High-Yield Recovery of Antioxidant Compounds from Bambusa chungii Culms Using Pressurized Hot Water Extraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of Materials
2.3. Pressurized Hot Water Extraction
2.4. Conventional Extractions
2.5. Quantification of Total Phenolics
2.6. Identification and Quantification of Individual Phenolics
2.7. Evaluation of Antioxidant Capacity
2.7.1. Ferric Reducing Antioxidant Power (FRAP) Assay
2.7.2. DPPH Radical Scavenging Assay
2.7.3. ABTS Radical Scavenging Assay
2.8. Design of Experiments
2.9. Statistical Analysis
3. Results
3.1. Effects of Temperature on the Extraction Yield and Total Phenolic Content
3.2. Effects of Single Extraction Parameters on the Recovery of Target Phenolic Compounds
3.3. Effects of Single Extraction Parameters on the Antioxidant Capacity of PHWE Extracts
3.4. Optimal PHWE Conditions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brewer, M.S. Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Ribeiro, A.S.; Estanqueiro, M.; Oliveira, M.B.; Sousa Lobo, J.M. Main benefits and applicability of plant extracts in skin care products. Cosmetics 2015, 2, 48–65. [Google Scholar] [CrossRef][Green Version]
- Liese, W.; Welling, J.; Tang, T.K.H. Utilization of Bamboo. In Bamboo: The Plant and Its Uses; Liese, W., Kohl, M., Eds.; Tropical Forestry; Springer: New York, NY, USA, 2015; pp. 299–346. [Google Scholar] [CrossRef]
- Chen, Z.C.; Zhang, H.W.; He, Z.B.; Zhang, L.H.; Yue, X.P. Bamboo as an emerging resource for worldwide pulping and papermaking. BioResources 2019, 14, 3–5. [Google Scholar] [CrossRef]
- Van Dam, J.E.G.; Elbersen, H.W.; Daza Montaño, C.M. Bamboo Production for Industrial Utilization. In Perennial Grasses for Bioenergy and Bioproducts; Alexopoulou, E., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 175–216. [Google Scholar] [CrossRef]
- Santosh, O.; Bajwa, H.K.; Bisht, M.S.; Chongtham, N. Application of Bamboo in the Food and Pharmaceutical Industry. In Biotechnological Advances in Bamboo: The “Green Gold” on the Earth; Ahmad, Z., Ding, Y., Shahzad, A., Eds.; Springer: Singapore, 2021; pp. 401–429. [Google Scholar] [CrossRef]
- Sangeetha, R.; Diea, Y.K.T.; Chaitra, C.; Malvi, P.G.; Shinomol, G.K. The amazing bamboo: A review on its medicinal and pharmacological potential. Indian J. Nutri. 2005, 2, 1–7. [Google Scholar]
- Nirmala, C.; Bisht, M.S.; Bajwa, H.K.; Santosh, O. Bamboo: A rich source of natural antioxidants and its applications in the food and pharmaceutical industry. Trends Food Sci. Technol. 2018, 77, 91–99. [Google Scholar] [CrossRef]
- Choi, S.; Park, M.S.; Lee, Y.R.; Lee, Y.C.; Kim, T.W.; Do, S.G.; Kim, D.S.; Jeon, B.H. A standardized bamboo leaf extract inhibits monocyte adhesion to endothelial cells by modulating vascular cell adhesion protein-1. Nutr. Res. Pract. 2013, 7, 9–14. [Google Scholar] [CrossRef][Green Version]
- Lee, M.J.; Kim, M.J.; Song, Y.S.; Song, Y.O.; Moon, G.S. Bamboo culm extract supplementation elevates HDL-cholesterol and ameliorates oxidative stress in C57BL/6 mice fed atherogenic diet. J. Med. Food 2008, 11, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Dixon, P.G.; Gibson, L.J. The structure and mechanics of Moso bamboo material. J. R. Soc. Interface 2014, 11, 20140321. [Google Scholar] [CrossRef]
