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Abstract: The challenge of sustainable agriculture is to increase yields and obtain higher quality
products. Increased antioxidant compounds such as polyphenols in harvest products may be an
added value for sustainable agriculture. The aim of the present study was to investigate whether
three organic fertilization treatments with different levels of carbon and nitrogen, i.e., N-rich, N-
rich+C, and N-poor+C, affected the phenolic content of different tomato varieties. The examined
parameters were productivity, plant nutritional status, δ13C, and tomato phenolic content as an
indication of the antioxidant capacity. The best production was obtained with ‘Cornabel’, a high-
yielding Pebroter variety. The total phenolic content was highest in the traditional ‘Cuban Pepper’
variety regardless of treatment, while naringenin levels were high in all the Pebroter varieties. In
N-poor+C fertilized plants, a lower N-NO3 content in leaves was correlated with higher levels of
total polyphenols in the fruit. The high-water stress suffered by Montserrat varieties coincided with a
low total phenolic content in the tomatoes. In conclusion, organic fertilization with reduced N did not
influence the tomato yield but positively affected phenolic compound levels in varieties less sensitive
to water stress.

Keywords: organic agriculture; soil; foliar nutrients; abiotic factors; polyphenols; antioxidants; fruit
quality; health; Solanum lycopersicum

1. Introduction

The tomato (Solanum lycopersicum) is one of the most popular horticultural crops
worldwide and is a key component of the Mediterranean dietary pattern. Global tomato
production is around 180 million tons per annum, more than a quarter of which is processed
to make sauces and other derivatives [1]. Previous work has shown that differences in soil
fertility can change the composition of tomatoes and can have significant effects on their
organoleptic properties and health-promoting components [2]. The tomato is an important
source of substances with known beneficial effects on health which are considered natural
antioxidant compounds such as lycopene, ascorbic acid, tocopherols, polyphenols, pro-
vitamin A, and vitamin C [3,4]. Indeed, tomato consumption has been associated with
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a reduced risk of cancer, inflammatory processes, coronary heart disease, hypertension,
obesity, diabetes, and other cardiovascular conditions [5].

In addition to increasing soil organic matter, the application of organic amendments is
a way of replacing nutrient exports from previous crops [5]. The application of residues
rich in carbon (C) is expected to improve the physical properties of soil [6] and enhance
soil microbial activity [7] while reducing nitrogen (N) availability. The lower levels of N in
soils amended with C-rich compost may promote plant nutrient stress, while C richness
can affect the interactions between soil microorganisms and plants according to the C/N
ratio, with positive implications for plant health [8], soil nutrient bioavailability [9], and soil
structure [10]. Therefore, although maximum agronomic production requires high levels of
available N, the use of C-rich residues and the consequent reduction in N availability, may
improve plant quality. Organic fertilization, as practiced in organic farming systems, has
produced crops with enhanced contents of antioxidants including phenolic compounds [11]
with positive effects on human health [12], because the nutritional stress of crops stimulates
the biosynthesis of these antioxidant compounds [13].

Due to its economic importance, tomato is one of the most analyzed foods in terms of
varietal characterization and productivity. Plant susceptibility to pests and diseases can
be affected by soil conditions [14–16] and plant composition [17]. In this context, several
studies have been carried out in Barcelona province on tomato varieties to improve their
resistance to pests and diseases and enhance productivity [18–22]. However, to the best of
our knowledge, the effect of different types of organic fertilization on the production and
quality of a range of traditional and high-yielding tomato varieties has not been previously
studied in depth. Traditional tomato varieties are expected to be more suited to cultivation
conditions with low or moderate N availability as compared with varieties that have been
developed for high yields. We have chosen two widely used varieties and four local
varieties with great culinary value. The aim of the present study was to investigate the
sensitivity of such tomato varieties to organic fertilization, by testing three fertilization
treatments with variable C and N input: N-rich, N-rich+C, and N-poor+C treatments.
The examined parameters were production, plant nutritional status, and tomato quality.
Regarding the nutritional quality of tomatoes, in this work, we test whether the oxidative
stress of field tomato grown plants can be associated with, among others, an increase
in phenolic compounds production. In view of the importance of the tomato crop, we
investigate, for the first time, whether three organic fertilization treatments with different
quantities of carbon and nitrogen affect the phenolic contents of contrasted tomato varieties.

2. Materials and Methods
2.1. Field Experiment

The study was carried out at the Can Gallina farm (Canet de Mar, Spain) located at
41◦35′51.65” N, 2◦34′38.58” E. The soil was a slightly basic (pH = 7.8) sandy clay with 2.3%
organic C and 0.51% carbonates. Before setting up the experiment, the experimental area
was fallowed for several years. Before tomato plantation, the area was milled to remove
the grass cover and divided into nine plots.

2.2. Experimental Design

The study was performed with two varietal groups of tomato: ‘Montserrat’ and
‘Pebroter’. Three varieties were selected in each group: two traditional varieties and one
high-yielding variety (Table 1).

Three different organic fertilizers with variable C/N ratios were used (Table 2): A
commercial N-rich organic fertilizer and a K-rich mineral amendment were added to the
N-rich plots. The N-rich+C plots were fertilized with a compost made from crushed woody
plant residues (45%) and calf manure (55%). The N-poor+C plots were fertilized with a
compost made from fine pruning residues (50%) and sheep manure (50%). The levels of
total N in N-rich and N-rich+C fertilizer treatments were similar (Table 2), with lower
amounts in the N-poor+C treatment. The lowest application of organic C was in the N-rich
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treatment. All fertilizers were spread on the soil surface and a dropwise irrigation system
was installed. The soil surface was subsequently covered using biodegradable plastic
(Mater-Bi) for weed control. Watering was carried out regularly according to plant needs.

