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Abstract: Besides their main function for energy production in form of ATP in processes of oxidative
phosphorylation (OxPhos), mitochondria perform many other important cellular functions and
participate in various physiological processes that are congregated. For example, mitochondria are
considered to be one of the main sources of reactive oxygen species (ROS) and therefore they actively
participate in the regulation of cellular redox and ROS signaling. These organelles also play a crucial
role in Ca2+ signaling and homeostasis. The mitochondrial OxPhos and their cellular functions are
strongly cell/tissue specific and can be heterogeneous even within the same cell, due to the existence
of mitochondrial subpopulations with distinct functional and structural properties. However, the
interplay between different functions of mitochondria is not fully understood. The mitochondrial
functions may change as a response to the changes in the cellular metabolism (signaling in). On
the other hand, several factors and feedback signals from mitochondria may influence the entire
cell physiology (signaling out). Numerous interactions between mitochondria and the rest of cell,
various cytoskeletal proteins, endoplasmic reticulum (ER) and other cellular elements have been
demonstrated, and these interactions could actively participate in the regulation of mitochondrial and
cellular metabolism. This review highlights the important role of the interplay between mitochondrial
and entire cell physiology, including signaling from and to mitochondria.

Keywords: cellular metabolism; mitochondria; mitochondrial function/morphology; mitochondrial
interactions; redox state; ROS; calcium; signaling

1. Introduction

Mitochondria have been long time recognized as the powerhouse in various cells,
particularly in high-energy consuming organs such as the heart, oxidative muscles, brain
or liver. The energy production via oxidative phosphorylation (OxPhos) connects the
oxidation of fatty acids or/and glucose with ATP synthesis from ADP, which is required
for cell viability, survival and general cellular functions. In addition, mitochondria perform
numerous other necessary functions and support many cellular pathways, participating,
thus, in nearly all crucial metabolic processes. These organelles regulate cellular redox
states, ROS and Ca2+ signaling (both acting as second messengers), produce important
metabolites and are critically involved in apoptosis induction, autophagy and thermo-
regulations [1–7]. Mitochondria are the sites of steroid hormone and porphyrin synthesis,
the urea cycle, lipid and amino acids metabolism. They also play crucial roles in glucose
sensing and insulin regulation [8]. The interplay between different mitochondrial functions
in the cell, however, is not sufficiently investigated and can be strongly cell/tissue specific.
Therefore, several lines of evidence demonstrated a tight link between mitochondrial
functions and entire cellular metabolism. Moreover, mitochondria are able to monitor
their surrounding environment, including intracellular ATP, as well as O2, ROS, Ca2+

and the presence of growth factors [9,10]. The existence of micro-domains with restricted
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diffusion, functional enzyme coupling and channeling could result in strong metabolic and
mitochondrial heterogeneity [11,12]. Hence, each single mitochondrial environment can be
significantly different from that of other mitochondria, potentially causing region-specific
changes in the major mitochondrial properties and function.

In addition to their role in cellular bioenergetics, changes in the mitochondrial phys-
iology, permeability, morphology and swelling are critical in cell fate decisions and in-
jury [13,14]. The mitochondrial respiration coupled with the electron transfer through the
electron transport chain are a major source of reactive oxygen species (ROS) production
(see below). However, many open questions remain concerning the interplay between
different ROS types and between ROS have originated from different sources. A central role
of mitochondrial injury (with significant impairment of energy and cellular metabolism)
has been well established in various diseases, such as inherited diseases, heart failure,
ischemia-reperfusion injury, various myopathies, neurodegenerative diseases, diabetes,
obesity and aging [14–23]. Interest in mitochondria was greatly renewed after the discovery
of their important role in apoptosis induction due to the release of several pro-apoptotic
factors [1,3–5]. Nevertheless, several questions and concerns remain and certainly need fur-
ther investigation. This review summarizes and discusses previous studies on the crosstalk
between the mitochondrial and entire cell physiology.

