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Abstract: Obesity remains a global health problem. Chronic low-grade inflammation in this pathol-
ogy has been related to comorbidities such as cognitive alterations that, in the long term, can lead
to neurodegenerative diseases. Neuroinflammation or gliosis in patients with obesity and type 2
diabetes mellitus has been related to the effect of adipokines, high lipid levels and glucose, which
increase the production of free radicals. Cerebral gliosis can be a risk factor for developing neu-
rodegenerative diseases, and antioxidants could be an alternative for the prevention and treatment
of neural comorbidities in obese patients. Aim: Identify the immunological and oxidative stress
mechanisms that produce gliosis in patients with obesity and propose antioxidants as an alternative
to reducing neuroinflammation. Method: Advanced searches were performed in scientific databases:
PubMed, ProQuest, EBSCO, and the Science Citation index for research on the physiopathology of
gliosis in obese patients and for the possible role of antioxidants in its management. Conclusion: Pa-
tients with obesity can develop neuroinflammation, conditioned by various adipokines, excess lipids
and glucose, which results in an increase in free radicals that must be neutralized with antioxidants
to reduce gliosis and the risk of long-term neurodegeneration.
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1. Introduction

Obesity is a global public health problem, linked to a number of comorbidities [1]. One
that is rarely clinically addressed in these patients is cerebral gliosis, caused by neuroinflam-
mation, which is activated by molecules such as adipokines as well as lipids and glucose
from the diet [2,3]. At the brain level, the hypothalamus acts as a regulator of food intake
and energy homeostasis. The integrity of the brain nuclei that regulate appetite-satiety is
altered by neuroinflammation, as well as other processes, such as memory and cognition [4].
The prevention, diagnosis and treatment of gliosis must be addressed in patients with
obesity, and especially in those who have metabolic comorbidities, points included in this
review. Gliosis, if left untreated, can increase the risk of long-term neurodegeneration [5].
The pathophysiology of gliosis includes the increase in free radicals, which perpetuate
neuroinflammation [6]. In addition to neurons, the brain is formed by glia, which is further
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divided into microglia, oligodendrocytes and astrocytes. Microglia represents the brain im-
mune system. Oligodendrocytes produce the myelin that envelops axons to enable efficient
neuronal communication. Astrocytes facilitate contact between blood vessels and synapses,
detecting neuronal activity and releasing gliotransmitters to modulate brain activity [7,8].
As a physiological adaptive response to damage caused by inflammatory processes in the
Central Nervous System (CNS), the brain develops gliosis as a protective measure. One
of the factors that produce gliosis is a diet that is high in fat and sugar being sustained
for several months [9]. In inflammatory processes of the CNS, it has been reported that
astrocytes and microglia are mainly involved in the modulation of metabolic signals in
the pro-opiomelanocortin (POMC) region in the mediobasal hypothalamus through their
ability to detect glucose and fatty acids. Hypothalamic microglia is activated and undergoes
functional and morphological changes when flooded with dietary fat [10,11]. The excessive
stimulation of these support cells can lead to gliosis or glial activation and then induce
oxidative stress and local inflammation in the hypothalamus, which are causally related to
the development of obesity [9,12]. The objective of the current review is to shed light on
gliosis as an important comorbidity in obese patients that must be prevented and diagnosed.
According to gliosis’ physiopathology, we compiled the most promising antioxidants as
novel alternatives to treat this condition.

2. Gliosis and Obesity

As a physiological adaptive and protective response to the damage caused by an
inflammatory process to the CNS, the brain develops gliosis. This is generated by obesity
and mainly occurs in the hypothalamus, causing neuronal loss in the POMC region in the
medio-basal hypothalamus, which is widely related to the infundibular nucleus or hypotha-
lamic arcuate nucleus, responsible for weight-related functions and energy homeostasis.
Neurons responsible for energy balance, such as POMC neurons, agouti-related protein
(AgRP), and neuropeptide Y, are located within these brain structures [13]. Gliosis of the
medio-basal hypothalamus has also been linked to comorbid obesity and hypogonadism in
men [13–15]. One of the factors that produces gliosis is a diet that is high in fat and sugar
being sustained for several months. This process interrupts the function of different areas of
the brain related to the control of appetite and satiety, causing short circuits of information
that prevent the proper control of intake and energy balance [16]. Specifically, in obese
patients, this hypothalamic disruption negatively affects weight loss capacity, causing a
feedback cycle where the cause turns into the effect. Circulating leptin, the main afferent
energy storage signal, decreases its uptake in the hypothalamus due to the gliosis present in
this area [17]. Several authors mention that this pathway can also fail because of the stress
on different cellular organelles, such as the endoplasmic reticulum [18], among other causes.
At present, two clinical trials are in progress, where the relation between gliosis and obesity
is being evaluated. In the first study, the authors mentioned that obesity causes gliosis
within hypothalamic regions, regulating energy balance and glucose homeostasis. Looking
at gliosis by means of an interventional, non-randomized and parallel assignment study,
three objectives are being evaluated: (1) the role of Roux-en-Y gastric bypass or sleeve
gastrectomy (RYGB) and behavioral weight loss programs in the reversion of hypothalamic
gliosis; (2) the extent of gliosis as a successful predictor of weight loss; (3) the timecourse of
improvements in gliosis after RYGB and the relationship between these improvements and
the short- and long-term efficacy of RYGB over a timeframe of 6 and 12 months [19]. In
the second study, the impact of hypothalamic gliosis on appetite regulation and obesity
risk in children is evaluated through an observational, cohort, prospective study, where the
hypothalamic gliosis is measured by T2 relaxation time, using magnetic resonance, dietary
intake in children and bodyweight over a timeframe of two years [20].