Table 1. Selected tomato varieties.

Varietal Group Variety Type

1 Pebroter Cornabel High-yielding
2 Pebroter Cuban Pepper Traditional
3 Pebroter Corno Andino Traditional
4 Montserrat Montserrat Fitó High-yielding
5 Montserrat Can Duran Traditional
6 Montserrat Montserrat Ple Traditional

Table 2. Chemical composition of each fertilizer and contributions of C and nutrients in each treatment.

N-rich
Fertilizer C/N 4

N-rich+C
Fertilizer C/N 10

N-poor+C
Fertilizer C/N 20

Dry weight (%) - 53.1 58.7
C (%) 40 29.5 14.4
N (%) 10 2.7 0.83
C/N 4 10.9 17.3
N-NH4

+ (%) - 0.5 0.1
pH - 7.8 8.94
CE (µS/cm) - 6010 770
C (kg/ha) 1000 2741 1775
N (kg/ha) 250 251 102
N-NH4 (kg/ha) - 46 12
P (kg/ha) - 84 37
K (kg/ha) 750 158 136
Mg (kg/ha) 180 74 111
S (kg/ha) 510 12 12
Dose (kg/m2) 0.25/0.3 1.7 2.1

Each treatment was replicated three times and randomly distributed within the nine
plots of the experimental area. All tested tomato varieties were planted in each plot. The
planting frame was 0.88× 0.7 m, and in early May, two bushes of each variety were planted
in the central part of each of the nine plots (Figure 1).
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2.3. Leaf and Tomato Sampling and Analysis

Before tomato maturity in early July, mature leaf samples were taken from each tomato
bush and bulked to one sample per treatment and variety. Before nutrient analysis, the
leaves were oven-dried at 60 ◦C and finely ground using an automatic mortar grinder (RM
200, RETSCH, Haan, Germany). The C and N contents and isotope ratio (δ13C) in leaves
were determined by using an isotope-ratio mass spectrometer (Flash 2000 HT, Thermo
Fisher Scientific, Bremen, Germany). Nitrate was extracted from ground leaves suspended
in deionized water (1/10 w/w) and the content was determined following the method
of Cataldo et al. (1975) [23]. P, K, S, Ca, Mg, Na, Zn, Fe, Mo, and Cu contents in leaves
were determined after digestion with HNO3 and HClO4 using inductively coupled plasma
(simultaneous ICP-OES, Perkin Elmer Optima 8300, Waltham, MA 02451, USA) [24]. During
the production period from mid-July to the first week of September, tomatoes were sampled
once per week. The weights of tomatoes per treatment and variety were recorded and
subsamples of tomatoes were frozen for the quality analyses. The most mature samples
of each variety from all frozen samples were chosen according to the red color intensity:
Stage 8 according to the Kleur Stadia (The Netherlandsd) tomato color chart [25]. Before
further analyses, the Brix index was recorded for each tomato sample.

2.4. Phenolic Extraction and Determination

To perform the phenolic extraction, the method described by Rinaldi de
Alvarenga et al. (2019) [26] was followed with few modifications. First, the tomatoes
were ground until the samples were homogeneous. Then, 0.5 g was weighed for each
sample and 5 mL of a dilution of ethanol and miliQ water (8:2 v/v) was added and the
samples were sonicated for 5 min, vortexed for 30 s, and centrifuged at 4000 rpm for
20 min at 4 ◦C. The supernatant was transferred to another tube, and the extraction was
repeated. After the second extraction, the supernatants from the two extractions were
merged and evaporated with a vacuum evaporator (miVac DNA concentrator, Genevac
LTD, Warminster, UK). Finally, all samples were reconstituted with 2 mL of miliQ water
with 0.1% formic acid and stored at −80 ◦C until analyzed.

The phenolic compounds were identified and quantified by UHPLC-MS/MS, follow-
ing the method described by Rinaldi de Alvarenga et al. (2019) [26]. An ACQUITY UPLC
system equipped with a binary pump, autosampler, and oven from Waters (Milford, MA,
USA) with a BEH C18 column (50 mm × 2.1 mm) i.d., 1.7 µm (Waters, Milford, MA, USA)
was used. The injection volume was 10 µL, and the samples were maintained at 4 ◦C and
the column at 30 ◦C. The mobile phase consisted of an A phase of acetonitrile (0.1% formic
acid), and a B phase of water (0.1% formic acid). The gradient elution was: 0 min, 10% A;
0.5 min, 10% A; 1.5 min, 15% A; 2.0 min, 20% A; 2.5 min, 50% A; 3.0 min, 100% A; 3.5 min
100% A; and 4.5 min, 10% A. The flow rate applied was 400 µL/min.

An API 3000 triple quadrupole mass spectrometer (ABSciex, Framingham, MA, USA)
coupled with a Turbo Ionspray source in negative ion mode was used for the MS/MS
analysis. The settings of the Turbo Ionspray were the same as in Rinaldi de Alvarenga et al.
(2019) [26]. The polyphenols were quantified using the multiple reaction monitoring mode
(MRM), tracking the transition of parent ion and productions specific for each compound.
The quantification was performed using the internal standard method, applying ethyl
gallate as the internal standard, and generating calibration curves for each corresponding
standard. The results were expressed as µg/g of the fraction.

