidase XO
Nitric oxidase synthase NOS
Dual oxidases DUOX
Hydroperoxyeicosatetraenoic acids HPETEs
Cyclooxygenases COXs
Arachidonic acid AA
Nitric oxide NO
Tumor microenvironment TME
Cytochrome P CYP
Oxidative phosphorylation system OXPHOS
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Mitochondrial ROS MtROS
Hypoxia-inducible factor-1 HIF-1
Nuclear Factor kappa B NF-kB
Nuclear factor erythroid 2-related factor Nfr2
Kelch Like ECH Associated Protein 1 Keap1
PTEN-induced kinase 1 PINK1
Cellular prion protein PrPC

Cigarette smoke CS
Pathogen-associated molecular patterns PAMP
Toll-Like Receptor TLR
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