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Abstract: Ascorbic acid, as a one of the basic exogenous vitamins, occurs in the body in the form
of ascorbate, known for its strong antioxidant and anti-inflammatory properties. The presented
review shows not only the importance of ascorbate as a free radical scavenger but also summarizes its
antioxidant action based on other mechanisms, including the activation of intracellular antioxidant
systems and its effect on the NFκB/TNFα pathway and apoptosis. Ascorbate interacts with small-
molecule antioxidants, including tocopherol, glutathione, and thioredoxin; it can also stimulate
biosynthesis and the activation of antioxidant enzymes, such as superoxide dismutase, catalase, or
glutathione peroxidase. Moreover, ascorbate promotes the activity of transcription factors (Nrf2,
Ref-1, AP-1), which enables the expression of genes encoding antioxidant proteins. Additionally,
it supports the action of other exogenous antioxidants, mainly polyphenols. In this regard, both
DNA, proteins, and lipids are protected against oxidation, leading to an inflammatory reaction and
even cell death. Although ascorbate has strong antioxidant properties, it can also have pro-oxidant
effects in the presence of free transition metals. However, its role in the prevention of DNA mutation,
inflammation, and cell apoptosis, especially in relation to cancer cells, is controversial.

Keywords: ascorbic acid; ROS scavenging; antioxidant enzymes; Nrf2; NFκB; DNA reparation;
intracellular signalization

1. Introduction

Ascorbic acid, commonly known as vitamin C, is one of the basic and best-known
compounds necessary for the proper functioning of the human body. It was described and
isolated for the first time in 1928 by the Hungarian biochemist Albert Szent-Györgyi, who
was awarded the Nobel Prize in 1937. The name ‘ascorbic acid’ refers to scurvy (scorbutus),
as the deficiency of this compound was initially associated solely with the development of
this disease [1].

Ascorbic acid is an organic compound belonging to the group of unsaturated polyhy-
droxy alcohols. It is a water-soluble ketolactone, whose center is formed by a five-membered
carbon ring (Figure 1). Ascorbic acid has strong reducing properties, resulting from the
presence of double bonds at the C2 and C3 carbons, as well as four hydroxyl groups in
positions C2, C3, C5, and C6. Moreover, due to the proximity of the hydroxyl and carbonyl
groups, ascorbic acid is an ideal hydrogen or electron donor, which makes it the cofactor of
many enzymatic reactions in living organism [2].
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Figure 1. Chemical structure of ascorbic acid. The marked carbon atoms are important for the anti-
oxidant properties: the carbon atoms with hydroxyl group in positions 2, 3, 5, and 6; and double 
bonds between carbon atoms in positions 2 and 3. 

2. Bioavailability and Main Functions 
In most mammals, ascorbic acid can be produced from glucose in a multi-step path-

way; however, in humans, its synthesis is not possible due to the lack of L-gulonolactone 
oxidase. Therefore, ascorbic acid must be supplied in the diet [3]. It is assumed that the 
daily requirement for ascorbic acid intake is different for women and men, and amounts 
to 75 mg and 90 mg, respectively [4]. Common opinion regards citrus as the main and 
most abundant source of ascorbic acid; however, analytical studies show a number of fruit 
and vegetables, as well as meat, as the foods from which the human body can derive this 
compound (Table 1) [5–7]. 

Table 1. The amount of ascorbic acid in basic food products with the greatest levels [8–11]. 

Food Products Amount [mg]懒Per 100 g 
plant origin 

kakadu plum 5300 
acerola cherries 1600–1700 

wild rose 250–800 
blackcurrant 150–300 

guava 230 
peppers 125–200 
brussels 65–145 
broccoli 65–100 

grapefruit 30–70 
pomelo 61 
lemon 40–60 
orange 50 

lime 29 
animal origin 

liver 22–30 
cod 2 

trout 1 
cow’s milk 1 

Under physiological conditions, ascorbic acid is ionized to ascorbate anion, which, 
after entering the digestive tract as a nutrient, is absorbed from the lumen of the intes-
tine—mainly by enterocytes—and circulates with the blood throughout the body, so it can 
be taken up by all cells [12]. Another way of introducing ascorbate into the body is through 
its transdermal application [13]. Moreover, it can be reabsorbed by the cells of the renal 
tubular epithelium into the blood filtered by the kidneys [14]. The physiological concen-
tration of ascorbate in the blood is 10–100 µM [4]. As ascorbate is soluble in water, its 
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2. Bioavailability and Main Functions

In most mammals, ascorbic acid can be produced from glucose in a multi-step pathway;
however, in humans, its synthesis is not possible due to the lack of L-gulonolactone oxidase.
Therefore, ascorbic acid must be supplied in the diet [3]. It is assumed that the daily
requirement for ascorbic acid intake is different for women and men, and amounts to
75 mg and 90 mg, respectively [4]. Common opinion regards citrus as the main and most
abundant source of ascorbic acid; however, analytical studies show a number of fruit and
vegetables, as well as meat, as the foods from which the human body can derive this
compound (Table 1) [5–7].