2.5. Statistical Analysis

The data analysis was performed using SPSS 21.0 (SPSS Inc., Chicago, IL, USA),
Statgraphics Centurion 18.1.13. (Statpoint Techonologies Inc., Warrenton, VA, USA) and
Rstudio 3.6.3 (R Foundation for Statistical Computing, Vienna, Austria).

Data are presented as means and standard deviation. All data were tested for nor-
mality and homogeneity of variance. One-way analysis of variance (ANOVA) followed
by Duncan’s multiple comparisons was used to evaluate the statistical differences in the
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concentrations of nutrients and phenolic compounds among the tomato varieties and
fertilization treatments. A simple linear regression was applied to evaluate the association
between total polyphenols and N-NO3 from tomato varieties.

Statistical tests were two-sided tests and statistical significance was set at p-value <0.05.

3. Results and Discussion
3.1. Effect of Fertilization on Tomato Yield

In organic agriculture, N is generally used as the base element to calculate the fer-
tilization dose, as it is often the most limiting nutrient in agricultural soils [27]. In this
study, three treatments based on C and N inputs were evaluated. Two treatments (N-rich
and N-rich+C) contained the amount of N calculated as necessary for the crop and one
treatment (N-poor+C) had a lower dose of N. Despite this variation, the tomato yields
were quite uniform in all treatments, with no significant differences (Table 3). However,
contradictory results have been observed. In a recent study, Carricondo-Martínez et al.
(2022) [28] observed a reduced yield when using crop residues (C/N 15, yield 41.4 Tn/ha),
composted goat manure (C/N 11, yield 41.0 Tn/ha), or composted vegetable waste (C/N
8.9, yield 43.2 Tn/ha) as compared with inorganic fertilizers used as a control (50 Tn/ha).
While, in contrast, in other studies a higher production as compared with conventional
mineral fertilization has been observed with the use of N-rich poultry manures or green
manures [29,30]. Although the C/N ratio in our N-rich+C fertilizer was similar to that
of the organic fertilizers used by Gatsios et al. (2021) [29], we did not observe changes in
productivity in any tested variety, perhaps because of the high fertility of our experimental
field. Similarly, Bénard et al. (2009) [31] reported that low N supply rates had little impact
on commercial tomato fruit yield.

Table 3. Production according to the type of organic fertilization.

N-rich
Fertilizer C/N 4

N-rich+C
Fertilizer C/N 10

N-poor+C
Fertilizer C/N 20

Production (Tn/ha) 22.05 ± 7.76 23.59 ± 10.59 18.37 ± 7.58
Data are the mean ± standard deviation.

3.2. Productivity of the Different Varieties

Tomato production differed among the varieties, but mostly to a small extent (ranging
from 18.73 to 20.54 Tn/ha). The exception was the high-yielding ‘Cornabel’, which stood
out for its high productivity (32.24 Tn/ha). The Montserrat varietal group was the least
productive, without differences between commercial and traditional varieties (Table 4). The
yield was not affected by fertilization in any variety.

Table 4. Productivity of tomato varieties from the organic fertilization test.

Varietal Group Variety Production (Tn/ha)

1 Pebroter Cornabel 32.24 ± 11.57 a
2 Pebroter Cuban Pepper 20.54 ± 5.51 b
3 Pebroter Corno Andino 19.04 ± 5.65 b
4 Montserrat Montserrat Fitó 18.06 ± 5.69 b
5 Montserrat Can Duran 19.40 ± 8.20 b
6 Montserrat Montserrat Ple 18.73 ± 7.80 b

Data are shown as mean± standard deviation (n = 3) for each varietal group. Different letters represent significant
differences in production observed between varietal groups (p < 0.05).

3.3. Effect of Fertilization on Mineral Nutrients in Plant Leaves

The contents of mineral elements in tomato leaves (Table 5) indicate nutrient avail-
ability in different agronomic practices [32,33]. In the present study, the major nutrients
were not greatly affected by any of the treatments. As compared with the optimal reference
levels [34], foliar N, Ca, and Mg were adequate with all fertilization treatments. On the
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one hand, regarding Mg, levels were increased by the N-rich treatment, probably because
it was richer in this element (Table 2). The level of N in leaves suggests that the N con-
tent for each fertilizer was optimal. This is significant because a high application of this
nutrient might shorten the useful life of the fruit by causing physiological alterations and
even senescence [35] On the other hand, the levels of P and K were below the reference
values in all cases; P did not differ among treatments, whereas significant increases in K
were associated with the N-rich fertilization. An increase in Mo was observed in plants
treated with the N-poor+C fertilizer, even though this treatment was Mo-poor. An essential
micronutrient for plant growth, Mo is usually found in low concentrations in most plant
tissues [36]. The availability of Mo depends on soil pH, the concentration of absorbing
oxides, the extent of water drainage, and the organic compounds found in the soil colloids.
In alkaline soils (as used in this study), Mo is more soluble and accessible to plants, while
its availability decreases in acid soils [37]. Additionally, Na levels decreased with the
N-poor+C treatment, and those of Zn increased with the N-rich treatment. No significant
differences were observed in the S content, although a small increase was associated with
the N-rich treatment. S is necessary for the normal metabolic processes of plants and is
especially important for the biosynthesis of chlorophyll [36].