- Gritsch, C.S.; Kleist, G.; Murphy, R.J. Developmental changes in cell wall structure of phloem fibres of the bamboo Dendrocalamus asper. Ann. Bot. 2004, 94, 497–505. [Google Scholar] [CrossRef][Green Version]
- Clifford, A.A. Extraction of Natural Products with Superheated Water. In Handbook of Green Chemistry and Technology; Blackwell Science Ltd.: Oxford, UK, 2002; pp. 524–531. [Google Scholar]
- Xu, S.J.; Fang, D.; Tian, X.Q.; Xu, Y.X.; Zhu, X.L.; Wang, Y.W.; Lei, B.; Hu, P.; Ma, L. Subcritical water extraction of bioactive compounds from waste cotton (Gossypium hirsutum L.) flowers. Ind. Crop. Prod. 2021, 164, 8. [Google Scholar] [CrossRef]
- Nuapia, Y.; Tutu, H.; Chimuka, L.; Cukrowska, E. Selective extraction of cannabinoid compounds from cannabis seed using pressurized hot water extraction. Molecules 2020, 25, 1335. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rodrigues, L.G.G.; Mazzutti, S.; Siddique, I.; da Silva, M.; Vitali, L.; Ferreira, S.R.S. Subcritical water extraction and microwave-assisted extraction applied for the recovery of bioactive components from Chaya C (Cnidoscolus aconitifolius Mill.). J. Supercrit. Fluids 2020, 165, 9. [Google Scholar] [CrossRef]
- Richter, B.E.; Jones, B.A.; Ezzell, J.L.; Porter, N.L.; Avdalovic, N.; Pohl, C. Accelerated solvent extraction: A technique for sample preparation. Anal. Chem. 1996, 68, 1033–1039. [Google Scholar] [CrossRef]
- Mockel, H.J.; Welter, G.; Melzer, H. Correlation between reversed-phase retention and solute molecular-surface type and area.1. Theoretical outlines and retention of various hydrocarbon classes. J. Chromatogr. 1987, 388, 255–266. [Google Scholar] [CrossRef]
- Alvarez-Rivera, G.; Bueno, M.; Ballesteros-Vivas, D.; Mendiola, J.A.; Ibanez, E. Pressurized Liquid Extraction; Elsevier Science Bv: Amsterdam, The Netherlands, 2020; pp. 375–398. [Google Scholar] [CrossRef]
- Brunner, G. Hydrothermal and Supercritical Water Processes. In Hydrothermal and Supercritical Water Processes; Supercritical Fluid Science and Technology; Elsevier: New York, NY, USA, 2014; Volume 5, pp. 1–666. [Google Scholar] [CrossRef]
- Mustafa, A.; Turner, C. Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Anal. Chim. Acta 2011, 703, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Plaza, M.; Marina, M.L. Pressurized hot water extraction of bioactives. Trac-Trends Anal. Chem. 2019, 116, 236–247. [Google Scholar] [CrossRef]
- Pagano, I.; Campone, L.; Celano, R.; Piccinelli, A.L.; Rastrelli, L. Green non-conventional techniques for the extraction of polyphenols from agricultural food by-products: A review. J. Chromatogr. A 2021, 1651, 11. [Google Scholar] [CrossRef]
- Yu, X.M.; Zhu, P.; Zhong, Q.P.; Li, M.Y.; Ma, H.R. Subcritical water extraction of antioxidant phenolic compounds from XiLan olive fruit dreg. J. Food Sci. Technol.-Mysore 2015, 52, 5012–5020. [Google Scholar] [CrossRef][Green Version]