Table 1. The amount of ascorbic acid in basic food products with the greatest levels [8–11].

Food Products Amount [mg]
Per 100 g

Plant origin

Kakadu plum 5300
Acerola cherries 1600–1700

Wild rose 250–800
Blackcurrant 150–300

Guava 230
Peppers 125–200
Brussels 65–145
Broccoli 65–100

Grapefruit 30–70
Pomelo 61
Lemon 40–60
Orange 50

Lime 29

Animal origin

Liver 22–30
Cod 2

Trout 1
Cow’s milk 1

Under physiological conditions, ascorbic acid is ionized to ascorbate anion, which,
after entering the digestive tract as a nutrient, is absorbed from the lumen of the intestine—
mainly by enterocytes—and circulates with the blood throughout the body, so it can be
taken up by all cells [12]. Another way of introducing ascorbate into the body is through its
transdermal application [13]. Moreover, it can be reabsorbed by the cells of the renal tubular
epithelium into the blood filtered by the kidneys [14]. The physiological concentration
of ascorbate in the blood is 10–100 µM [4]. As ascorbate is soluble in water, its transfer
through lipid plasma membrane is hampered. The simple diffusion of ascorbate plays
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only a small role in its transport across membranes and is thus assisted by the specific
transport systems. The best known mechanisms of ascorbate transport are: (I) diffusion
through transmembrane channels; (II) facilitated diffusion through exocytosis in secretory
vesicles; (III) transmission by glucose-sensitive transporters; and (IV) secondary active
transport through the sodium-dependent transporters SVCT1/2 [15,16]. Therefore, the
bioavailability of ascorbate to all the cellular processes where it is needed is high, provided
that a varied diet is consumed.

The presented structure of ascorbic acid (Figure 1) is the reason for its wide range
of biological activities. It is currently known that ascorbate is necessary for the proper
functioning of the human body, because it is responsible for numerous processes, including
the strengthening and sealing of blood vessels, the regulation of microbial absorption
by leukocytes, and lowering the level of cholesterol, as well as acceleration of wound-
healing [17,18]. Other important functions of the compound include the regulation of
collagen production, slowing down the aging process of the skin, and lowering blood
pressure [19,20]. The participation of ascorbate in the aforementioned processes is partially
based on its anti-antioxidant and anti-inflammatory properties. A deficiency of ascorbate
is associated with numerous disorders, such as general weakness, fatigue, muscle and
joint pain, a lack of appetite lowering the immunity, the tendency to bruise, and swollen
and bleeding gums. Moreover, chronic ascorbate deficiency may also contribute to the
development of neoplastic changes and atherosclerosis [21,22]. On the other hand, excessive
supplementation of this compound can also be unfavorable. It has been reported that
ascorbic acid overdosage causes gastrointestinal disturbances, including abdominal pain,
nausea, vomiting and diarrhea, and skin rash [23]. Moreover, very high doses of ascorbic
acid (>800 mg) may also contribute to the acidification of the urine and, consequently, to
the formation of kidney stones [24]. However, ascorbic acid is water-soluble, which means
that it is easily excreted with sweat and urine; hence, it is not easy to overdose on this
broad-spectrum compound.