3. Factors Related to Gliosis in Prenatal and Postnatal Stages

Recent research has shown that inflammation can occur in important areas of the
brain, related to the control of intake, energy expenditure and in utero adiposity; fac-
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tors such as gestational diabetes mellitus and nicotine consumption during pregnancy
have been directly linked to neuroinflammation from the primary cerebral vesicles that
form different regions of the CNS, related to obesity [21,22]. Vuong et al. demonstrated
in animal models of gestational diabetes mellitus (a diet high in fat and sucrose), that
newborns presented chronic neuroinflammation, mainly in the pyramidal layer and in
the hippocampus, decreasing synaptic integrity, and corroborating the cerebral lipotoxic
and glucotoxic effect, resulting in the activation of microglia cells. The study postulates
that this condition generates an alteration in the development of the CNS mediated by
fractalin receptor (CX3CR1), which is essential to the development of synapses and synaptic
plasticity in the hippocampus and cognitive functions [21]. Therefore, the CX3CR1 receptor
is an important parameter that should be considered in people who had risk factors in
utero, to avoid or to limit brain neuroinflammation, which can predispose the individual
to cognitive patterns and uncontrolled metabolic homeostasis, such as resistance to leptin
and insulin, resulting in the development of both hedonic and metabolic obesity from
an early age. Younes-Rapozo et al. showed that pregnant animals exposed to nicotine
and its products during lactation presented microglia infiltration, mainly in the lateral
and medial arquate nucleus, the paraventricular nucleus and the lateral hypothalamus,
and marked astrogliosis in the paraventricular nucleus [22]. In addition, if these adverse
events occur when the brain is undergoing rapid cell growth and is highly vulnerable
to alterations by external events, known as the “critical period” of the CNS, it can result
in a pathology of brain development. During gestation, adaptive strategies are put in
place to deal with the changes that occur during the development of the embryo. At
the brain level, the plasticity of nerve cells is also activated, which adjusts to the rapid
changes that occur during the formation of the different pathways and structures of the
brain [23]. There are numerous studies in the literature about what happens in the CNS
at an anatomical and morphological level, derived from the effects produced by prenatal
malnutrition, related to long-term deficiencies. These deficiencies have been measured
by alterations in brain function and chemical composition and include a decrease in the
size of nerve cells, as well as myelination and neuronal dendritic growth, manifesting as
a delay in brain development [24]. The hypothesis of the thrifty phenotype is related to
poor fetal growth, which undoubtedly affects brain development, causing alterations both
at the chemical and morphological levels that are manifested in different parameters. In
some cases, this trigger increases or reductions in CNS metabolism, which leads to higher
susceptibility to type 2 diabetes or metabolic syndrome [25]. This fact is verified in adults
with high rates of intra-abdominal adiposity and who are prone to developing metabolic
diseases and energy imbalances, and their medical history shows that they usually come
from mothers who suffered a high degree of malnutrition during pregnancy [26]. Obesity
derived from malnutrition during gestational development has been related to alterations
in brain metabolism, mainly in the nuclei of the hypothalamus, related to metabolism and
food intake, encircling the prevention of gliosis in pregnant women. These alterations cause
inflammatory processes at both the central level and the peripheral level [27,28], which can
trigger metabolic diseases in childhood.

4. Role of Astrocytes in the Expression of Glial Fibrillary Acidic Protein in the
Processes of Injury-Inflammation of the CNS Due to Obesity

Astrocytes are a variety of glial cells that are involved in several brain functions, such
as neuronal migration during CNS development, neuronal maturation, and differentiation,
as a guide to the growth of axons and dendrites, and as part of the blood–brain barrier
(BBB). Due to the several processes in which these nerve cells are involved, they can un-
dergo morphological and functional alterations due to metabolic changes throughout their
life. In addition, the astrocytes that are interconnected by gap junctions are related to the
hypothalamic control of food intake. Astrocytes possess a structural protein called glial
fibrillary acidic protein (GFAP). Various studies have shown that this protein is mainly
expressed in pathological states associated with the injuries that occur in the CNS that cause
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neuronal death. These lesions increase the number of astrocytes in the damaged region,
causing astrogliosis, which produces an increase in the expression of GFAP [29,30]. In the
hypothalamic area, the inflammation produced by obesity was derived from a high-fat diet
associated with weight gain and increased insulin resistance is related to the alteration in
glial cells, causing hypothalamic astrogliosis [31]. Due to these changes in the CNS, it has
been proposed that astrogliosis presents a hypertrophic phenotype, developed by astrocytes
due to these attacks on the CNS, which results in an “adaptation” that produces a regula-
tion of very specific structural proteins, such as GFAP and vimentin [32,33]. Experimental
studies where these inhibit the expression of GFAP and vimentin show that neuronal loss
is greater after injury, and that this mechanism is possibly related to an increase in the
regeneration potential of CNS. In the opposite case, the expression of GFAP is increased
as a response to the inflammatory process and glial injury of the hypothalamus [34–36].
Joaquim et al. conducted a study in male rats descended from females with food restriction
during pregnancy, finding a decrease in the size of adipocytes in the first generation and
an increase in the weight of retroperitoneal fat. Their results showed that astrocytes in
the periventricular hypothalamus induced an increase in GFAP expression. This trend
was maintained in second-generation male rats, combined with weight gain. The authors
concluded that there is a phenotypic transgenerational trend toward overweight and obe-
sity in male rats due to malnourished mothers during gestation. Based on the above, we
can say that there is an alteration in gene expression that results in an elevated regulation
of GFAP and inflammatory mediators, in addition to adipokine receptors, due to over-
weight/obesity [34,36]. These effects are derived from the defensive response of astrocytes
to inflammatory action and injury, which also causes their morphological and functional
remodeling, which can cause neuronal hypertrophy [37]. Debarba et al., in studies carried
out in rats that at the neonatal level, showed underfeeding as well as overfeeding, which
is generally known as neonatal malnutrition, causes morphological changes in the glia in
addition to metabolism alterations that lead not only to increased GFAP expression but
also increased expression of T cell protein tyrosine phosphatase (TCPTP) and alterations in
connexin 30 expression, molecules related to the regulation of proinflammatory cytokines
in the hypothalamic astrogliosis. The inflammatory processes associated with neonatal
malnutrition develop a metabolic programming that breaks the energy balance. Therefore,
both astrocytes and microglia conform with the neuron environment, providing it with a
favorable microenvironment to maintain its metabolic functions and synaptic plasticity.
When injury or inflammation occurs, astrocytes induce GFAP expression, while microglia
favor the expression of allograft inflammatory factor 1 (AIF-1), to counteract the neuronal
damage caused by inflammation resulting from malnutrition [38]. Astrocytes, mainly of
the fibrous type, and microglia are dynamic cells that are important to maintaining the mi-
croenvironment surrounding neurons and regulating neuronal functions, such as synaptic
plasticity and metabolism. In response to CNS insults, both cell types rapidly respond and
develop a reactive phenotype called reactive gliosis, characterized by the upregulation of
specific structural proteins, such as GFAP in astrocytes and AIF-1 in microglia [33,39,40].