2. Mitochondrial ROS

Depending on the conditions, a few percentages points of the oxygen consumed by
mitochondrial respiratory chain are reduced by electrons with the formation of superoxide
radical (ROS) [24–29]. ROS then can be converted to hydrogen peroxide [30–33] by mi-
tochondrial manganese superoxide dismutase (MnSOD), or by cytosolic/mitochondrial
Cu,Zn-type superoxide dismutase (Cu, Zn-SOD) [34–36]. H2O2 in turn can be scavenged
by peroxiredoxin 3 (Prx3) and glutaredoxin 2 (Grx2) [37–41], or by peroxisomal matrix
enzyme catalase. Mitochondria represent, therefore, a major source of ROS in the cells.
They themselves are also a very sensitive target for ROS with significant damaging ef-
fects. Mitochondria permanently produce ROS as a byproduct of respiratory chain transfer
electrons to oxygen and its incomplete reduction. The respiratory chain complexes I and
III (Figure 1) are considered the main producers of mitochondrial ROS in the form of
superoxide [42–44], and then to H2O2, which in turn can easily escape mitochondria and
be scavenged by the enzyme catalase in peroxisomes to water [45]. Hydrogen peroxide
produced from superoxide radical is recognized now as one of the most effective cellular
second messengers (such as Ca2+, see below) [46–49]. Mitochondrial ROS, particularly
under pathological conditions, can damage several cellular elements such as DNA (and
mitochondrial DNA), lipids of the biological membranes and various proteins/enzymes,
especially by the oxidation of essential –SH groups [50]. In addition, a toxic modification of
enzymes by ROS is the release of iron from Fe-S clusters. Oxidation of thiol groups thus
may play a role in signaling [51] or be toxic, which depends on the oxidation reversibility.
However, several lines of evidence also clearly demonstrate an important role of some (low)
ROS concentrations in cellular signaling under normal conditions [46–49,52–54]. There-
fore, mitochondria through ROS generation and redox-dependent signaling can control
the general cellular metabolism and entire cell physiology, affecting cell differentiation,
proliferation, survival and death (apoptosis) [10,24,54–58]. Importantly, dysregulation of
this signaling system can be associated with various diseases. An important controller of
mitochondrial superoxide generation rates is the mitochondrial inner membrane potential
(∆ψm). The uncouplers such as 2,4-dinitrophenol or FCCP and the uncoupling proteins
(UCPs) may decrease mitochondrial ROS production that may have protective (e.g., cardio-
protective) effects [29,59–62]. However, under some specific experimental conditions (ROS
derived from alpha-glycerophosphate-dehydrogenase, or by complex I in reverse electron
transferring), uncoupler FCCP may stimulate ROS production [63]. It is well known that
uncouplers (CCCP or FCCP) significantly increase the respiration rate in a rather narrow
range of concentration (1–5 µM) due to uncoupling, whereas at a higher concentration, they
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inhibit mitochondria. These effects can be cell/tissue specific. The mitophagy (removal of
defected mitochondria) is mostly based on the low ∆Ψm, and mitochondrial fission/fusion
can be considered important parts of mitochondrial quality control [64–67]. The fusion
allows mitochondrial matrix content exchange, whereas further fission produces normal
mitochondria, providing, therefore, a repair process.
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Figure 1. Interrelation between mitochondrial ROS, Ca2+ and cellular signaling. O.2—superoxide
radical; SOD—superoxide dismutase; UCPs—uncoupler proteins; mitoCa2+—mitochondrial Ca2+;
Cyt c—cytochrome c.

ROS-Induced ROS Release and Mitochondrial ROS Flashes

Mitochondrial OxPhos and active respiratory chain usually operate concurrently with
some ROS generation; however they can monitor their own elevated ROS—so, an interest-
ing phenomenon “ROS-induced ROS release” (RIRR) has been demonstrated in several
works [68–70]. Two modes of RIRR have been described, but in both, the ROS increase
and dynamics can be biphasic—(1) gradual mitoROS increase, (2) followed by mitoROS
flash [69,70]. MitoROS flash frequently occurs in parallel with mitochondrial depolarization
and Ca2+ sparks in the same mitochondrion [70]. Since the RIRR phenomenon has been
demonstrated under artificial conditions in isolated cells, physiological RIRR importance in
intact organs remains unknown. However, it has been proposed that the complex ROS-ROS
interactions and phenomenon of RIRR may be involved in the ROS signaling, as well as
participating in the cellular network of redox signaling. Additionally, Wang et al., using the
mitochondrial targeted superoxide probe, demonstrated the phenomenon of superoxide
flashes in individual mitochondria in cells (cardiomyocytes) [71–73]. In these studies of
mitochondrial ROS flashes in cardiac cells, however, caution must be taken because circu-
larly permuted yellow fluorescent protein (cpYFP) not only presumably detects superoxide
anion, but also changes in the cytosolic pH.