3. Antioxidant Properties
3.1. Suppression of Generation of Free Radicals

Ascorbic acid is one of the basic low-molecular antioxidants functioning in the human
body. It takes part in the regulation of the levels of reactive oxygen species (ROS) and the
effectiveness of other antioxidants. Ascorbic acid regulates the level of ROS as early as
at the stage of their formation. The main sources of ROS are the mitochondrial respira-
tory chain and specific enzymes, such as NADPH oxidases (NOXs) or xanthine oxidase
(XO) [25]. Ascorbic acid (100 µM) has been shown to modify both of the above systems
(Figure 2). XO is an enzyme that generates ROS through the oxidation of hypoxanthine to
xanthine and then to uric acid. Both of these reactions are necessary for the functioning
of the organism, but the result of their occurrence are hydrogen peroxide and the gener-
ation of the superoxide radical anion [26]. It is known that XO can also directly oxidize
ascorbate [27]; however, ascorbate supplementation significantly protects the organism
against XO hyperactivity [28]. Moreover, the latest studies show that due to the possibility
of continuous supplementation with ascorbate, the resulting inhibition of XO activity in
plasma significantly contributes to the improvement in gout treatment [29–32]. On the
other hand, ascorbate has no effect on the activity of XO under physiological conditions,
as found with skin cells (fibroblasts and keratinocytes). However, in cells under stress
caused by, e.g., UV radiation or hydrogen peroxide, treatment with ascorbate (100 µM)
inhibited XO hyperactivation [33,34]. Moreover, such decrease in XO activity induced
by ascorbate may be useful in preventing or reducing reperfusion injuries also in stim-
ulated neutrophils (6 µM of ascorbate) [35] and delay the progression of hyperuricemic
nephropathy (10 mg/kg/day of ascorbate) [32].
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zyme [33,34]. Other data show that, due to the fact that ascorbic acid can inhibit NOX in 
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Mitochondria also play an important function in the action of ascorbate antioxidant. 
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matrix and in the cytoplasm [41]. On the other hand, ascorbate (5 mM) favors sealing the 
mitochondrial electron transport chain [42] and reduces the superoxide radical anion gen-
eration, especially in cells with electron transport chain deficiencies [43]. However, the 
described effect raises concerns as to whether the influence of ascorbate on mitochondrial 
processes does not reduce the elimination of damaged cells by apoptosis, thus promoting 
carcinogenesis [44]. 
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of cells/biological fluids. In both cases, ROS should be counterbalanced by an effective 
natural antioxidant system. A disruption of this balance leads to oxidative stress and, as a 
consequence, the possibility of ROS interactions with the endogenous components of the 
organism, such as nucleic acids, proteins, lipids, and small molecules, thus causing irre-
versible oxidative damage to cells and their components. A living cell’s antioxidant 
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NOXs is a group of enzymes widespread in cells transmembrane that, similarly to XO,
generate the superoxide radical anion or hydrogen peroxide as the signaling molecules,
whose controlled levels enable the proper functioning of cells [36]. However, NOX hy-
peractivity inevitably leads to oxidative stress, which can be prevented by ascorbate [37].
As described in the case of XO in skin cells, NOX activity is also not affected by ascor-
bate (100 µM) in healthy cells. Only strong stress inducers, such as hydrogen peroxide
or UVB irradiation, activate NOX strongly enough for ascorbate to start inhibiting the
enzyme [33,34]. Other data show that, due to the fact that ascorbic acid can inhibit NOX in
microvascular endothelial cells, the vitamin may reduce the development of sepsis [38,39].
However, ascorbate (100 µM) also shows the activating properties of NOX in embryonic
stem cells, where cardiomyogenesis increases as a result of NOX-induced enhanced levels
of ROS [40].

Mitochondria also play an important function in the action of ascorbate antioxidant.
On the one hand, due to the activity of Complexes II and III, mitochondria regenerate
ascorbate from its oxidized form, thus maintaining redox status both in the mitochondrial
matrix and in the cytoplasm [41]. On the other hand, ascorbate (5 mM) favors sealing
the mitochondrial electron transport chain [42] and reduces the superoxide radical anion
generation, especially in cells with electron transport chain deficiencies [43]. However, the
described effect raises concerns as to whether the influence of ascorbate on mitochondrial
processes does not reduce the elimination of damaged cells by apoptosis, thus promoting
carcinogenesis [44].

3.2. ROS Scavenging by Ascorbic Acid

Every living organism constantly generates reactive oxygen and nitrogen species
(ROS/RNS) that participate in its physiological activities. However, their level increases
significantly in pathological conditions as a result of dysfunction of pro-oxidative systems
of cells/biological fluids. In both cases, ROS should be counterbalanced by an effective
natural antioxidant system. A disruption of this balance leads to oxidative stress and, as
a consequence, the possibility of ROS interactions with the endogenous components of
the organism, such as nucleic acids, proteins, lipids, and small molecules, thus causing
irreversible oxidative damage to cells and their components. A living cell’s antioxidant
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system has three lines of defense: (I) free radical scavenging; (II) biosynthesis and activation
of antioxidant enzymes; and (III) the repair of oxidative damage. Ascorbate has been shown
to be a molecule involved in all these stages (Figure 2). Its antioxidant properties as a
scavenger of free radicals are related to its ability to form a stabilized radical (Figure 3). This
allows ascorbate to react with more reactive molecules, including the hydroxyl radical or
the superoxide radical anion, which prevents their interaction with biomolecules important
for proper cell functioning [45]. On the other hand, the strong antioxidant properties of
ascorbate can induce the transformation of Fe3 + into Fe2 +. However, the ascorbate–Fe2 +

chelate may catalyze ROS generation via Fenton’s reaction [45]. Hence, ascorbate is an
antioxidant; however, the products of its transformation show pro-oxidant properties in the
presence of oxygen [46,47]. Additionally, the oxidation of ascorbate results in the formation
of the ascorbate radical (Asc•−) and a high flux of H2O2 [48]. Therefore, one should be
very careful in formulating hypotheses and pay attention to whether the results obtained
in the experiments come directly from ascorbate or possibly from reactive oxygen species
generated during cell supplementation.
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3.3. Ascorbic Acid Interaction with the Cellular Antioxidant System

To prevent oxidative stress or reduce its destructive effect on cellular compartments,
ascorbate not only suppresses the generation of free radicals or directly reduces their
amounts, but it also significantly stimulates the cellular antioxidant system at the level of
low molecular weight antioxidants, as well as by acting on antioxidant enzymes (Figure 2).