5. Role of Leptin, Interleukin-6 (IL-6) and Tumor Necrosis Factor-α (TNFα) in Brain
Proinflammatory Processes
5.1. Leptin

Leptin is a hormone released from adipose tissue in proportion to the level of adiposity.
From the circulation, leptin passes through the BBB to the brain [41,42] via signals from
its leptin receptor (LepRb), which is widely distributed throughout the whole brain and
particularly high within the arcuate nucleus of the hypothalamus (ARH), to attenuate food
intake and decrease body weight [43,44]. When the action of leptin and insulin decreases,
poor systemic glucose tolerance appears and this deficiency, in turn, has been related to
proinflammatory signaling in the hypothalamic area. The combined action of leptin and
insulin has led to several pieces of research in biological models. Morabito et al., in an
animal model of a high-fat diet (HFD) (60%) for 30 weeks, observed that leptin activity
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decreased in inflamed areas of the brain; despite the administration of exogenous leptin,
these animal’s weights did not decrease. However, caloric restriction caused the animals to
reduce their weight and visceral fat, restore leptin and insulin levels, and decrease cerebral
gliosis [45]. Inflammation in the hypothalamus and peripheral tissues induces the activation
of stress-related kinases, such as c-Jun N-terminal kinase (JNK) and IkB-kinase (IKK), which
inhibit mediators of leptin pathways and insulin. This insulin/leptin resistance in critical
neurons of the hypothalamus increases the metabolic set point of body weight, promoting
a gradual increase in adiposity [46]. It has been described that one of the causes of the
infiltration of astrocytes, glia and microglia in the hypothalamus is due to a similar process
to that which occurs in visceral adipose tissue, where macrophages also infiltrate. In adipose
tissue, the arrival of macrophages and their activation induces the expression of interleukin
6 (IL-6) and tumor necrosis factor-alpha (TNF-α); meanwhile, in the hippocampus, these
cytokines activate astrocytes and microglia [47–50]. In this context, activated microglia cells
respond to different neurotoxic stimuli, showing phagocytic functions and the production
of proinflammatory mediators such as cytokines, chemokines, reactive oxygen species
and nitric oxide with a neuroprotective purpose. However, the prolonged activation of
these cells can trigger neurodegenerative processes and even neoplasia; it has even been
proposed that leptin also acts as a proinflammatory cytokine [15,46,51–53]. Pretz et al.
administered a dose of a leptin antagonist PESLAN (100 µg/kg/day) to mice, in order to
block its signaling because it was increased by diet-induced obesity. The authors found
that leptin signaling was partially reduced, and the opposite effects were exerted, leading
to an improvement in glucose metabolism; therefore, they propose that this mechanism
is possibly regulated by a decrease in hypothalamic astrogliosis and microgliosis [54].
However, it has been proposed that the insulin effect on the hypothalamus results in
the suppression of hepatic glucose output, and that intranasal insulin administration
suppresses endogenous glucose output in lean men. However, in overweight or obese
insulin-resistant men, the same dose of intranasal insulin is ineffective [55]. Balland et al.,
in a study in mice, showed that pathological leptin signaling in human retinal astrocytes
(HRA) underpins impaired hypothalamic insulin signaling and this explains, in part, the
failure of leptin action insulin in the hypothalamus–liver axis, which suppresses hepatic
glucose production (HGP), leading to its alteration. This insight into leptin and insulin
signaling in HRA neurons led them to hypothesize that hyperleptinemia in obese-induced
mice might lead to an imbalance between leptin and insulin signaling in HRA neurons
and, consequently, affect the regulation of glucose homeostasis in obesity [56,57]. The
mechanism of action that affects glial cells shows that diet plays an important role, so that
HFD increases the expression of leptin receptors in astrocytes [58,59], inducing localized
astrogliosis between anorexigenic neurons and blood vessels in the arcuate nucleus of
the basal medial hypothalamus, altering metabolism and food intake. This hypothalamic
inflammation is involved in the process of leptin and insulin resistance, leading to obesity
and, quite possibly, diabetes [60]. There are other structures of the brain that can be affected
by these neuroinflammation processes, such as the frontal cortex, the parietal cortex, the
basal ganglia, the thalamus, the hippocampus, and the cerebellum, which are mainly
related to high-level cognitive functions. Based on what was described above, we can say
that the increase in leptin levels with a high-fat diet favors an increase in body weight, as
well as an increase in hypothalamic astrogliosis and microgliosis, in addition to neuronal
damage in the different areas of the hypothalamus [61].