Since mitochondrial damage inhibits oxidative phosphorylation and increases ROS,
heterogeneity of injury would be a result of spatial mitochondrial heterogeneity and thus
heterogeneity of ATP and ROS production. Both local energy depletion and elevated ROS
generation are damaging for mitochondria of the particular cellular region, causing, in
turn, an increase in the extent of mitochondrial heterogeneity. ROS mito-flashes have
shown to be always linked to mitochondrial depolarization (drop of ∆ψm), and mitoCa2+

sparks in various cultured carcinoma cells [70]. It has been demonstrated that ROS re-
leased from one single mitochondrion can initiate a ROS flash and depolarization of the
same mitochondrion, or in the neighboring mitochondria. Using fluorescence imaging of
mitochondrial flavoproteins, redox state wave propagation was first observed in cardiomy-
ocytes under conditions of glucose deprivation [74]. However, despite numerous studies,
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the complex interrelationships between mitoROS flashes, mitoCa2+ sparks and ∆Ψm are
yet not fully understood. In particular, the interplay between ROS derived from different
sources (mitochondrial respiratory chain, NADPH oxidases or xanthine oxidase), as well
as the involvement of MPT, cellular and mitochondrial Ca2+ (mitoCa2+) in the mechanisms
of ROS flashes initiations are still poorly identified. Additionally, the exact sequences of
the events, such as ROS flashes, ∆Ψm dissipation, and mitoCa2+ sparks, are still unclear
due to technical problems and insufficient time resolutions, and have to be elucidated in
the future. Moreover, the physiological significance of mitoROS flashes and these cellular
waves is still not understood.

3. The Interplay between ROS and Ca2+ Signaling

Mitochondria actively participate in the cellular Ca2+ signaling (cellular second mes-
senger) and homeostasis [75–80]. These organelles are now implicated in the control of
many important aspects of cell physiology, such as calcium/ROS signaling under normal
conditions [81], as well as in pathology, e.g., in ischemia-reperfusion injury [14]. Mitochon-
dria also play central role in cellular Ca2+ [82] via the interplay between mitochondria,
ER and cytosol. Under physiological conditions, Ca2+, as important signaling ion, can
stimulate ATP synthesis, activating mitochondrial function via stimulation of various de-
hydrogenases, and thus activating mitochondrial and cellular energy metabolism [83–86].
Cytosolic Ca2+ levels then affect numerous other cell-signaling pathways. Ca2+ signaling
is a main player used by mitochondria to modulate their activity for specific cellular de-
mand. The structural and functional interactions between endoplasmic reticulum (ER)
and mitochondria are extremely important in the regulation of cellular metabolism and
functionality [87,88]. Ca2+ released from the ER can gain entry to the mitochondria, regu-
lating enzymes’ activities and therefore the entire mitochondrial physiology. Changes in
Ca2+ and mitochondria-ER signaling are associated with various stresses and pathologies
(neurodegeneration, cardiovascular, immune diseases, etc.). Damage of the mitochondria
and failure in OxPhos (ATP production) results in the disruption of Ca2+ signaling and
Ca2+ homeostasis, leading to ER stress. The disruption of Ca2+ homeostasis often occurs
concurrent with ROS production in response to various stresses, pointing to a strong link
between redox signaling and intracellular Ca2+ handling/Ca2+ signaling [89,90]. Small
mitochondria-ER contacts (at the micro-domain level) play important roles in cellular
physiology, lipid/ion transferring, cell membranes dynamics and cellular signaling [91].