The first line of the natural cell protection against the uncontrolled overproduction of
ROS is created by low molecular weight antioxidants, such as glutathione (GSH), thiore-
doxin (Trx), coenzyme Q, α-tocopherol, and retinol. Ascorbic acid also belongs to this
group, but its antioxidant effect is limited to ROS elimination as well as the interaction with
the other molecules mentioned earlier. The small molecules in the center of the oxidation–
reduction reaction cycle also include tocopherol and GSH/Trx (Figure 4). As some of
these compounds (GSH/Trx) are not soluble in lipids, they can act only in cytoplasm
and are not capable of protecting the cell membrane against ROS. Furthermore, ascor-
bate is a hydrophilic molecule; however, it can react with tocopherol and its derivatives
over the lipid/water interface. Under oxidative conditions, tocopherol neutralizes free
radicals, which attack cell membrane components, and itself becomes an oxidized form
(tocopheroxyl radical). Ascorbate from cytoplasm restores the reduced form of tocopherol
in the lipid fraction, owing to which it can further protect cell membranes. This reaction
leads to the oxidation of ascorbate to the ascorbyl radical, which is reduced in the cyto-
plasm by the thiol group of GSH or Trx [49–51]. In addition, tocopherol reduced by ascorbic
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acid can interact with lipophilic retinol and control its reduced pool [52,53], which allows
the maintenance of the continuity of the membranes. Another lipophilic compound, i.e.,
coenzyme Q, which interacts with the tocopheroxyl radical, regenerating its antioxidant
form, can also participate in these cycles [54]. Moreover, significant data suggest that
the antioxidant properties of coenzyme Q not only accompany but also complement the
attributes of ascorbic acid [55–58]. However, so far it has not been possible to accurately
describe their relationship.
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The described reduction/oxidation cycles of low molecular weight antioxidants can
also be modified by the effect of ascorbate on the activity of enzymes involved in these
reactions. So far, numerous experiments have shown that ascorbic acid can influence the
GSH-based action of enzymes, which prevents disturbances in the GSH-based system
induced by chemical factors or the development of diseases [59,60]. However, there are
two patterns of action of this compound: (I) ascorbic acid significantly increases the level
of GSH without affecting or even reducing the activity of enzymes associated with this
molecule (glutathione peroxidase, GSH-Px; glutathione reductase, GSSG-R) and (II) the
action of ascorbic acid is primarily based on inducing GSH-Px and GSSG-R activity. It has
been found that hepatoprotective and gastroprotective effects of ascorbate are mainly based
on the activation of GSH-Px and GSSG-R [61,62], while in the case of UV-irradiated skin
cells, ascorbic acid leads to GSH-Px and GSSG-R down-regulation with a simultaneous
increase in the GSH level [33,34]. On the other hand, the antioxidant effect of ascorbate
(14–47 mM) is strong enough to replace the GSH-based system, observed as a decrease in
GSH-Px activity and the GSH level in bovine semen [63].

Another important element of the maintenance of redox balance in cells is Trx reductase
(TrxR) activity. So far it has been widely shown that the oxidized form of ascorbate activates
TrxR, resulting in the restoration of the reduced form of ascorbate [18]. Additionally, it
has been noted that the induction of TrxR activity by ascorbate is accompanied by the
stimulation of the GSH-based antioxidant system [64]. In skin cells, ascorbic acid (100 µM)
is capable of enhancing both the Trx level and TrxR activity under physiologic conditions;
it can also prevent UV-induced lowering of these parameters [33]. Moreover, ascorbic
acid also affects inflammasome functioning through the stimulation of the thioredoxin-
interacting protein (TXNIP), thus reducing ROS production and the expression of pro-
inflammatory proteins (interleukins 1β, 18 and caspase-1) in human macrophages [65]. On
the other hand, the effect of ascorbic acid on TrxR activity may be a promising tool in cancer
therapies focused on TrxR hyperactivity [66].
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Ascorbic acid also stimulates the antioxidant system by affecting the activity of other
antioxidant enzymes. An example of such an enzyme is superoxide dismutase (Cu, Zn-SOD;
SOD), responsible for the conversion of the superoxide radical anion to the less cytotoxic
hydrogen peroxide. There are no conclusive data concerning the effect of ascorbic acid on
SOD activity in cells under physiologic conditions. However, a series of data points to an
essential function of this vitamin on the SOD activity under oxidative stress. In all cases,
regardless of whether the oxidative stress was caused by heavy metals, UV radiation, brain
damage, or depression, supplementation with ascorbate (0.1–1 mM, 60–200 mg/kg/day)
significantly increased the activity of SOD in in vitro cultured cells, as well as in animal
plasma [33,34,59,67–69]. As a result, not only does this lead to a lowering of the level of the
superoxide radical anion but it also protects lipids against oxidation observed as a decreased
level of products of lipid peroxidation, including malondialdehyde (MDA) [33,34,68]. On
the other hand, ascorbic acid (10–50µM) in SOD-depleted cells also reduces the superoxide
radical anion level, thus preventing oxidative stress [70,71]. However, other studies indicate
that oral ascorbic acid supplementation (0.2–1 g/day) does not significantly affect the
superoxide dismutase activity in human plasma [72].