5.2. IL-6 and TNF-α

Interleukin 6 (IL-6) is a cytokine that has proinflammatory activity when released as
adipokine [62] and, on the contrary, is anti-inflammatory when released as myokine. In
obese patients, mainly in visceral and abdominal fat, hypertrophic adipocytes, together
with macrophages, release IL-6 as part of the chronic low-grade inflammation that occurs in
obese patients [62–64]. IL-6, together with TNF-α, are molecules that can trigger pathophys-
iological processes related to common comorbidities, such as type 2 diabetes [65], systemic
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arterial hypertension and endothelial damage [66], among others; however, an important
comorbidity to consider is neuroinflammation [67]. Circulating proinflammatory cytokines
such as IL-6 can cross the BBB and reach the hypothalamus, activating microglia through
the signals emitted by endothelial cells and glial cells [68].

The cytokine TNF-α is one of the main mediators in inflammatory diseases [69], it
has been shown that nutrition can have an immediate effect on circulating markers of
inflammation. Proinflammatory cytokines, including TNF-α, are secreted by white adipose
tissue macrophages, and it has been reported that, within a few hours of eating a fatty meal,
a transient increase in these proinflammatory cytokines is observed in the circulation [70,71].
In obese patients and rodents, low-grade chronic systemic inflammation is characterized
by an increase in circulating inflammatory markers, such as C-reactive protein, TNF-α,
interleukin-1 (IL-1) and IL-6 in many metabolic organs, including the pancreas, muscle,
and liver, as well as in the brain [72,73]. TNF-α has been implicated in hypothalamic proin-
flammatory signaling on the development of resistance to anorexigenic hormones, such as
insulin and leptin. Alterations in these hormones in the hypothalamus cause an imbalance
in feeding and thermogenesis, which leads to increased body weight and obesity. The gene
expression of TNF-α has been widely associated with the induction of the hypothalamic
inflammatory process [69,74–80]. TNF-α has been proposed as the link between neuroin-
flammation and the development of insulin resistance and type 2 diabetes mellitus [81].
In the hypothalamus, both astrocytes and microglia have been reported to be activated by
HFD. The hypothalamic regulation of energy balance is rapidly and severely compromised
by overnutrition, particularly a diet high in saturated fat, which induces inflammation [72].
Obesity and HFD produce reactive gliosis, which compromises the structure and function
of the hypothalamus [80]. Hypothalamic inflammation is proposed to be triggered by the
long-chain, saturated-fatty-acid-induced activation of toll-like receptor 4 (TLR4) are present
on microglia [77,82]. In this context, cytokines such as TNF-α are produced and act on
hypothalamic neurons, resulting in the inhibition of leptin and insulin signaling systems,
causing obesity [75–77,80,83].