Table 5. Leaf mineral nutrients at the beginning of tomato curdling in plants treated with organic
fertilization. The reference for optimal levels is from Villar and Villar (2016) [34].

Parameter Optimal Level N-rich
Fertilizer C/N 4

N-rich+C
Fertilizer C/N 10

N-poor+C
Fertilizer C/N 20

N (%) 2.9–4 3.77 ± 0.28 3.69 ± 0.42 3.73 ± 0.56
P (%) 0.3–0.75 0.22 ± 0.05 0.19 ± 0.07 0.22 ± 0.08
K (%) 2.1–4.7 1.42 ± 0.74 b 0.91 ± 0.47 a 1.01 ± 0.49 ab
Ca (%) 2.6–7.0 3.76 ± 1.28 3.06 ± 1.18 3.84 ± 1.39
Mg (%) 0.3–0.9 0.84 ± 0.23 a 0.60 ± 0.19 b 0.66 ± 0.20 ab

Na (mg/Kg) 744.65 ± 597.28 ab 807.68 ± 412.68 a 492.51 ± 195.72 b
Zn (mg/Kg) 22.61 ± 9.97 a 16.30 ±7.47 b 17.16 ± 6.60 ab

S (%) 1.38 ± 0.57 1.13 ± 0.48 1.19 ± 0.52
Fe (%) 0.03 ± 0.008 0.03 ± 0.010 0.03 ± 0.008

Mo (mg/kg) 6.05 ± 11.56 6.56 ± 5.71 8.0 ± 6.06
C (%) 37.12 ± 2.13 37.11 ± 2.88 37.65 ± 2.01

Data are shown as mean ± standard deviation. Different letters represent significant differences in nutrients
among fertilization treatments (p < 0.05).

3.4. Mineral Nutrient Status in Tomato Varieties and Its Effect on δ13C and Nitrate Values

The concentrations of mineral nutrients in tomato leaves of the different varieties are
shown in Table 6. No differences in N, P, K, and Mo were observed among the varieties.
The highest Na content was observed in Montserrat Ple, followed by Corno Andino and
Montserrat Fitó. Cu values were lowest in Cuban Pepper and highest in Montserrat Fitó
(Figure 2A). N-NO3 accumulation was lowest in Corno Andino, and highest in Montserrat
Ple (Figure 2B); storage of this highly soluble element can indicate an excess of N [38].

Table 6. Leaf mineral nutrients of tomato varieties.

Parameter Cornabel Cuban Pepper Corno Andino Montserrat Fitó Can Duran Montserrat Ple

N (%) 3.59 ± 0.63 4.01 ± 0.39 3.72 ± 0.32 3.74 ± 0.34 3.67 ± 0.33 3.66 ± 0.48
P (%) 0.21 ± 0.09 0.23 ± 0.06 0.23 ± 0.07 0.22 ± 0.06 0.20 ± 0.08 0.19 ± 0.03
K (%) 1.04 ± 0.64 1.22 ± 0.62 1.18 ± 0.76 1.13 ± 0.63 0.89 ± 0.49 1.22 ± 0.64

Na (mg/Kg) 583.79 ± 483.2 540.79 ± 175.07 783.13 ± 295.98 751.18 ± 455.44 501.24 ± 298.83 929.53 ± 717.34
Mo (mg/kg) 4.66 ± 3.13 5.72 ± 6.52 4.84 ± 1.91 8.23 ± 7.09 5.84 ± 4.84 11.96 ± 16.20

C (%) 36.50 ± 2.52 ab 37.55 ± 1.41 b 35.28 ± 2.0 a 38.01 ± 2.32 b 37.98 ± 2.57 b 38.44 ± 1.99 b
Cu (mg/Kg) 5.89 ± 2.38 ab 5.17 ± 2.04 a 6.03 ± 2.02 ab 8.66 ± 3.03 b 7.20 ± 3.38 ab 7.42 ± 2.37 ab

N-NO3 (µg/g) 262.06 ± 56.92 ab 309.91 ± 78.53 ab 243.17 ±98.74 a 268.46 ± 118.72 ab 332.67 ± 65.22 ab 364.82 ± 70.07 b

Data are shown as mean ± standard deviation. Different letters represent significant differences in nutrients
among varieties (p < 0.05).
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The concentrations of C were higher in the Montserrat than in the Pebroter varieties,
although the values were significantly lower only in Corno Andino (Figure 3A). The
concentration of C in the leaf was inversely related to the richness of mineral components.
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Plants have adaption strategies to adverse conditions such as drought. A fundamental
response of plants to water and heat stress is stomatal control of water loss. Closure of
the stoma hinders the gaseous exchange of CO2, facilitating the accumulation of the δ13C
isotope [39–41]. Thus, the higher the δ13C values, the greater the water stress. Following



Antioxidants 2022, 11, 2127 8 of 16

this premise, the plants that suffered the most water stress were the Montserrat varieties
and those that suffered the least water stress were the Pebroter varieties (Figure 3B).

3.5. Phenolic Content

The six tomato varieties treated with three types of fertilization were analyzed for
their phenolic contents. Fruit maturity according to ºBrix did not show statistically signifi-
cant differences among the fertilization treatments (Table S1 in Supplementary Materials).
As expected, significant differences in phenolic levels were found between the varieties
(Figure 4). In addition, the treatments had variable effects; the only significant increase
was induced by the N-poor+C treatment in varieties of the Pebroter group (Figure 4), with
specific phenolic compounds being particularly affected. In contrast, fertilization did not
cause significant changes in the tomato phenolic content in the Monserrat group varieties,
which were also more sensitive to water stress.