The hydrogen peroxide formed in the cells as a result of the SOD-catalyzed reaction is
decomposed into oxygen and water by another antioxidant enzyme, i.e., catalase (CAT).
Ascorbate influences the activity of this enzyme in various ways, depending on the type
of cells. In the case of plant cells, high concentrations of ascorbic acid, constituting the
signal pointing to a high antioxidant potential of the cell, reduce catalase activity and cause
an increase in the level of hydrogen peroxide [73], allowing the molecule to perform the
signaling function. A similar effect of ascorbate in the case of CAT activity is also observed
in rapidly proliferating mammalian cells, especially cancer cells, e.g., gastric cancer cells,
glioblastoma, and carcinoma cells [74,75]. However, in the case of non-neoplastic cells,
such as keratinocytes, ascorbic acid (100 µM) significantly enhances CAT activity, thereby
increasing the antioxidant potential of these cells, which is important due to the peripheral
location of keratinocytes in the skin [33]. In the same experiment, it has been shown that
following UV-induced oxidative stress, ascorbate affects catalase activity in different skin
cells in various ways. In UV-irradiated keratinocytes, ascorbic acid stimulates CAT activity
and protects cells against UV-induced hydrogen peroxide overexpression, while this effect
is not observed in UV-irradiated skin fibroblasts [33].

3.4. Effect of Ascorbic Acid on Cytoprotective Gene Transcription

Another aspect of the action of ascorbic acid as an antioxidant is its effect on gene
expression, resulting in the biosynthesis of antioxidant proteins. Among the most important
transcriptional factors involved in cellular antioxidant response are Nrf2 (nuclear factor,
erythroid 2-like 2), Ref-1 (redox effector factor 1), and AP-1 (activator protein 1) (Figure 2).

Nrf2 is a protein common in the cytoplasm regardless of the oxidation–reduction
conditions. Under physiological conditions, it is attached to its inhibitor, i.e., Keap1, which
under oxidative conditions changes conformation and dissociates from Nrf2. The free
form of Nrf2 transfers to the nucleus, where it heterodimerizes with sMaf protein. The
created complex is capable of binding to the DNA in a sequence-specific manner, i.e.,
to the antioxidant response element (ARE), and starts the biosynthesis of antioxidant
proteins [76–78]. Ascorbate (2.9–224.5 mg/kg/day) is known as an activator of the Nrf2
factor, as well as the whole Keap1/Nrf2/ARE pathway, and its deficiency leads to impaired
Nrf2 action resulting in inflammation and apoptosis [79,80]. It is especially pronounced
in cells under chemically or physically induced oxidative stress [33,81]. That is the most
important in the case of cells that are constantly exposed to the harmful stressors, such
as hepatocytes and keratinocytes [33,82,83]. On the one hand, in keratinocytes, ascorbate
(100 µM) reduces the level of Nrf2 inhibitor, i.e., Keap1 protein, and increases free Nrf2
expression, as well as its activators, including p62 and KAP1, on the other [33,83]. At
the same time, ascorbate (1 mM) favors Keap1 conformational changes induced by other
antioxidants, such as polyphenols, which additionally stimulates Nrf2 dissociation [84].
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In hepatocytes, Nrf2 activation by ascorbic acid (1–10 µM) results in the expression of
antioxidant enzymes observed as a reduced level of lipid hydroperoxides [82]. On the other
hand, some data indicate that a high ascorbic acid (1 mM) concentration may lead to a
disturbed Keap1/Nrf2/ARE pathway activation [85]. However, in accordance with the
dual role of Nrf2 in cancers, its activation by ascorbate becomes an ambiguous and possibly
a dangerous outcome [86,87].

The activities of Ref-1 and AP-1 factors are closely related to each other. Ref-1 is a
Trx-dependent endonuclease that facilitates AP-1 DNA-binding activity [88], while AP-1 is
a heterodimer composed of proteins belonging to the c-Fos, c-Jun, ATF, and Maf families
and manifests transcriptional activity through the regulation of gene expression in response
to a variety of stimuli, including cytokines, growth factors, and oxidative stress [89]. Only
oxidized ascorbate (1 µM) indirectly affects Ref-1 activity, in accordance with the decrease
in Trx levels [64]. In the case of AP-1 ascorbic acid, it has been recognized as a molecule that
mutes ascorbate action in epidermal keratinocytes, thus preventing these cells from staying
alive when their DNA is oxidatively modified, which would pose a threat consisting of
the formation of cancer [90]. Moreover, in keratinocytes exposed to UV radiation, where
AP-1 should be activated, supplementation with ascorbic acid induces reduced levels of the
active positive component, i.e., c-Jun, and increases the levels of fra-1 messenger, which is
an AP-1 inhibitor [91]. On the other hand, the similar silencing of AP-1 activity by ascorbate
(200 µM) is observed in respiratory epithelial cells, resulting in reduced levels of signaling
molecules, such as pro-inflammatory chemokines [92].