6. Oxidative Stress in Relation to Gliosis and Obesity

Free radicals are the product of the oxidation of energy molecules such as sugars and
fats. Organs such as the liver, pancreas, adipose tissue and, to a relative extent, the brain,
metabolize large amounts of energetic molecules, either for immediate use, storage, the
regulation of its serum concentration, or processing. Oxidative stress and inflammation
have a close relationship in obese people and obesity animal models; adipose tissues are
usually infiltrated by macrophages that respond to inflammatory signals. It is known that,
during infection or in the presence of foreign material, macrophages form or generate
super oxidant agents for the phagocytosis of microorganisms or cellular debris. Thus, it is
very likely that this characteristic is stimulated by diets rich in fats and sugars that could
provoke an inflammatory process in the adipose tissue where the macrophages themselves
arrive [75]). The same mechanism occurs in brain nervous tissue, where astrocytes or
glial cells play a similar role to macrophages [13,82]. Treatment with antioxidants or
the removal of molecules that contribute to oxidative stress has been able to reverse the
process of gliosis in the hypothalamus of the brain. It is known that, in obese patients
and obese rodent models, adipose tissues express high levels of TNF-α [84], and over-
express other proinflammatory cytokines such as lipopolysaccharide (LPS), interferon-
gamma (IFN-γ), TNF-α, interleukin-1beta (IL-1ß), interleukin-12 (IL-12) and IL-6 associated
with insulin resistance that allow for the recruitment of macrophages and other types
of leukocytes [85,86]. In this context, it has been thought that neuronal-type cells and
glial-type cells such as astrocytes could respond differently to a diet of saturated fatty
acids such as palmitic acid (PA). Thus, PA in astrocytic-like cells (T98G) generates greater
cytotoxicity and causes a higher production of reactive oxygen species (ROS) compared to
the neuronal model of the SH-SY5Y cell line. This intracellular increase in superoxidant
agents such as hydrogen peroxide (H2O2) and extended lipid peroxidation (measured as
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thiobarbituric acid reactive substances levels) causes cell death by apoptosis in both cell
types, and, in turn, apoptosis induces neurotoxicity and glial toxicity [87]. Obesity can
then lead to the deterioration of certain tissues, and specifically neural tissue, due to the
effects of the inflammatory processes and oxidative stress. One of the enzymes that relates
these two processes is NAPDH oxidase (NOX), which is a proinflammatory and prooxidant
enzyme [88]. In a study conducted on knock-out mice for the catalytic subunit gp91phox
(known as NOX2) of NOX, these mice (NOX2KO) were compared with wild-type mice
and the authors observed that when fed diets rich in saturated fat, both types of mice
increased their weight in a similar way. However, NOX2-deficient mice have smaller
visceral fat deposits compared to wild-type mice, in addition to their attenuated visceral
adipocyte hypertrophy and the decreased macrophage infiltration of visceral fat [89]. These
NOX2-KO mice also showed improved glucose regulation, and it was determined that
the cells that express the NOX2 protein are mainly the macrophages infiltrated in the
visceral adipose tissue. Several groups used murine models to determine that diets with
highly saturated fats cause brain damage [13,73,90]. NOX2-deficient mice with diets rich
in saturated fats do not decrease cerebrovascular integrity markers; they maintain that
synaptic density and gliosis markers do not increase. These results indicate that NOX2
can be used as a pathogenic marker that is overexpressed and activated during the high
consumption of diets rich in saturated fatty acids and contributes to the formation of
superoxidant agents [89]. In another study, it was observed that the GFAP, as a gliosis
index, increases the expression of NF-kB, interleukin-8 (IL-8), TNF-α, IL-1β and IL-6, as
inflammatory mediators; phospho-ERK (p-ERK), heat shock protein-60 (Hsp60) inducible
nitric oxide synthase (iNOS), as neurodegeneration stress-marker proteins; and ROS levels
increased as well in the brain of HFD-fed mice. However, the use of glucagon-like peptide-2
(GLP-2) significantly attenuated these changes, indicating that this compound can be used
as a neuroprotector, as it improved the neuroinflammation and oxidative stress in HFD
animals [91,92]. It has also been shown that HFD promotes cognitive decline through
mechanisms as the increased expression of proinflammatory adipokines (TNF-α and IL-6),
upregulation of chemotactic adipokines (monocyte chemoattractant protein-1, MCP-1), and
an increase in reactive microgliosis and astrocytes. It has been proposed that HFD decreases
the brain-derived neurotrophic factor (BDNF) involved in cognitive impairment, probably
by oxidative stress and ROS formation. In HFD-fed gerbils, it has been observed that
hypertrophied microglia and increased expressions of TNF-α, IL-1β and the mammalian
target of rapamycin (mTOR) in the brain probably cause ROS generation [93–95]. On the
other hand, it has been shown that the HDL levels linked to astrocyte function avert reactive
gliosis in hypothalamic astrocytes by improving mitochondrial bioenergetics [95,96]. This
opens an important area of knowledge regarding the involvement of oxidizing agents on
the development of hypothalamic gliosis, indicating an important role for NOX2, HDL or
GLP-2.

7. Gliosis in Obese Patients, a Risk Factor for Degenerative Diseases

Gliosis is a non-specific reactive change in glial cells in response to any damage to the
CNS, and this response involves the proliferation of several different types of glial cells. Obe-
sity increases peripheral immune cell migration to the CNS and stimulates gliosis, increases
sympathetic neuron-associated macrophages, and depletes methyl CpG-binding protein 2
in brown adipose tissue. It increases neuropeptide Y in the CNS, inducing hypothalamic
proinflammatory cytokine expression and proinflammatory signaling; thus, the activation
of all these mechanisms results in neurodegeneration [97]. Several reports revealed that
chronic exposure to a high-fat diet, particularly diets high in saturated fat, contributes to
obesity-associated gliosis and plasticity of the astrocytic process. Neurogenic inflammation
occurs due to the increased oxidative stress in neurons, promoting mitochondrial and
leptin signaling dysfunction in oligodendrocytes, and increasing the gene expression of
microglial markers, causing myelin disorders and hypothalamic neuropathy [80,98]. Low-
to standard-fat diets reduce microglial activation and reverse hypothalamic inflamma-
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tion [99]. Diet-induced microgliosis has been recognized in human and laboratory models
of neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease and provides a
possible mechanistic link between obesity/type 2 diabetes and accelerated memory and
cognitive decline [100]. Obese individuals are at greater risk of developing age-related
cognitive decline, vascular dementia, mild cognitive impairment, Alzheimer Disease [101],
Parkinson’s and Huntington’s disease [102,103]. Kivimäki et al. reported that hazard ratios
per 5-kg/m2 increase in BMI for dementia were 0.71 (95% confidence interval = 0.66–0.77),
0.94 (0.89–0.99), and 1.16 (1.05–1.27) when BMI was assessed 10 years, 10–20 years, and
>20 years before dementia diagnosis [104]. Xu et al. reported that overweight people and
obese patients (BMI > 30) developed dementia at midlife at a mean odds ratio of 1.71 and
3.88, respectively [105]. In contrast, the pharmacological inhibition of microglial activa-
tion in obese subjects was associated with the prevention of obesity-associated cognitive
decline [106].

8. Diagnosis of Gliosis

Cerebral gliosis has been qualitatively detected by nuclear magnetic resonance specifi-
cally in the T2 channel in brain mapping in vivo. However, Magnetic Resonance Imaging
(MRI) turned out to be a valuable diagnostic tool: given that, in the T2 signal, the luminosity
is increased, a quantitative measurement is possible using a standardized approach to mea-
surements at hypothalamic levels. Using the longer T2 relaxation time, very reliable results
can be obtained to the extent that they can be correlated with the histological findings
that have been reported in rodents as well as in humans [107,108]. MRI has become an
indispensable test for the evaluation of hypothalamic gliosis in vivo in humans [108–110].
MRI has mainly been employed for clinical research purposes, but not in clinical day-to-day
practice, since most of the population cannot afford it; in addition, its invasiveness greatly
limits its application. This prompts the necessity of other diagnostic options, such as serum
markers, which could be useful for the qualitative and quantitative diagnosis of gliosis in
people with obesity. To date, only BMI has been shown to be negatively correlated with the
size of brain structures such as the hippocampus. [111]. One recent indicator that has been
proposed is the evaluation of cognitive impairment, because gliosis has been related to loss
of concentration, difficulties in learning and memory loss, and changes in behavior [16,107].