- Guthrie, F.; Wang, Y.T.; Neeve, N.; Quek, S.Y.; Mohammadi, K.; Baroutian, S. Recovery of phenolic antioxidants from green kiwifruit peel using subcritical water extraction. Food Bioprod. Process. 2020, 122, 136–144. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, H.H.; Dzah, C.S.; Zhang, J.X.; Diao, C.R.; Ma, H.L.; Duan, Y.Q. Subcritical water extraction, identification, antioxidant and antiproliferative activity of polyphenols from lotus seedpod. Sep. Purif. Technol. 2020, 236. [Google Scholar] [CrossRef]
- Plaza, M.; Abrahamsson, V.; Turner, C. Extraction and Neoformation of Antioxidant Compounds by Pressurized Hot Water Extraction from Apple Byproducts. J. Agric. Food Chem. 2013, 61, 5500–5510. [Google Scholar] [CrossRef] [PubMed]
- Polovka, M.; St’avikova, L.; Hohnova, B.; Karasek, P.; Roth, M. Offline combination of pressurized fluid extraction and electron paramagnetic resonance spectroscopy for antioxidant activity of grape skin extracts assessment. J. Chromatogr. A 2010, 1217, 7990–8000. [Google Scholar] [CrossRef] [PubMed]
- Plaza, M.; Amigo-Benavent, M.; del Castillo, M.D.; Ibanez, E.; Herrero, M. Neoformation of antioxidants in glycation model systems treated under subcritical water extraction conditions. Food Res. Int. 2010, 43, 1123–1129. [Google Scholar] [CrossRef]
- Plaza, M.; Amigo-Benavent, M.; del Castillo, M.D.; Ibanez, E.; Herrero, M. Facts about the formation of new antioxidants in natural samples after subcritical water extraction. Food Res. Int. 2010, 43, 2341–2348. [Google Scholar] [CrossRef][Green Version]
- Yang, X.Y.; Fu, M.Y.; Xie, J.Z.; Li, Z.C. Geographic variation and provenance selection for bamboo wood properties in Bambusa chungii. J. For. Res. 2009, 20, 261–267. [Google Scholar] [CrossRef]
- Samaras, T.S.; Camburn, P.A.; Chandra, S.X.; Gordon, M.H.; Ames, J.M. Antioxidant properties of kilned and roasted malts. J. Agric. Food Chem. 2005, 53, 8068–8074. [Google Scholar] [CrossRef] [PubMed]
- Nuzul, M.I.; Jong, V.Y.M.; Koo, L.F.; Chan, T.H.; Ang, C.H.; Idris, J.; Husen, R.; Wong, S.W. Effects of extraction methods on phenolic content in the young bamboo culm extracts of Bambusa beecheyana Munro. Molecules 2022, 27, 2359. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.H.; Lu, Y.; Li, J.F.; Ding, J.F.; Chong, X.Z.; Fei, H. Extraction and purification of flavonoids from the stems of Bambusa surrecta. In Proceedings of the 2015 International Conference on Materials Engineering and Environmental Science (MEES2015), Wuhan, China, 25–27 September 2015; pp. 111–117. [Google Scholar] [CrossRef]
- Fu, L.; Xu, B.T.; Xu, X.R.; Gan, R.Y.; Zhang, Y.; Xia, E.Q.; Li, H.B. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem. 2011, 129, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Wang, J.; Yue, Y.D.; Tang, F.; Sun, J. Screening and analysis of the potential bioactive components in rabbit plasma after oral administration of hot-water extracts from leaves of Bambusa textilis McClure. Molecules 2012, 17, 8872–8885. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gao, Q.; Wang, D.T.; Shao, S.Y.; Xue, Y.Y.; Zhang, Y.F.; Chen, C.; Tang, F.; Sun, J.; Li, Y.S.; Guo, Q.R. Identification and quantitation of the actual active components in bamboo juice and its oral liquid by NMR and UPLC-Q-TOF-MS. Sci. Rep. 2020, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. Ferric reducing antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. In Oxidants and Antioxidants, Pt A; Packer, L., Ed.; Methods in Enzymology; Elsevier Academic Press Inc.: San Diego, CA, USA, 1999; Volume 299, pp. 15–27. [Google Scholar]