4. Ascorbic Acid and Oxidative Modifications
4.1. Oxidative Damage Repair

One of the most dangerous types of damage in cells occurring under oxidative stress
are oxidative DNA modifications, including single-strand breaks and oxidative base dam-
age with 8-oxoguanine (8-oxoG) formation [93]. DNA polymerase β is involved in the
repair of both of these accumulated damages [94]. There are no clear data on how ascorbate
affects the activity of DNA polymerases; however, it has been found that ascorbate can
directly reduce DNA mutations induced by H2O2, including 8-oxoG [95], as well as DNA
strand break levels [96] (Figure 2). On the other hand, ascorbate (100 µM) enhances the
activity of TET (ten eleven translocation) dioxygenases in the oxidation of 5-methylcytosine
in a various cell types [97,98]. Hence, as a result of the action of ascorbate, the silencing
mechanism of gene expression induced by methylation is canceled out. As a result of this
ascorbate (5 mM) effect, the expression of a known tumor suppressor gene, i.e., SMAD1,
in lymphoma cells is increased [99], which can also be used in therapy of other cancer
types [100,101].

ROS also interact with amino acids and lead to the generation of a number of ox-
idatively modified proteins with impaired functions. The most common oxidative mod-
ifications of proteins are methionine/cysteine oxidation, carbonyl group formation, and
cross-linking [102]. Some of them are reversible and, as a donor of hydrogen or electron,
ascorbate can reduce these proteins and restore their functions [2]. However, many modifi-
cations are irreversible and, moreover, their proteolysis is impossible due to disruptions in
the functioning of proteasomes under oxidative stress [103]. Thus, the protective properties
of ascorbate (1 g/day) are based on the elimination of the action of various proteasome
inhibitors [104,105] and the promotion of the removal of oxidatively damaged proteins
from the cytoplasm of cells (Figure 2). Unfortunately, the protective action of ascorbate
against protein oxidation with the formation of protein radicals is strictly dependent on
the ascorbate concentration, which is often insufficient in tissues in vivo (physiological
conditions) [106–108].

4.2. Prevention Lipid Peroxidation

The destructive activity of ROS also relates to lipids. Molecules included in the lipid
bilayer as well as non-membrane-forming lipids often undergo non-enzymatic or enzymatic
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oxidative reactions with a simultaneous formation of lipid peroxidation products. These
are reactive aldehydes (e.g., 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA)) or
cyclization products, including isoprostanes [109]. The compounds are important signaling
molecules in cell functioning; however, their overproduction under oxidative stress disturbs
the continuity of biological membranes, as well as the basic metabolic processes of cells [110].
So far, it has been described that when reduced by approximately 20%, the levels of
ascorbate in cells or plasma inevitably favor the formation of lipid peroxidation products in
the whole organism [111–113]. Therefore, it is clear that ascorbate is an important molecule
in the prevention of lipid peroxidation [61,114,115] (Figure 2). It has been found that
ascorbate (100 µM, 60–500 mg/kg/day) significantly protects cells/organisms against an
increase in 4-HNE and MDA levels under stress conditions, including UV-induced oxidative
stress in skin cells [33,34,84] or cornea [116] and the toxic effects of xenobiotics in liver
cells [117–120] and erythrocytes [121], as well as oxidative stress-related myonecrosis [122].
The described protective action of ascorbate connected with the level of reactive aldehydes
is strongly correlated with oxidative stress. In the case of the action of ascorbic acid on the
level of isoprostanes, one of the main aspects is to arrest the pro-inflammatory effect of
these products of lipid peroxidation. Ascorbate (1 g/day) efficiently reduces the expression
of isoprostanes in the plasma of patients with a wide variety of diseases, including diabetes
or hypertension [123,124]. Thus, through its antioxidant properties, the molecule prevents
inflammation mediated by lipid peroxidation.

5. Anti-Inflammatory Properties

Ascorbic acid is widely recognized as a molecule with versatile anti-inflammatory
properties (Table 2). Hence, it is believed that its consumption provides a low level of
C-reactive protein (CRP), which constitutes a stable downstream marker of inflammation in
plasma. However, an analysis of the obtained results shows that the activity of the vitamin
is not unequivocal [125], as according to one set of data, the CRP level in human plasma
is significantly reduced by ascorbate supplementation (causing a 4-fold increase in the
concentration of ascorbate in plasma) [126], and according to others, the vitamin has no
effect on CRP [127]. Additionally, there are no clear data about the effect of ascorbate on
plasma anti-/pro-inflammatory cytokines, due to the fact that it is used in a mixture with
other protective compounds, such as α-tocopherol, β-carotene, or 25-hydroxyvitamin D,
which significantly downregulate pro-inflammatory molecules, such as interleukin 6 (IL-6)
or interferon-γ (IFN-γ), and, to a different extent, influences the levels of anti-inflammatory
interleukin 4 (IL-4) in human plasma [128,129]. On the other hand, ascorbate (3 g per oral
dose) has no regulatory effect on IL-6 and IL-8 level in human plasma under high oxidative
stress, such as during the initiation of a cardiopulmonary bypass [130].