In addition, mitochondrial Ca2+ overload play a key role in several pathologies [92–94].
Under normal conditions, transitions between open and closed states of the mitochondrial
permeability transition (MPT) pore operate to balanced/moderate release of mitochondrial
Ca2+. It has been shown that mitochondrial Ca2+ overload is associated with the MPT
pore opening, elevated ROS production, mitochondrial depolarization (∆Ψm loss), Ox-
Phos uncoupling from respiration, mitochondrial swelling and cytochrome c release, as
proapoptotic factor. The massive Ca2+ release from mitochondria results in cardiomyocytes
hyper-contracture and cell death. MPTP opening results in cell death via necrosis, al-
though whether the cell dies through apoptosis or necrosis depends on the ATP availability.
Figure 2 shows fluorescence confocal imaging of mitoCa2+ elevation in HL-1 cells during
photo-oxidative stress, observed by specific mitoCa2+ probe—Rhod-2. The application of
various pro-oxidants (H2O2, organic peroxides, etc.) initiates similar effects. However,
a complex interplay exists between ROS increase and increased mitoCa2+. While ROS
increases the mitoCa2+ level, mitochondrial Ca2+overload may lead to elevated ROS gen-
eration and MPT pore opening [94]. Both effects can be prevented either by antioxidants,
or by Ca2+ chelating [95]. It was also suggested that mitoROS, ATP and mitoCa2+ create a
triangular system in which each may regulate the others [90]. However, due to the complex
interrelationship between diminished cellular ATP and elevated mitoROS and Ca2+, the
mechanisms and exact consequences of events are not completely clear. They can differ,
depending on the physiological or pathological cellular status. Therefore, elucidating the
molecular adjustments controlling this multifaceted triangle will continue to be a challenge
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in future. In some pathologies, the MPT pore opening is caused by high mitoCa2+ and other
stimuli, including oxidants and/or depletion of adenine nucleotides [14]. These effects can
be inhibited by acidic pH, antioxidants, e.g., reduced glutathione (GSH) and others or also
by cyclosporin A. The link between Ca2+ entry and oxidative stress has been demonstrated
as well in Parkinson’s disease, with a loss of small cluster of neurons (dopaminergic neu-
rons) [96]. Additionally, mitoCa2+ overload, mitoCa2+exchange remodeling and metabolic
dysfunction were associated with neuronal loss in Alzheimer’s disease progression [97].
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Figure 2. Representative images showing the increase in mitochondrial Ca2+ in photo-oxidative stress.
(A) Mitochondria in HL-1 cells visualized with MitoTracker Green with low mitoCa2+. (B) Increased
mitoCa2+, in these cells, during photo-oxidation (in time) can be detected by mitoCa2+—specific
fluorescent probe Rhod-2 (yellow color in merge image (B). Scale bar 20 µm.

4. ROS, Ca2+ and Various Kinases Signaling

The redox signaling plays a crucial role in the entire cell physiology. ROS can activate
various protein kinases, such as PKA, ERK, PI3K, Akt, PKC, JNK, p38 [98]. It has also
been demonstrated that the expression of wild-type or oncogenic RAF prevented excessive
ROS production, mitoCa2+ elevation [95]. Protein kinase A is involved in the regulation of
the NADH-ubiquinone oxidoreductase activity of complex I associated with reduced ROS
production [99]. In contrast, increased mitochondrial ROS generation has been found for
p66Shc protein [100]. H2O2 produced by p66Shc, localized in the mitochondria, oxidizes
cytochrome c and activates MPT pore opening, promoting the induction of apoptosis.
Taken together, these observations demonstrate that crucial mitochondrial pathways are a
subject for the regulation via various cellular signaling mechanisms.

Mitochondria are considered a major source of ROS (see above). On the other hand,
ROS production rates can be regulated by several upstream components (e.g., by small
G protein Rac [101]). Intracellular signaling may regulate mitochondrial ROS generation
as has been shown for several kinases, such as RAF, MKK6 or PKA [102]. A link between
active RAF and mitoROS and mitoCa2+ changes have been recognized to be the events
that precede the beginning of cell death by apoptotic mechanisms [95]. Therefore, RAF-
MEK-ERK cell cascade activation/inhibition as well as AKT and Bcl-2 proteins may be
involved in the elevated or inhibited mitoROS production. This has been shown also by
applying siRNA or small molecular weight inhibitors, such as - LY294002, UO126 and/or
BAY43-9006 [95].