- Scherer, R.; Godoy, H.T. Antioxidant activity index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl method. Food Chem. 2009, 112, 654–658. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Kenny, O.; Brunton, N.P.; Smyth, T.J. In Vitro Protocols for Measuring the Antioxidant Capacity of Algal Extracts. In Natural Products from Marine Algae: Methods and Protocols; Stengel, D.B., Connan, S., Eds.; Methods in Molecular Biology; Humana Press Inc.: Totowa, NJ, USA, 2015; Volume 1308, pp. 375–402. [Google Scholar] [CrossRef]
- Rivera-Tovar, P.R.; Torres, M.D.; Camilo, C.; Mariotti-Celis, M.S.; Dominguez, H.; Perez-Correa, J.R. Multi-response optimal hot pressurized liquid recovery of extractable polyphenols from leaves of maqui (Aristotelia chilensis Mol. Stuntz). Food Chem. 2021, 357, 11. [Google Scholar] [CrossRef]
- Kim, J.W.; Mazza, G. Optimization of extraction of phenolic compounds from flax shives by pressurized low-polarity water. J. Agric. Food Chem. 2006, 54, 7575–7584. [Google Scholar] [CrossRef]
- Alasalvar, H.; Kaya, M.; Berktas, S.; Basyigit, B.; Cam, M. Pressurised hot water extraction of phenolic compounds with a focus on eriocitrin and hesperidin from lemon peel. Int. J. Food Sci. Technol. 2022, 1–7. [Google Scholar] [CrossRef]
- Wroblewska, K.B.; Baby, A.R.; Guaratini, M.T.G.; Moreno, P.R.H. In vitro antioxidant and photoprotective activity of five native Brazilian bamboo species. Ind. Crop. Prod. 2019, 130, 208–215. [Google Scholar] [CrossRef]
- Gomez, J.P.; Velez, J.P.A.; Pinzon, M.A.; Arango, J.A.M.; Muriel, A.P. Chemical characterization and antiradical properties of pyroligneous acid from a preserved bamboo, Guadua angustifolia Kunth. Braz. Arch. Biol. Technol. 2021, 64, 13. [Google Scholar] [CrossRef]
- Gong, J.Y.; Xia, D.Z.; Huang, J.; Ge, Q.; Mao, J.W.; Liu, S.W.; Zhang, Y. Functional components of bamboo shavings and bamboo leaf extracts and their antioxidant activities in vitro. J. Med. Food 2015, 18, 453–459. [Google Scholar] [CrossRef]
- Morales, F.J.; Jimenez-Perez, S. Free radical scavenging capacity of Maillard reaction products as related to colour and fluorescence. Food Chem. 2001, 72, 119–125. [Google Scholar] [CrossRef][Green Version]
- Magalhaes, L.M.; Segundo, M.A.; Reis, S.; Lima, J. Methodological aspects about in vitro evaluation of antioxidant properties. Anal. Chim. Acta 2008, 613, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, Y.; Toledo, R. Antioxidant activity of water-soluble Maillard reaction products. Food Chem. 2005, 93, 273–278. [Google Scholar] [CrossRef]
- Stecher, G.; Huck, C.W.; Stöggl, W.M.; Guggenbichler, W.; Bakry, R.; Bonn, G.K. High performance separation technologies and spectroscopic tools for plant extract characterization in phytomics. Phytochem. Rev. 2002, 1, 413–426. [Google Scholar] [CrossRef]