Although postmortem studies are difficult to extrapolate to clinical practice, immuno-
histochemistry in gliotic human brain tissues obtained from autopsies has demonstrated
an increase in the expression of GFAP, Aldehyde Dehydrogenase 1 Family Member L1
(ALDH1L1), Glutamate Aspartate Transporter (GLAST), CX3CR1, integrin alpha M subunit
(CD11b), and ionized calcium-binding adapter molecule 1 (IBA1) [40,112]. All the above
empathize the need to generate new diagnostic methods for gliosis that could be more
accessible and safer for patients with obesity.

9. Strategies to Reduce Cerebral Gliosis

Different measures have recently been proposed to minimize the gliosis described in
patients with obesity and insulin resistance; one of those is the consumption of prebiotics,
probiotics, and symbiotics. These substances can restore the gut–brain axis, improving
hippocampal plasticity, neuronal cell mitochondrial function, and slowing or stopping
microglia activation [113]. Chunchai et al. showed that an HDF animal model developed
several disfunctions, such as intestinal inflammation, peripheral insulin resistance, and CNS
alterations such as impaired hippocampal plasticity, an increase in free radicals in different
brain regions with mitochondrial dysfunction, hippocampal apoptosis, microglia infiltrates
and decreased cognition. The authors showed that, by restoring the gut microbiota using
prebiotics, probiotics, or symbiotics, improvements were observed in cognition in obese,
insulin-resistant animals. Likewise, a decrease in brain inflammation, oxidative stress
and apoptosis of the hippocampus was observed, and mitochondrial dysfunction and
alterations in microglia cells were improved [114]. Kang et al. proposed that certain types
of physical exercises have neuroprotective effects by reversing gliosis induced by HDF; they
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showed that animals can reduce proinflammatory cytokines under treadmill exercises (ER)
by inhibiting TLR-4, and this is also related to the decrease in the expression of the microglia
activation marker (CBAM-1 and fibrillary acidic protein). The authors also showed that
the ER increases the antiapoptotic protein Bcl-2 and decreases Bax in the hippocampus
compared to sedentary rats [115]. It is worth mentioning that some studies have shown a
neuroprotective effect of some compounds found in soy, such as isoflavones, decreasing
the apoptosis of neurons due to toxic effects, such as glycoxins and oxidized LDL [116].
However, more studies need to be conducted in this regard.

10. Protective Role of Antioxidants in Gliosis

At present, there is a growing amount of evidence that shows the neuroprotective role
of antioxidants in gliosis (Table 1 and Figure 1). In recent studies, it has been proposed that
lunasin has a bioactive action on obesity, since, in studies carried out in mice, it mediates the
anti-inflammatory response and its mechanism of action helps to obtain a better response
from type 1 helper T cells against low immune activity caused by obesity [117–119]. In
the study of Sharma et al., they showed that treatment with hydroethanolic hull extract
of Juglans regia L. reverted the neuronal degeneration, spongiosis and gliosis in cerebral
cortex of rats in a model of oxidative damage induced with isoprenaline. Additionally,
this extract increases catalase (CAT), superoxide dismutase (SOD), glutathione reductase
(GR) activities, decreases the levels of malondialdehyde (MDA) and advanced oxidation
protein product (AOPP) levels in brain [120]. Del Monte et al. showed the neuroprotective
efficacy of the treatment with eye drops with nano-micellar formulations, containing
melatonin/agomelatine in a rat model of hypertensive glaucoma. This prevented gliosis-
related inflammation and recovered retinal dysfunction [121]. Anyanwu et al. showed
the neuroprotective effect of Costus afer aqueous leaf extract against a low dose of heavy
metal mixture (PbCl2, 20 mg/kg; CdCl2, 1.61 mg/kg; HgCl2, 0.40 mg/kg only)-induced
neurotoxicity in rats. All extracts induced a protective effect against reactive gliosis and
glial cell proliferation observed in the brain, diminished MDA levels and pro-inflammatory
cytokine IL-6, and improved the SOD, CAT and glutathione (GSH) levels [122]. In an
animal model of autism induced by LPS, it was shown that exenatide significantly reduced
the hippocampal gliosis. Additionally, a positive effect was evident on brain serotonergic
and GABAergic pathways exerted by exenatide [123]. In other studies, Malva sylvestris
extract and fisetin (a phytomedicine-based potent antioxidant) showed a decrease in the
astrogliosis and inflammatory or oxidative stress in damage induced by LPS in animal
models of depression and memory impairment [124,125]. A recent study Koza at al.
showed that protocatechuic acid (PCA), a phenolic metabolite of the parent anthocyanin,
koumarin of some berries, diminishes gliosis in a transgenic mouse model of amyotrophic
lateral sclerosis (ALS). The antioxidant reduced astrogliosis and microgliosis in spinal cord,
protected spinal motor neurons from apoptosis, and maintained neuromuscular junction
integrity in transgenic mice [126]. Other authors also showed the neuroprotective effects of
antioxidant genistein and dichloroacetate, a metabolic modulator, the compounds alleviated
gliosis in the spinal cord of SOD-1-G93A mice model of ALS through a decrease in the
production of pro-inflammatory cytokines and modulation of mitochondria [127,128]. The
administration of α-asarone and molecular hydrogen has also shown decreased reactive
gliosis in a model of spinal cord injury through its antioxidant properties [129,130].