In addition, an important role of the protein kinase C (PKC) [103] has been demon-
strated through pro-apoptotic protein p66Shc, which translates oxidative damage into cell
death by acting as a ROS, producer, in form of H2O2 [100]. The participation of several PKC
isoforms during redox stress, with differences in their major biochemical properties, shows
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very complex patterns of general PKC signaling [103]. The activation of NADPH-oxidase
and protein kinase C (PKC) under hyperglycemia and diabetic complications is associated
with ROS production [104]. The oxidative stress, due to imbalance between the antiox-
idant system and ROS production in hyperglycemia (diabetes and its complications) is
associated with the activation of PKC isoforms and the accumulation of advanced glycation
end products [104,105]. Mitogen-activated protein kinases, including ETK, p38, and JNK
(stress-activated protein kinase), are present downstream of the Src–PKC signaling system.
This involves redox-sensitive transcription factors activation via PKC and tyrosine kinase.
The reduced glutathione level steatotic liver is associated with increased ROS (oxidative
stress), ER-cycling damage and the activation of JNK [105]. In addition, it has been shown
that the hypoxia induces atrial fibrillation through the JNK/ROS pathway [106]. ROS or
reactive nitrogen species activate JNK, which plays a role in apoptotic and/or necrotic cell
death [107] (also after tumor necrosis factor treatment).

Mitochondria are well fitted to meet both the signaling and metabolic/bioenergetic
cell requirements. Mitochondrial biogenesis and dynamics can be strongly linked to
the ability of mitochondria to sense cellular energy status. One of the main enzymes
for low-energy sensing in the cell is AMP activated protein kinase (AMPK) [108,109].
In muscles challenged with increased workload (e.g., training, endurance exercise), or
various pathological circumstances (mitochondrial diseases, genetic defects, or defects in
mitochondrial respiratory complexes), the proliferation of mitochondria acts as an adaptive
response to decreased cellular energy levels. In other cells (e.g., neurons), energy sensing
mechanisms may also control the directorial transport of mitochondria to the cellular
regions of greater energy demands. Growing evidence demonstrates that AMPK can be
also a critical controller of mitochondrial biogenesis [109,110].

5. Imaging Analysis of the Changes in Mitochondrial Redox State

Direct imaging of mitochondrial functional state in situ (in permeabilized muscle or
cardiac fibers) and in intact cells is able to analyze mitochondrial NAD(P)H (two photon)
and mitochondrial flavoprotein (confocal) auto-fluorescence. Both of these fluorescence
emissions can be used for the sensitive assessment of the region-specific mitochondrial
redox state [11,111]. The fluorescent flavoproteins and NAD(P)H intensities demonstrate
inverse fluorescence signal behavior. Mitochondrial flavoproteins (the mitochondrial
membrane integral components) are fluorescent only in an oxidized state and NAD(P)H
oppositely only in a reduced state. This gives the possibility to continuously monitor
changes in mitochondrial redox state upon additions of substrates, ADP, uncouplers or
inhibitors. Representative Figure 3 demonstrates flavoproteins (Flavo) and NAD(P)H
fluorescence (two photon excitation) in permeabilized cardiac muscle fibers (mitochondria
in situ) and intact hepatocytes. In permeabilized cardiac muscle fibers (Figure 3), a transition
from oxidized to strong reduced state of mitochondria can be seen after the addition of
mitochondrial substrate, glutamate (Glu). In intact liver cells (Figure 3), a transition from
some intermedium redox state to a significantly more oxidized state is visible after the
activation of respiration by the addition of mitochondrial uncoupler 2,4-dinitrophenol
(DNP). The additions of other mitochondrial substrates (e.g., octanoyl-L-carnitine), ADP
and KCN complex IV inhibitor resulted in strong changes in the mitochondrial redox system
visible from the changes in these two fluorescence emissions, and it can be quantitatively
estimated (not shown). The quantification does not depend on the material amount since all
changes can be calculated in percentages between fully reduced (KCN) and fully oxidized
states (no substrates, saturated air oxygen).