- Huang, Y.J.; Xun, H.; Yi, G.L.; Li, T.; Yao, X.; Tang, F. Integrated metabolomic and transcriptomic analysis reveals the effect of artificial shading on reducing the bitter taste of bamboo shoots. Horticulturae 2022, 8, 594. [Google Scholar] [CrossRef]
- Wang, D.T.; Xue, Y.Y.; Zhang, Y.F.; Xun, H.; Guo, Q.R.; Tang, F.; Sun, J.; Qi, F.F. Lignans and phenylpropanoids from the liquid juice of Phyllostachys edulis. Nat. Prod. Res. 2021, 35, 3241–3247. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Xun, H.; Yu, J.; Tang, F.; Yue, Y.D.; Guo, X.F. Chemical constituents and antibacterial properties of Indocalamus latifolius mcclure leaves, the packaging material for “Zongzi”. Molecules 2015, 20, 15686–15700. [Google Scholar] [CrossRef][Green Version]
- Goleniowski, M.; Bonfill, M.; Cusido, R.; Palazón, J. Phenolic Acids. In Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes; Ramawat, K.G., Mérillon, J.-M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1951–1973. [Google Scholar] [CrossRef]
- Turner, C.; Turner, P.; Jacobson, G.; Almgren, K.; Waldebäck, M.; Sjöberg, P.; Karlsson, E.N.; Markides, K.E. Subcritical Water Extraction and β-Glucosidase-Catalyzed Hydrolysis of Quercetin Glycosides in Onion Waste. Green Chem. 2006, 8, 949–959. [Google Scholar] [CrossRef]
- Khuwijitjaru, P.; Suaylam, B.; Adachi, S. Degradation of caffeic acid in subcritical water and online HPLC-DPPH assay of degradation products. J. Agric. Food Chem. 2014, 62, 1945–1949. [Google Scholar] [CrossRef]
- Khuwijitjaru, P.; Plernjit, J.; Suaylam, B.; Samuhaseneetoo, S.; Pongsawatmanit, R.; Adachi, S. Degradation kinetics of some phenolic compounds in subcritical water and radical scavenging activity of their degradation products. Can. J. Chem. Eng. 2014, 92, 810–815. [Google Scholar] [CrossRef]
- Gilbert-Lopez, B.; Plaza, M.; Mendiola, J.A.; Ibanez, E.; Herrero, M. Subcritical Water Extraction and Neoformation of Antioxidants; Elsevier Science Bv: Amsterdam, The Netherlands, 2017; pp. 109–130. [Google Scholar] [CrossRef]
- RiceEvans, C.A.; Miller, J.; Paganga, G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 1997, 2, 152–159. [Google Scholar] [CrossRef]
- Abeyrathne, E.; Nam, K.C.; Huang, X.; Ahn, D.U. Plant- and animal-based antioxidants’ structure, efficacy, mechanisms, and applications: A review. Antioxidants 2022, 11, 1025. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.X.; Yang, J.; Ma, L.L.; Li, J.; Shahzad, N.; Kim, C.K. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Sci. Rep. 2020, 10, 9. [Google Scholar] [CrossRef][Green Version]
- Platzer, M.; Kiese, S.; Herfellner, T.; Schweiggert-Weisz, U.; Eisner, P. How does the phenol structure influence the results of the Folin-Ciocalteu assay? Antioxidants 2021, 10, 811. [Google Scholar] [CrossRef] [PubMed]
- Sani, T.A.; Golmakani, E.; Mohammadi, A.; Feyzi, P.; Kamali, H. Optimization of pressurized hot water extraction on the extract yield and antioxidant activity from Biebersteinia multifida DC using a modified supercritical fluid extractor. J. Supercrit. Fluids 2014, 94, 130–137. [Google Scholar] [CrossRef]