Regardless of the treatment, the highest amount of total phenolic compounds was
found in Cuban Pepper tomatoes (Table 7). In this variety, phenolic levels were not
affected by fertilization. Overall, the only significant changes observed in phenolic content
were associated with the N-poor+C treatment, whose impact was positive in the Pebroter
varieties Cornabel and Corno Andino, and negative in Can Duran, a variety particularly
affected by water stress. Therefore, the results observed were different depending on the
variety. A low N application combined with C (N-poor+C) favored the tomato phenolic
contents in three of the studied varieties, as has been observed by Slimestad and Verheul
(2005) [42], who described that the type of fertilization and other abiotic factors such as light
affected the flavonoid content of tomatoes; however, in our case, had a negative impact on
one variety, whereas two varieties were not affected by any treatment.
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Regarding the levels of individual phenolic compounds (for more details of the indi-
vidual phenolic compounds see in Table S2 in Supplementary Materials), the response of
each variety to each treatment becomes more complex (Tables 7 and 8). Three compounds
(naringenin, naringenin glucoside, and quercetin) were detected only in the Pebroter group,
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and therefore, may serve to discriminate it from the Montserrat group. Naringenin and
naringenin derivatives are also reported to be absent in some Portuguese tomato vari-
eties [43], whereas Slimestad et al. (2008) [44] detected minimal amounts of naringenin
in nine different varieties of tomatoes. Naringenin was the most abundant phenolic com-
pound in the three Pebroter varieties, and it was not significantly affected by fertilization,
although the differences in concentrations among the varieties became significant after
the N-poor+C fertilization treatment: naringenin levels were highest in Cuban Pepper
(59.08 mg/kg), followed by Corno Andino (36.19 mg/kg), and Cornabel (10.94 mg/kg).
Regarding naringenin glucoside and quercetin, fertilization had different effects in each
Pebroter variety. In Cuban Pepper, naringenin glucoside levels were significantly higher
with N-rich+C fertilization treatment as compared with N-rich and N-poor+C fertilization
treatment, whereas, in Cornabel, they were significantly lower with N-rich+C versus N-rich
treatment. On the other hand, in Cuban Pepper, quercetin was significantly higher with N-
rich+C treatment as compared with N-poor+C treatment, whereas the reverse was found in
Corno Andino. The second highest polyphenol was rutin in the Pebroter group. In contrast,
Cruz-Carrión et al. (2022) [45] observed rutin as the highest flavonoid in local tomatoes
from Tarragona. In addition, Gomez-Romero et al. (2010) [46] reported differences in the
content of phenolic compounds in two different varieties of tomatoes, and Slimestad et al.
(2008) [44] reported differences in the contents of flavonoids among nine tomato varieties
analyzed. In the latter study, Naringenin chalcone was the main flavonoid, followed by
rutin, although, in some varieties, quercetin 3-(2”-apiosyl-6”-rhamnosyl-glucoside and
phloretin 3′,5′-di-C-glucoside were present at levels similar to rutin. The Montserrat culti-
vars tested in this study showed a distinct polyphenolic composition as compared with
other varieties as they showed the highest levels of chlorogenic acid and coumaric acid
glucoside. Similar to what we observed in Montserrat varieties, Benard et al. (2009) [31]
did not observe a general increase in phenolic compounds in response to a decrease in
N supply in tomato crops, however, in this latter study, some compounds did have an
increasing trend. Stewart et al. (2001) [47] also found no effects on flavonoid content in
tomatoes grown under low N. The C and N richness of organic fertilization had different
effects on each phenolic compound in each variety studied. For example, the Cornabel
variety responded most favorably to the N-poor+C treatment, which enhanced the content
of almost all the phenolic compounds identified in this variety. Yet, the same treatment had
a negative effect on Can Duran, reducing the concentrations of almost all phenolic com-
pounds, which, in contrast, were enhanced by N-rich and N-rich+C fertilization. The effects
of the different fertilization treatments on Cuban Pepper were largely similar, although the
levels of apigenin glucoside, o-coumaric acid, p-coumaric acid, ferulic glucoside, and caffeic
hexoside were increased more by the N-poor+C treatment, and those of caffeic acid, pro-
tocatechuic, quercetin, rutin, and naringenin glucoside were increased more by N-rich+C
fertilization. The phenolic content of Corno Andino tomatoes was improved the most by
the N-rich+C treatment, which significantly increased levels of chlorogenic, m-coumaric,
o-coumaric and p-coumaric acid, quercetin, coumaric glucoside, and ferulic glucoside.
Divergent effects were observed in Montserrat Fitó, although, overall, N-poor+C seemed
to be the most favorable treatment, significantly increasing levels of 4-hydroxybenzoic
acid, m-coumaric acid, o-coumaric acid, and coumaric glucoside; otherwise, increases
in apigenin glucoside were associated with both high and low N+C, homovanillic acid
glucoside, and protocatechuic acid with N-rich+C treatment, and rutin with both N-rich+C
and N-rich treatments. Finally, Montserrat Ple seemed to be barely affected by fertiliza-
tion, although 4-hydroxybenzoic, apigenin glucoside, homovanillic acid glucoside, and
caffeic hexoside were favored by N-poor+C treatment, caffeic acid and p-coumaric acid
by N-rich+C treatment, and o-coumaric acid by both low and high N+C treatments. In
summary, no clear trend was observed in the effect of organic fertilization on the levels of
individual phenolic compounds, which differed in each variety, although the N-poor+C
treatment was generally the most favorable (Table S3 in Supplementary Materials).
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Table 7. Concentrations of the phenolic compounds (mg/kg) in the Pebroter tomatoes according to the fertilization used.