This imaging approach established also the mitochondrial heterogeneity phenomenon [11],
with observation of the mitochondrial subpopulations’ different properties. For exam-
ple, a much higher oxidative state of subsarcolemmal as compared with intermyofibrillar
mitochondria was observed [108]. The subsarcolemmal mitochondrial flavoprotein autoflu-
orescence signal in skeletal muscle fibers (M. rat quadriceps) was found to be four times
higher than intermyofibrillar auotofluorescence. The identification of membrane potential
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and mitROS revealed also pathologically altered mitochondrial heterogeneity (e.g., after
cold ischemia-reperfusion and transplantation of rat hearts) [109].
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The mitochondrial imaging, therefore, permits the assessment of mitochondrial defects
topology, providing information about molecular mechanisms of various pathologies.
Similarly, flavoprotein redox states have been demonstrated in intact cardiomyocytes under
conditions of substrate (glucose) deprivation [76]. This included metabolic transients,
well-coordinated redox transitions, and wave-like redox propagation within one cell and
even between cells. The mechanism may involve some diffusible cytosolic signaling
molecules, endogenous substrates, and oxygen. An imaging approach therefore permits
the analysis of dynamic mitochondrial and cellular redox-state behavior. Importantly,
flavoproteins and NADH fluorescence were fully co-localized with MitoTracker Green,
a well-established fluorescent marker for mitochondria [110,111]. Although Mitotracker
and flavoproteins have the same excitation/emission spectra, very big difference in the
fluorescence signal (very low flavoproteins signal) allowed discriminating them. Moreover,
flavoproteins fluorescence is auto-fluorescence of the integral mitochondrial components,
whereas MitoTracker Green can be added later. So, the ratio of the intensities of fluorescent
flavoproteins and NAD(P)H can be particularly useful, because it is non-sensitive to
any other fluorescence types, thereby eliminating the possible side effects of artificial
fluorescent probes.

6. Adaptive Changes of Mitochondrial Function/Morphology as Responses to the
Changes in Surrounding Cytosol Composition

Numerous studies have shown that mitochondria and mitochondrial function may
change as an adaptation response to condition/environmental changes.

Both mitochondria and the energy transfer networks may deteriorate under pathologi-
cal conditions, such as decreased cellular ATP and increased inorganic phosphate levels.
In contrast, in some cells, such as human carcinoma cells, mitochondrial function can be
significantly improved and respiration (OxPhos) may be increased after a large decrease
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in the intracellular ATP level. This was demonstrated for cells treated with 2-deoxy-D-
glucose (2-DG). This treatment inhibits the key enzyme, hexokinase, which is the first
step of the glycolysis. This treatment leads to cellular energy depletion (~50% decrease in
cellular ATP level was observed). Very recently, it has been shown that 2-DG treatment
and ATP depletion resulted in significantly enhanced mitochondrial respiration and inner
membrane potential, also with changes in mitochondrial morphology in the direction
of more network organization [112]. The protein expression analysis demonstrated that
2-DG treatment activated AMPK (elevated pAMPK/AMPK ratio), increased mitochondrial
fusion proteins (mitofusins 1 and 2) and decreased mitochondrial fission proteins (Drp1).
This study therefore suggests a strong link between respiratory function and structural
mitochondrial organization as a response to the energy status of the cell. The authors
therefore proposed that the mitochondrial network functionality can be higher than the
disconnected mitochondrial functionality [112].

7. Conclusions

In addition to the production of energy in the form of ATP, mitochondria play a
crucial role in the entire cell physiology through their participation in many metabolic and
signaling pathways. Mitochondria are able to monitor their surrounding environment,
including intracellular ATP, oxygen, ROS, Ca2+, growth factors, etc. These organelles may
change their properties in response to the changes in the cellular metabolism (signaling in).
On the other hand, several factors and feedback signals from mitochondria may influence
the entire cell physiology (signaling out). An interaction of mitochondria with cytoplasmic
elements plays a causative role in the regulation of cellular metabolism and cell death. The
many lines of evidence demonstrate the existence of a strong and undoubted interplay
between the mitochondrial and entire cell physiology.
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