- Kamali, H.; Sani, T.A.; Mohammadi, A.; Alesheikh, P.; Khodaverdi, E.; Hadizadeh, F. A comparison between pressurized hot water and pressurized liquid extraction for optimizing phenolic and antioxidants capacity of the wooden layer between of walnut seed. J. Supercrit. Fluids 2018, 133, 535–541. [Google Scholar] [CrossRef]
- Arapitsas, P.; Turner, C. Pressurized solvent extraction and monolithic column-HPLC/DAD analysis of anthocyanins in red cabbage. Talanta 2008, 74, 1218–1223. [Google Scholar] [CrossRef]
- Choi, M.H.; Jo, H.G.; Yang, J.H.; Ki, S.H.; Shin, H.J. Antioxidative and anti-melanogenic activities of bamboo stems (Phyllostachys nigra variety henosis) via PKA/CREB-Mediated MITF downregulation in B16F10 melanoma cells. Int. J. Mol. Sci. 2018, 19, 409. [Google Scholar] [CrossRef][Green Version]
- Tanaka, A.; Zhu, Q.C.; Tan, H.; Horiba, H.; Ohnuki, K.; Mori, Y.; Yamauchi, R.; Ishikawa, H.; Iwamoto, A.; Kawahara, H.; et al. Biological activities and phytochemical profiles of extracts from different parts of bamboo (Phyllostachys pubescens). Molecules 2014, 19, 8238–8260. [Google Scholar] [CrossRef]
Extracts | Extraction Yield (%) | TPC (mg GAE/g RM) | Browning Intensity (OD420) | FF µg/g RM | HMF µg/g RM |
---|---|---|---|---|---|
Maceration | 3.31 ± 0.06 a | 1.29 ± 0.22 a | 0.28 ± 0.00 a | ND | ND |
Reflux | 7.1 ± 0.4 b | 2.56 ± 0.15 c | 0.50 ± 0.02 b | ND | ND |
PHWE 100 °C | 7.60 ± 0.21 c | 1.58 ± 0.05 b | 0.30 ± 0.02 a | ND | ND |
PHWE 120 °C | 8.75 ± 0.17 d | 2.0 ± 0.5 bc | 0.30 ± 0.01 a | ND | ND |
PHWE 140 °C | 9.2 ± 0.7 d | 3.28 ± 0.06 d | 0.39 ± 0.02 a | ND | 69 ± 6 a |
PHWE 160 °C | 14.18 ± 0.09 e | 5.11 ± 0.10 e | 0.54 ± 0.01 b | 221 ± 16 a | 523 ± 25 b |
PHWE 180 °C | 22.6 ± 0.7 f | 7.6 ± 0.4 f | 0.72 ± 0.11 c | 2805 ± 97 b | 2246 ± 36 c |
Compounds | Maceration (µg/g RM) | Reflux (µg/g RM) | PHWE (µg/g RM) | ||||
---|---|---|---|---|---|---|---|
100 °C | 120 °C | 140 °C | 160 °C | 180 °C | |||
Quinic acid | 11.32 ± 0.25 b | 18.4 ± 1.1 c | 17.48 ± 0.29 c | 19.4 ± 0.7 cd | 20.8 ± 1.3 d | 20.6 ± 0.6 d | 23.8 ± 1.7 e |
Arbutin | ND | ND | 7.5 ± 1.2 a | 14.4 ± 0.8 c | ND | ND | ND |
Adenosine | 3.6 ± 0.7 a | 9.0 ± 0.5 b | 46 ± 6 f | 31.9 ± 1.6 e | 25.8 ± 1.0 d | 25.61 ± 0.15 d | 12.2 ± 0.3 c |
Tachioside | ND | ND | ND | 10.8 ± 0.3 a | ND | ND | ND |
Vanillic alcohol | ND | ND | 4.39 ± 0.20 a | 11.0 ± 1.3 b | 23.1 ± 1.5 c | ND | ND |
p-Hydroxybenzoic acid | 6.99 ± 0.13 a | 12.0 ± 0.4 b | 5.9 ± 0.9 a | 13.7 ± 0.8 c | 16.0 ± 0.7 d | 27.8 ± 0.6 f | 35.6 ± 1.9 g |
Vanillic acid | 39.6 ± 1.0 c | 66.4 ± 0.5 e | 29.5 ± 2.1 a | 29.0 ± 1.1 a | 36.7 ± 1.8 b | 54.3 ± 2.0 d | 85.7 ± 1.2 f |
p-Hydroxybenzaldehyde | 9.5 ± 0.4 ab | 29.6 ± 1.0 ab | ND | 35 ± 4 b | 192 ± 4 c | 318 ± 38 d | 384 ± 12 e |
Caffeic acid | ND | ND | ND | 13.5 ± 1.3 c | 9.7 ± 0.4 b | 7.0 ± 0.6 a | 6.5 ± 0.6 a |
Syringic acid | 9.5 ± 0.4 ab | 10.3 ± 0.4 ab | 11.76 ± 0.23 ab | 13.6 ± 1.8 b | 21.6 ± 2.4 c | 56.6 ± 2.8 d | 111 ± 9 e |
Vanillin | ND | 5.3 ± 0.4 a | ND | 6.7 ± 0.6 a | 27.6 ± 2.7 b | 113 ± 6 c | 181 ± 6 d |
p-Coumaric acid | 7.7 ± 0.4 a | 237.0 ± 2.0 b | 51 ± 5 a | 254 ± 21 b | 896 ± 58 c | 1145 ± 39 e | 1081 ± 49 d |
Coniferol | ND | 39.4 ± 0.6 b | 10.7 ± 1.5 ab | 76 ± 7 c | 736 ± 21 d | 942 ± 38 e | 49.5 ± 2.7 bc |
Syringaldehyde | ND | 7.4 ± 0.5 b | 5.10 ± 0.23 ab | 7.42 ± 0.27 b | 22.2 ± 2.8 c | 81.3 ± 2.0 d | 170 ± 5 e |