Phenolic Compound Cornabel Cuban Pepper Corno Andino

N-rich N-rich+C N-poor+C N-rich N-rich+C N-poor+C N-rich N-rich+C N-poor+C

4-Hydroxybenzoic acid 0.41 ± 0.11 0.37 ± 0.03 0.56 ± 0.07 0.46 ± 0.03 0.59 ± 0.12 0.61 ± 0.09 0.52 ± 0.02 0.46 ± 0.06 0.57 ± 0.16
Gallic acid 12.08 ± 0.62 12.87 ± 0.67 12.61 ± 0.91 12.59 ± 0.63 12.65 ± 0.91 12.57 ± 0.65 12.24 ± 0.44 12.24 ± 0.91 12.63 ± 0.58
Caffeic acid 0.71 ± 0.63 1.70 ± 0.32 1.71 ± 0.50 1.48 ± 0.27 2.16 ± 0.48 1.21 ± 0.82 2.54 ± 0.24 2.76 ± 0.86 2.67 ± 1.33
Caffeic acid hexoside 3.66 ± 1.37 6.11 ± 2.43 6.55 ± 2.62 4.03 ± 1.03 5.38 ± 1.01 6.10 ± 2.60 5.86 ± 2.63 5.87 ± 1.17 5.68 ± 1.91
Chlorogenic acid 5.47 ± 4.57 14.08 ± 4.10 22.38 ± 6.41 13.99 ± 3.07 13.36 ± 3.96 19.07 ± 12.60 10.85 ± 5.09 13.38 ± 3.45 19.01 ± 2.61
Neochlorogenic acid 0.05 ± 0.00 0.09 ± 0.02 0.11 ± 0.03 0.09 ± 0.02 0.09 ± 0.01 0.11 ± 0.02 0.09 ± 0.02 0.12 ± 0.04 0.07 ± 0.04
Cryptochlorogenic acid 1.20 ± 0.12 1.40 ± 0.31 1.75 ± 0.41 1.18 ± 0.20 1.36 ± 0.53 1.21 ± 0.65 1.49 ± 0.74 1.85 ± 0.46 1.83 ± 0.39
Protocatechuic acid 1.37 ± 1.00 0.68 ± 0.29 1.27 ± 0.44 0.64 ± 0.23 0.70 ± 0.14 0.49 ± 0.14 1.17 ± 0.25 1.07 ± 0.49 1.14 ± 0.30
Dicaffeyolquinic acid 0.32 ± 0.24 0.91 ± 0.42 0.91 ± 0.23 1.10 ± 0.26 0.89 ± 0.38 1.05 ± 0.71 1.01 ± 0.49 1.12 ± 0.11 1.07 ± 0.08
m-Coumaric acid 2.53 ± 0.63 3.78 ± 1.02 5.38 ± 0.39 6.83 ± 1.86 7.05 ± 4.00 6.65 ± 1.20 2.87 ± 0.13 3.79 ± 1.24 5.96 ± 1.43
o-Coumaric acid 3.36 ± 1.47 4.48 ± 1.30 5.24 ± 3.01 3.54 ± 0.88 4.38 ± 0.79 7.58 ± 2.79 5.26 ± 0.62 6.34 ± 2.89 10.78 ± 3.94
p-Coumaric acid 0.71 ± 0.17 0.48 ± 0.11 0.94 ± 0.23 1.08 ± 0.21 0.99 ± 0.17 1.23 ± 0.17 1.15 ± 0.44 1.26 ± 0.75 2.59 ± 1.36
Coumaric acid glucoside 9.03 ± 2.84 12.82 ± 2.91 16.98 ± 3.66 21.73 ± 5.72 22.05 ± 9.69 21.80 ± 1.75 11.50 ± 1.16 15.33 ± 1.19 23.97 ± 6.39
Homovanillic acid glucoside 0.25 ± 0.03 nd 0.28 ± 0.02 0.23 ± 0.01 0.27 ± 0.04 0.29 ± 0.05 0.24 ± 0.03 0.24 ± 0.00 nd
Ferulic acid glucoside 0.35 ± 0.06 0.49 ± 0.16 0.70 ± 0.09 0.47 ±0.04 0.55 ± 0.16 0.65 ± 0.27 0.48 ± 0.19 0.51 ± 0.06 0.73 ± 0.05
Rutin 14.05 ± 5.37 14.95 ± 2.81 28.53 ± 7.70 24.56 ± 3.29 29.29 ± 4.72 20.85 ± 3.74 18.98 ± 10.11 20.71 ± 5.31 15.80 ± 7.87
Quercetin 1.56 ± 0.12 1.58 ± 0.13 1.62 ± 0.15 1.69 ± 0.14 1.97 ± 0.32 1.59 ± 0.13 1.82 ± 0.41 1.76 ± 0.31 2.46 ± 1.05
Naringenin 20.34 ± 16.51 8.79 ± 9.01 10.94 ± 9.44 41.83 ± 41.73 23.84 ± 19.80 59.08 ± 44.40 31.16 ± 24.84 23.99 ± 14.96 36.19 ± 24.14
Naringenin glucoside 11.93 ± 7.35 5.93 ± 4.38 9.45 ± 2.05 6.78 ± 1.48 11.99 ± 6.99 7.22 ± 4.03 13.82 ± 9.56 11.91 ± 4.99 17.33 ± 12.81
Apigenin glucoside 1.34 ± 0.32 1.70 ± 0.48 1.53 ± 0.39 1.60 ± 0.37 1.63 ± 0.14 2.05 ± 0.25 1.73 ± 0.29 2.28 ± 0.40 2.21 ± 0.67