Regardless of the above, ascorbate has a more singular effect on inflammatory signaling
in cells, where it unambiguously lowers the expression of pro-inflammatory mediators, thus
reducing the inflammatory reaction. One of the main known pro-inflammatory signaling
pathways affected by ascorbic acid is the NFκB/TNFα pathway [131]. Under physiologic
conditions, NFκB (nuclear factor kappa-light-chain-enhancer of activated B cells) creates
a complex with IκK (inhibitor of nuclear factor kappa-B), which causes its inactivation.
Only the phosphorylation of IκK by IKK (an inhibitor of nuclear factor kappa-B kinase)
causes the dissociation of active NFκB subunits. As a result, pro-inflammatory cytokines,
including interleukins and TNF-α (tumor necrosis factor α), are transcribed [132]. So far
the effect of ascorbate on the NFκB/TNFα pathway has been strongly connected with its
antioxidative properties, including the reduced ROS production [133], leading to lowered
NFκB levels in cells exposed to the harmful effects of the external environment [33,134].
Moreover, ascorbate (20 mM) also decreases NFκB-depended genes transcription through
the activation of kinases involved in IκK phosphorylation [135,136], as well as the suppres-
sion of the DNA-binding activity of NFκB [137]. As a result, the levels of pro-inflammatory
factors in cells are lowered. It has been described that ascorbate (500 mg/day) significantly
reduces IL-6 and TNF-α levels in brain tissue [138] and inhibits IL-6 protein release from
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a contracting skeletal muscle [139]. Moreover, ascorbic acid significantly downregulates
the expression of pro-inflammatory factors (IL-6, IL-12, and TNF-α) and upregulates anti-
inflammatory cytokines (IL-4 and IL-10) [140] in mouse splenocytes. Additionally, ascorbic
acid (2.3 mM) reduces IL-2 and IL-6 production through the reduction of the proliferation
of mononuclear cells in porcine peripheral blood [141,142]. On the other hand, ascorbate
does not decrease TNF-α nor upregulate the IL-10 level under high oxidative stress, as
observed in the endometrial tissue of rats [143].

The effect of ascorbate on the NFκB activity may also be connected with its influ-
ence on the interaction between the NFκB/TNFα and Nrf2/Keap1 pathways. The Nrf2-
induced expression of heme oxygenase 1 inhibits the pro-inflammatory signaling operated
by NFκB [144], while free Keap1 following Nrf2 dissociation can additionally amplify
this effect, through the production of adducts with IKK, which is a positive regulator of
NFκB [145]. Thus, the activation of Nrf2 by ascorbate contributes significantly to the reduc-
tion of the activity of NFκB. Therefore, as a result of all the above, ascorbate has a preventive
effect at different levels of pro-inflammatory pathways’ activation and action [146].

Table 2. Summary of the effects of ascorbate on individual inflammatory responses.

Factor Biological Material Conditions Effect of Ascorbic Acid Refs.

CRP Plasma Physiological conditions Downregulation [126]

CRP Plasma Inflammation (cardiopulmonary bypass graft
surgery) No effect [127]

IFN-γ Plasma Physiological conditions Downregulation [128]

IL-4 Plasma Oxidative stress
(Alzheimer’s disease) Upregulation [129]

IL-6 Plasma Oxidative stress
(Alzheimer’s disease) Downregulation [129]

IL-6
IL-8 Plasma Oxidative stress (cardiopulmonary

bypass initiation) No effect [130]

NFκB Skin cells Oxidative stress (UV irradiation) Downregulation [33,134]

NFκB
Cell lines ECV304,

HUVEC, HeLa, U937,
HL-60, MCF7

Inflammation
(induced experimentally/

tumor proliferation)

Activation of kinases
involved in IκK

phosphorylation
[135,136]

NFκB Acute myeloid leukemia Inflammation
(tumor proliferation)

Suppression of NFκB
binding to DNA [137]

TNF-α Brain tissue
Physiological conditions

neurotoxicity
(induced experimentally)

Downregulation [138]

TNF-α Splenocytes Inflammation
(induced experimentally) Downregulation [140]

TNF-α Endometrial tissue Oxidative stress (endometritis) No effect [143]

IL-6 Brain tissue
Physiological conditions

neurotoxicity
(induced experimentally)

Downregulation [138]

IL-6 Skeletal muscle Contracting skeletal muscle Downregulation [139]

IL-6
IL-12 Splenocytes Inflammation

(induced experimentally) Downregulation [140]

IL-4 Splenocytes Inflammation
(induced experimentally) Upregulation [140]