In the work of Hazzaa et al., the protective effect of Allium sativum powder was shown
in a monosodium glutamate (MSG)-induced excitotoxicity in rats; the extract contained
the antioxidants diallyl disulphide, carvone, diallyl trisulfide, and allyl tetrasulfide. The
powder prevented MSG-induced neurotoxicity, and improved the short-term memory
and gliosis by enhancing SOD activity and reducing the lipid peroxidation in the brain.
It also reduced caspase-3 and increased ki-67 expression, causing retained brain tissue
architecture [131]. Lee et al. also showed the protective effect of laminarin, a polysaccharide
with antioxidant functions, against the damage induced by transient forebrain ischemia
in gerbils. The authors showed that pretreatment with this compound protected neurons,
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attenuated reactive gliosis, and reduced pro-inflammatory M1 microglia in the CA1 field
following ischemia [132]. The protective role of dimethyl fumarate or Korean red Ginseng,
compounds with antioxidant and anti-inflammatory properties, against gliosis induced by
hypoxic ischemia, has also been shown. The authors demonstrated that these compounds
sustained neuroprotection in a Nrf-2-dependent manner using Nrf2−/− mice [133]. The
Populus tomentiglandulosa extract has also inhibited neuronal loss and alleviates gliosis
observed in the CA1 hippocampal area in the transient global cerebral ischemia model in
gerbils [134]. The administration of galantamine, a cholinesterase inhibitor, and Glehnia
littoralis extract has also showed reduced astrogliosis and up-regulation of the activities
of CAT and SOD-1, observed in neonatal hypoxia ischemia [135,136]. Hydroquinone, an
immunoregulator compound with antioxidant properties, reduced the gliosis observed in
a gerbil model of transient cerebral ischemia [137]. In the work of Wang et al., wogonin
(5,7-dihydroxy-8-methoxy flavone) decreased the vacuolization and nuclear pyknosis in the
neuronal cells and focal gliosis in brain of rats exposed to gamma irradiation. Additionally,
this compound increases GSH, SOD, CAT and glutathione peroxidase (GPx), nuclear factor
erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) mRNA and protein
expression and diminishes MDA, TNF-α, IL-1β and IL-6 levels and NF-κB mRNA and
protein expression [138]. In the same model, it has been shown that taurine, a sulfur-
holding nonessential amino acid with antioxidants properties, ameliorated vacuolization
and nuclear pyknosis in the neuronal cells and focal gliosis in cerebral cortex of rats,
diminished MDA, NO, and TNF-α levels, as well as cytochrome-c, and increased caspases-
9 and -3 along with GSH, SOD, CAT and GPx [139]. Additionally, Liu et al. showed that
fruitless wolfberry-sprout extract (FWE) inhibited Aβ fibrillation, attenuated oxidative
stress, decreased gliosis, and cytokines release in brain in an Alzheimer’s disease model of
transgenic mice [140]. The work of Sadagurski et al. showed, in rats, that three compounds,
acarbose (ACA), 17-α-estradiol (17αE2), and nordihydroguaiaretic acid (NDGA), reduced
the hypothalamic inflammation and decreased hypothalamic reactive gliosis associated
with aging in males [141]. Song et al. showed that the use of rosemary extract reduced
astrocytosis in a model of traumatic brain injury. In this work, the authors showed that
the extract prevented ROS generation, an increase in the protein levels of IL-1β, IL-6 and
TNF-α in hippocampus and a decrease in SOD, GPx and CAT activity induced by the
trauma [95]. It has been shown that thymoquinone (TQ), a phytochemical compound
obtained from the plant Nigella sativa, attenuated astrogliosis and neurodegeneration in a
model of temporal lobe epilepsy. TQ also decreased MDA levels, mossy fiber sprouting
and seizure activity [142].

Melatonin, a N-acetyl-5-methoxytriptamine, is mainly synthesized by the pineal gland
of all mammals and is involved in the regulation of multiple physiological processes, in-
cluding circadian rhythm. This compound has been studied in vitro and shows hydroxyl
scavenger capacities [143]. The direct antioxidant and free radical capacity of melatonin
are mainly due to its electron-rich aromatic indole ring, which makes it a potent electron
donor that reduces oxidative stress [144–146]. Tu et al. showed that melatonin inhibited the
gliosis activation and pro-inflammatory cytokine production in Muller cells throughout the
MEG3/miR-204/Sirt1 axis in an experimental model of diabetic retinopathy [147]. In an-
other model of spinal cord injury, it was shown that melatonin attenuated gliosis and down-
regulated the pro-inflammatory markers iNOS, IL-1β and TNF-α expressions [148]. The
protective effect of melatonin against gliosis, neuroinflammation and neurodegeneration
also has been shown in a BBB dysfunction rat model, in a chronic cerebral hypoperfusion
mice model and in a scopolamine-induced amnesia mice model [149–151].

Curcumin is a phenolic compound, named diferuloylmethane; [1,7-bis-(4-hydroxy-
3-methoxyphenyl)-1,6-heptadiene-3,5-dione] and is an extremely potent, lipid-soluble
antioxidant. Structurally, curcumin consists of two ortho-methoxylated phenols and a
beta-diketone moiety, and they are all conjugated. The free radical scavenging capacity can
arise from the phenolic HO group or from the CH2 group of the β-diketone moiety. A free
radical can undergo electron transfer from either of these two sites [152–154]. In relation to
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curcumin evaluated in human subjects, the effect of this antioxidant has been evidenced
in atrophy, migraine, spinal cord injury, cognitive deficit, neurofibromatosis, Alzheimer
Disease, and multiple sclerosis [155,156].