Total phenolics 90.72 ± 15.54 93.21 ± 16.01 129.44 ± 23.21 145.9 ± 22.05 141.19 ± 19.00 171.41 ± 65.33 124.78 ± 55.78 126.99 ± 23.10 162.78 ± 30.12

Data are the mean ± deviation standard. nd refer to non detectable.
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Table 8. Concentrations of the phenolic compounds (mg/kg) in the Montserrat tomatoes according to the fertilization used.

Phenolic Compound Montserrrat Fitó Can Duran Montserrat Ple

N-rich N-rich+C N-poor+C N-rich N-rich+C N-poor+C N-rich N-rich+C N-poor+C

4-Hydroxybenzoic acid 0.44 ± 0.10 0.56 ± 0.13 0.62 ± 0.14 0.63 ± 0.09 0.69 ± 0.23 0.60 ± 0.21 0.68 ± 0.11 0.55 ± 0.15 0.99 ± 0.23
Gallic acid 12.40 ± 1.56 12.68 ± 0.76 12.47 ± 0.58 12.31 ± 0.53 12.92 ± 0.72 12.82 ± 1.05 12.13 ± 0.83 12.91 ± 0.43 12.88 ± 0.84
Caffeic acid 2.29 ± 0.74 2.28 ± 0.51 3.38 ± 1.83 2.26 ± 0.42 2.06 ± 0.40 1.71 ± 0.81 1.59 ± 0.95 2.56 ± 0.75 1.63 ± 0.93
Caffeic acid hexoside 10.40 ± 6.62 11.12 ± 1.42 13.11 ± 1.25 11.95 ± 1.40 15.05 ± 5.87 7.78 ± 2.36 9.94 ± 2.09 10.80 ± 2.92 14.98 ± 3.86
Chlorogenic acid 22.09 ± 6.34 17.62 ± 2.46 20.45 ± 7.86 20.94 ± 3.32 18.26 ± 1.47 14.57 ± 4.01 15.47 ± 3.10 22.55 ± 15.37 14.01 ± 9.33
Neochlorogenic acid 0.12 ± 0.04 0.13 ± 0.06 0.12 ± 0.05 0.13 ± 0.03 0.12 ± 0.04 0.10 ± 0.06 0.14 ± 0.06 0.13 ± 0.05 0.19 ± 0.16
Cryptochlorogenic acid 1.68 ± 1.18 1.47 ± 0.74 2.19 ± 0.65 2.40 ± 0.42 1.98 ± 0.27 1.84 ± 0.39 1.74 ± 0.37 1.36 ± 0.34 1.40 ± 0.83
Protocatechuic acid 0.62 ± 0.18 1.05 ± 0.48 0.94 ± 0.24 0.64 ± 0.17 0.67 ± 0.12 0.73 ± 0.38 0.74 ± 0.30 0.84 ± 0.40 0.92 ± 0.28
Dicaffeyolquinic acid 1.30 ± 0.51 1.09 ± 0.74 1.10 ± 0.42 1.09 ± 0.71 0.90 ± 0.32 0.60 ± 0.14 0.82 ± 0.45 1.25 ± 0.69 1.07 ± 0.68
m-Coumaric acid 5.92 ± 1.71 5.36 ± 0.83 7.82 ± 2.12 5.97 ± 0.39 4.89 ± 1.88 5.95 ± 0.82 3.99 ± 0.92 3.90 ± 1.65 5.21 ± 1.78
o-Coumaric acid 11.44 ± 4.16 15.98 ± 0.89 16.80 ± 4.92 12.44 ± 1.45 17.55 ± 7.23 11.86 ± 2.40 9.97 ± 2.80 13.07 ± 1.72 14.44 ± 2.41
p-Coumaric acid 1.39 ± 0.68 2.23 ± 1.19 2.46 ± 1.86 1.63 ± 0.41 1.61 ± 0.22 1.79 ± 0.58 1.18 ± 0.11 1.57 ± 0.34 1.02 ± 0.18
Coumaric acid glucoside 26.21 ± 8.06 27.67 ± 2.58 32.66 ± 5.05 26.60 ± 1.98 27.80 ± 10.29 22.59 ± 4.01 18.71 ± 5.08 20.77 ± 6.20 23.82 ± 4.63
Homovanillic acid glucoside 0.43 ± 0.10 0.52 ± 0.13 0.40 ± 0.11 0.53 ± 0.06 0.57 ± 0.22 0.32 ± 0.07 0.44 ± 0.04 0.41 ± 0.08 0.60 ± 0.18
Ferulic acid glucoside 0.89 ± 0.56 1.02 ± 0.48 1.39 ± 0.64 1.23 ± 0.31 1.48 ± 0.38 1.37 ± 0.39 0.86 ± 0.20 0.89 ± 0.25 0.74 ± 0.20
Rutin 9.63 ± 7.17 9.46 ± 6.75 0.75 ± 0.29 3.47 ± 4.69 0.58 ± 0.12 2.87 ± 5.98 12.23 ± 6.91 13.45 ± 10.51 13.64 ± 2.51
Quercetin nd nd nd nd nd nd nd nd nd
Naringenin nd nd nd nd nd nd nd nd nd
Naringenin glucoside nd nd nd nd nd nd nd nd nd
Apigenin glucoside 3.18 ± 0.75 4.92 ± 1.10 4.07 ± 0.53 2.22 ± 0.90 3.76 ± 1.00 2.01 ± 0.43 3.36 ± 0.83 3.12 ± 1.08 5.60 ± 1.21