IL-2
IL-6

Peripheral blood
mononuclear cells

Animals with hereditary deficiency in
ascorbate synthesis Downregulation [141,142]

IL-10 Splenocytes Inflammation
(induced experimentally) Upregulation [140]

IL-10 Endometrial tissue Oxidative stress (endometritis) Upregulation [143]



Antioxidants 2022, 11, 1993 11 of 18

6. Ascorbic Acid and Apoptosis

Uncontrolled ROS generation leading to oxidative stress has been described as an
inherent factor causing apoptosis [147]. Thus, a number of antioxidants have the capacity
to prevent apoptosis in its various stages [148]. Ascorbate is also not insignificant in this
regard. Its primary importance is the suppression of drug-induced apoptosis through the
direct scavenging of mitochondrial superoxide anions [149]. At the same time, ascorbate
(100 µM) significantly reduces the level of DNA damage, thereby preventing pro-apoptotic
signaling [150]. This highly active vitamin also influences the levels of pro-apoptotic factors,
including cytochrome c, Bcl-2, and caspases 3, 8 and 9, which have been established in the
case of UV-irradiated skin cells particularly [33], as well as in rat brains with potassium
dichromate-induced damage [151].

In the case of cells with disturbed metabolism, the action of ascorbate is completely dif-
ferent, as observed in neoplastic cells. It has been found that in melanoma or acute myeloid
leukemia cells, ascorbic acid (0.25–1 mM) induces apoptosis through Bcl-2 overexpression
and caspase 3 and 9 activation [152,153]. There is also a number of data ascorbate-induced
(1–15 mM) apoptosis in cancer cells, such as human colon cancer cells [154], breast cancer
cells [155,156], cervical cancer cells [157], or colorectal cancer cells [158]. However, the
mechanism and the selective nature of its action is still unknown and may be related to the
pro-oxidative activity of ascorbate [159]. On the other hand, a number of studies suggest
that in pharmacologic doses (10 mM), ascorbate exhibits anti-cancer effects and may have a
potential for use in the treatment of cancer through the induction of both oxidative stress
and DNA demethylation [160,161].

7. Ascorbic Acid Cooperation with Other Antioxidants

Despite the fact that ascorbate itself has strong antioxidant properties and anti-
inflammatory capacity, it can interact with other exogenous molecules and induce a syner-
gistic protective effect (Figure 2). The compounds with which ascorbate interacts include
substances used in pharmacotherapies of different diseases, e.g., antibiotics, such as ceftriax-
one, gallic acid, or xanthone [162–164]. However, the group of the best-studied compounds
that cooperate effectively with ascorbate includes natural polyphenols, especially curcumin,
epigallocatechin-3-gallate, phenolic acid, and green tea polyphenol (GTP) [164–169]. More-
over, in the case of the best-known combination of ascorbate and a polyphenol, i.e., rutin,
which is often used in oral fever and cold pharmaceuticals, the synergistic action consists of
the enhanced antioxidant effect of the particles by mutually restoring their reduced forms.
As has been wildly described following in vitro experiments on UV-irradiated skin cells,
ascorbate (100 µM) and rutin (25 µM) support each other’s cytoprotective properties at
every possible stage of activity [33,84,170–172]. As mentioned before, ascorbate uses many
pathways to penetrate cell membranes, while the bioavailability of rutin is limited. There-
fore, ascorbic acid promotes the penetration of cells by rutin, e.g., through the activation of
bilitranslocase [33]. As a result, ascorbate-induced enhanced levels of rutin lead to an effec-
tive action of these antioxidants in both the scavenging of free radicals and the activation of
the cellular antioxidant system [33,173]. To enhance this antioxidant effect, ascorbate and
rutin also cooperate in the effective activation of Nrf2, including direct creation of adducts
with Keap1 [33,84]. Moreover, at the same time, ascorbate supports the protective properties
of rutin against the formation of protein complexes with highly reactive lipid peroxidation
products [84], thus significantly inhabiting pro-inflammatory signaling, described owing to
the efforts of complex proteomic research studies [170]. As a result, ascorbate in cooperation
with rutin lowers the level of pro-inflammatory factors NFκB and TNFα [172,173]. This
results in a more successful protection against UV-induced changes in the functioning of
skin cells as well as in their viability and whole skin condition [84,170,172].

8. Conclusions

As can be seen in the presented review, ascorbic acid exhibits its antioxidant and
anti-inflammatory properties at various levels of the functioning of living cells—starting
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from the direct scavenging of free radicals and the silencing of pro-inflammatory pathways,
through the activation of intracellular antioxidant systems, to supporting the action of other
exogenous antioxidants. In this regard, DNA, proteins, and lipids are protected against
oxidation, leading to an inflammatory reaction and even apoptosis. Although ascorbate
has strong antioxidant properties, it can also have pro-oxidant effects in the presence of free
transition metals. Moreover, its role in the prevention of DNA mutation and cell apoptosis
is controversial, especially in relation to cancer cells.
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