Ferulic acid | ND | 4.6 ± 0.4 a | 3.29 ± 0.18 a | 5.4 ± 0.4 a | 22 ± 4 b | 39 ± 4 c | 85 ± 4 d |
Coniferylaldehyde | ND | ND | ND | ND | 25.7 ± 2.0 a | 60.80 ± 0.27 b | 111 ± 11 c |
Sinapaldehyde | ND | 8.0 ± 0.7 b | ND | 3.2 ± 0.6 a | 26 ± 3 c | 57.3 ± 0.8 d | 98 ± 5 e |
Syringaresinol | 8.5 ± 1.1 a | 35.8 ± 1.5 b | 10.8 ± 0.7 a | 63.8 ± 0.6 c | 276 ± 7 e | 519.4 ± 1.2 f | 210 ± 16 d |
Balanophonin | ND | 3.3 ± 0.3 a | ND | 5.3 ± 0.4 b | 5.50 ± 0.19 b | 7.7 ± 1.1 c | 12.4 ± 1.9 d |
Total yield | 96.9 ± 2.3 a | 486 ± 4 b | 202.8 ± 1.7 a | 614 ± 25 c | 2391 ± 72 d | 3470 ± 112 f | 2644 ± 22 e |
Parameter | DPPH | ABTS | FRAP | TYPC |
---|---|---|---|---|
DPPH | 1 | |||
ABTS | 0.934 * | 1 | ||
FRAP | −0.866 | −0.816 | 1 | |
TYPC | −0.978 ** | −0.928 * | 0.949 * | 1 |
Run | Independent Variables | Dependent Variables: Experimental Values | |||||
---|---|---|---|---|---|---|---|
A (mL/g) | B (min) | C (°C) | Y1 (mg/g RM) | Y2 (mg−1/mL−1) | Y3 (mg−1/mL−1) | Y4 (μmol FSE/mg DW) | |
1 | 20 | 20 | 140 | 2.29 | 7.34 | 19.32 | 0.77 |
2 | 20 | 5 | 180 | 2.64 | 7.40 | 41.65 | 0.88 |
3 | 30 | 10 | 180 | 3.35 | 10.71 | 50.71 | 1.09 |
4 | 20 | 10 | 160 | 3.26 | 8.95 | 46.47 | 1.00 |
5 | 20 | 10 | 160 | 3.09 | 9.23 | 38.93 | 1.00 |
6 | 20 | 10 | 160 | 3.24 | 9.68 | 38.77 | 1.01 |
7 | 30 | 20 | 160 | 4.08 | 8.92 | 45.68 | 1.08 |
8 | 30 | 5 | 160 | 3.34 | 8.05 | 42.88 | 1.01 |
9 | 15 | 20 | 160 | 2.90 | 7.01 | 30.33 | 0.95 |
10 | 15 | 10 | 140 | 1.51 | 5.60 | 20.12 | 0.66 |
11 | 30 | 10 | 140 | 1.89 | 6.26 | 18.50 | 0.75 |
12 | 20 | 20 | 180 | 2.53 | 8.06 | 33.98 | 0.89 |
13 | 15 | 10 | 180 | 2.40 | 7.87 | 32.59 | 0.91 |
14 | 20 | 5 | 140 | 1.06 | 6.02 | 17.56 | 0.57 |
15 | 15 | 5 | 160 | 2.53 | 7.85 | 34.04 | 0.97 |
16 | 20 | 10 | 160 | 3.22 | 8.90 | 35.73 | 0.92 |
17 | 20 | 10 | 160 | 3.28 | 8.23 | 33.43 | 0.94 |
Extracts | TYPC (mg/g RM) | DPPH IC50 (mg/L) | ABTS IC50 (mg/L) | FRAP (μmol FSE/mg DW) | |
---|---|---|---|---|---|
Predicted values | 172.44 °C, 1:30 g/mL, 14.06 min | 3.81 ± 0.08 | 96.3 ± 1.4 | 19.74 ± 0.26 | 1.12 ± 0.04 |
Experimental values | 170 °C, 1:30 g/mL, 14 min | 3.85 ± 0.01 | 94.7 ± 0.6 | 21.88 ± 0.16 | 1.23 ± 0.02 |
Maceration | 80% ethanol, 1:20 g/mL, 72 h × 2 | 0.096 ± 0.002 | 322 ± 5 | 43.0 ± 0.4 | 0.41 ± 0.02 |
Reflux extraction | 80% ethanol, 1:30 g/mL 2 h × 3 | 0.485 ± 0.004 | 189 ± 5 | 26.84 ± 0.06 | 0.88 ± 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, X.; Zhang, Y.; Xun, H.; Wang, J.; Tang, F. High-Yield Recovery of Antioxidant Compounds from Bambusa chungii Culms Using Pressurized Hot Water Extraction. Antioxidants 2022, 11, 2231. https://doi.org/10.3390/antiox11112231
Cao X, Zhang Y, Xun H, Wang J, Tang F. High-Yield Recovery of Antioxidant Compounds from Bambusa chungii Culms Using Pressurized Hot Water Extraction. Antioxidants. 2022; 11(11):2231. https://doi.org/10.3390/antiox11112231
Chicago/Turabian StyleCao, Xianshuang, Yaoyao Zhang, Hang Xun, Jin Wang, and Feng Tang. 2022. "High-Yield Recovery of Antioxidant Compounds from Bambusa chungii Culms Using Pressurized Hot Water Extraction" Antioxidants 11, no. 11: 2231. https://doi.org/10.3390/antiox11112231