Total phenolics 110.43 ± 9.59 115.16 ± 3.52 120.73 ± 4.05 123.31 ± 34.86 114.37 ± 34.54 96.36 ± 10.85 94.95 ± 21.83 110.08 ± 39.44 112.54 ± 10.73

Data are the mean ± deviation standard. nd refer to non detectable.
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According to the literature, a reduced N supply generates an accumulation of phenolic
compounds as a response to the abiotic stress of N limitation [35]. Thus, Bénard et al.
(2011) [48] reported that temporary deprivation of N increased the phenolic content in
tomato plant leaves. Similar behavior was observed in Cornabel, Corno Andino, and
Montserrat Fitó varieties that had the highest phenolic content with N-poor+C treatment.
However, the opposite behavior was observed in Montserrat Can Duran. Nevertheless, it
is clearly observed that cultivars, depending on the variety, accumulate different profiles
and proportions of antioxidant molecules, such as polyphenols [49].

3.6. Plant Nutritional Status, Water Stress Sensitivity, and Oxidative Stress Regulation

Nutrient shortages and water stress can both limit photosynthesis, and thus, induce
oxidative stress that may enhance antioxidant production in plants [13,50]. Since leaf
N-NO3 content in plants growing under similar conditions can be used as an indicator
of the luxury consumption of N [38], we used N-NO3 as a covariable to analyze the use
of N in each varietal group and fertilization treatment. The results showed significant
differences only in the Pebroter varieties, with interactions between fertilizer and leaf
N-NO3 (p = 0.023) and with each variety (p = 0.027). In this case, total polyphenol content
increased with N-NO3 only with N-poor+C fertilization, and not the N-rich treatments
(N-rich and N-rich+C, Figure 5A). In contrast, with N-rich+C fertilization, a lower content
of N-NO3 in the leaves was associated with a higher total polyphenol content, suggesting
that polyphenol production in Pebroter tomatoes may be limited by N only in N-poor
environments. This agrees with Bénard et al. (2009) [31], who reported increases in some
phenolic compounds in tomatoes grown in soil supplied with low quantities of N (4 mM).
Therefore, in our experiment, the highest levels of phenolics were found in Pebroter tomato
varieties cultivated with N-poor and C-rich fertilization, and their synthesis was limited
by N availability. In contrast, in N-rich environments, overall polyphenol production was
lower and not limited by N. However, this trend was not observed in the Montserrat group,
whose varieties showed high sensitivity to water stress (Figure 5B).
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In general, plants respond to water stress by increasing the synthesis of antioxidant
compounds such as phenolic compounds and terpenes [51–55]. Sánchez-Rodríguez et al.
(2011) [56] reported an increase in phenolic compounds in cherry tomatoes exposed to
water stress. Another study observed that, while the total flavonoid content of tomatoes
was not influenced by water stress, the total phenolic content increased [51]. Similar
observations in other crops such as ‘merlot’ cultivar grapes have been reported [57]. This
contrasts with the results of the present study, in which the Montserrat varieties suffered
the most water stress yet produced the fewest total phenolic compounds; moreover, the
phenolic content decreased with increasing water stress (r = −0.412, p = 0.033). These
conflicting results might be justified either by considering that the water stress of our
tomato varieties was not induced, and therefore, moderate as compared with other studies,
or by the fact that oxidative stress regulation in Montserrat varieties may be less related to
total polyphenol content. Indeed, water stress activates a network of antioxidant defences
to prevent cellular damage caused by photo-oxidative stress [58]. In addition, decreased N
availability in N-poor+C treatment improves phenol content only in the water stress less
sensitive Pebroter varietal group. The oxidative stress due to reduced N supply seems to
affect phenol production in both traditional low yielding and high yielding varieties of the
Pebroter varietal group. Similar results in total polyphenol content due to low nutrient
availability have been found in other plant species [59,60].

4. Conclusions

In the present research, although none of the tested fertilizer tratments influenced the
productivity of the studied varieties, N-poor+C fertilization increased the tomato phenolic
contents in the Pebroter varieties. With respect to the Montserrat varieties and treatments
with higher N availability, indeed, the phenol contents of the Montserrat varieties were
not sensitive to the fertilization treatments and decreased with water stress. Moreover,
naringenin, the most abundant individual phenolic compound in the Pebroter varietal
group, was not present in the Montserrat varietal group. In summary, regarding total
phenolic compound synthesis, reduced N in organic fertilization increased the quality of
tomato in the Pebroter varietal group while it did not influence the yield in any of the tested
varieties. Reducing N in organic amendments may, therefore, be a promising approach for
increasing the polyphenolic antioxidant compounds in some varieties of tomatoes, which
may have benefits for human health.
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S2: The phenolic compounds identified in the tomato varieties, their neutral molecular formula, the
retention time, and the fragment used in the MS, Table S3: Polyphenol concentrations according to
fertilization and varieties.
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