Quercetin is a polyphenolic compound that exhibits strong antioxidant activity. The
compound is a flavonoid named 3,5,7,3′,4′-pentahydroxyflavone and is a basic structure
consisting of three phenolic groups. Its reductor effect occurs when it donates a proton and
becomes a radical itself, resulting in an unpaired electron delocalized by resonance, making
the radical too low in energy to be reactive. It is known that the three structural groups in
quercetin have the ability to remain as antioxidants when reacting with free radicals: the B
ring o-dihydroxyl groups, the 4-oxo group in conjugation with the 2,3-alkene, and the 3-
and 5-hydroxyl groups [157–161].
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Figure 1. Gliosis in obese patients and the protective role of antioxidants in neuroinflammation. The
gliosis is promoted by a high-fat diet, leptin and hyperglycemia in obese patients; this provokes
neuroinflammation, mainly in the hypothalamus, which perpetuates overweight, because the satiety-
appetite signaling is disrupted. The most promising candidates for the treatment of gliosis in obese
patients are melatonin, curcumin, quercetin, acarbose, 17-α-estradiol and nordihydroguaiaretic. Two
main antioxidant mechanisms exert neuroprotection: a decrease in apoptosis, leptin release and
proinflammatory cytokines, and an increase in free radical scavenging and antioxidant enzymes.
The cells that are protected by antioxidants could be the astrocytes, microglia and neurons. BBB,
blood–brain barrier; TNFα, tumor necrosis factor alpha; IL-1β, interleukin 1β; IL-6, interleukin-6;
SOD, superoxide dismutase; CAT, catalase; GPx, glutathione peroxidase.

The three antioxidants displayed above have been studied in the clinical field, specif-
ically in neurodegenerative diseases. Quercetin has been evaluated in clinical studies,
where the effect of this antioxidant is assessed in neuropathies, Alzheimer Disease, optic
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neuritis, and tinnitus. In relation to melatonin, it has been evaluated in clinical assays
related to cranial nerve diseases, multiple sclerosis, epilepsy, sleep disorders, spinal cord
injuries, migraine, trauma brain injury, dementia, Huntington, Alzheimer and Parkin-
son Diseases [162–194]. Of note, some of these diseases have also been studied in ex-
perimental models, evaluating the neuroprotective effect of these compounds mainly
by their antioxidant and anti-inflammatory properties [195–205]. Moreover, the effects
of quercetin, melatonin and curcumin have been explored in obese patients in differ-
ent studies, but they have not proposed gliosis as an important comorbidity [206–214].
Other antioxidants that can be proposed as possible neuroprotectors in gliosis are resver-
atrol [214–216], epigallocatechin-3-gallate [217], 4-hydroxy-tempo (TEMPOL) [218], astil-
bin [219], 2-hydrazino-4,6-dimethylpyrimidine [220], L-carnitine and exendin-4 [221,222],
simvastatin [223], creatine [224], ellagic acid [225], cannabidiol [226], celastrol [227], ebse-
len [228], Idenebone [229] and N-acetylcysteine [230].

Table 1. Potential antioxidants for gliosis treatment in obese patients.

Antioxidant Model Effect

Juglans regia L. (hydroethanolic hull
extract, 300 mg/kg oral gavage)

Isoprenaline (ISO) induced oxidative
damage in brain of Wistar rats

Reverted the neuronal degeneration, spongiosis
and gliosis in cerebral cortex, increased catalase
(CAT), superoxide dismutase (SOD), glutathione
reductase (GR) activities and decreased the levels
of malondialdehyde (MDA) and advanced
oxidation protein product (AOPP) in rats
exposed to ISO. The extract also restored total
antioxidant status (TAS) and total thiols (TTH)
after ISO administration [120]

Costus afer (aqueous leaf extract, 750,
1500 and 2250 mg/kg body weight)

Wistar rats exposed to low-dose
heavy-metal-mixture (lead, cadmium
and mercury)

Brain protective effect against reactive gliosis
and glia cell proliferation, diminished MDA
levels and pro-inflammatory cytokine IL-6 and
improved the levels of SOD, CAT and
glutathione (GSH) in comparison with
heavy-metal-mixture-treated rats [122]

Exenatide (a long-acting
glucagon-like peptide 1, 20
µg/kg/day)

Autism model induced by the
administration of lipopolysaccharide
(LPS) to pregnant rats

Reduced the inflammation and hippocampal
gliosis, and has a protective effect on brain
serotonergic and GABAergic function (increasing
5-HIAA, GAD-67, and NGF levels). Positive
effects on behavioral disorders. A decrease in
TNF- α levels and an increase in SOD activity in
brain [123]

Malva sylvestris (250 mg/kg)
intragastrical per day for seven
consecutive days

LPS-induced depression-like mice

Decreased the apoptosis and astrogliosis in the
cortex and the CA1 region of hippocampus and
alleviated anxiety. Decreased inflammatory
markers (IL-1β/6 and TNF-α) and up-regulated
IL-4 levels. [124]

Fisetin (20 mg/kg/day i.p. for 2
weeks, 1 week pre-treated to LPS and
1 week co-treated with LPS)

Oxidative damage induced by LPS
in mice

Decreased oxidative stress and gliosis and
activated phosphorylated c-JUN N-terminal
Kinase (p-JNK) in the hippocampus.
Additionally, decreased the inflammatory
Toll-like Receptors (TLR4)/cluster of
differentiation 14 (CD14)/phospho-nuclear
factor kappa (NF-κB) signaling and attenuated
other inflammatory mediators (tumor necrosis
factor-α (TNF-α), interleukin-1 β (IL1-β), and
cyclooxygenase (COX-2) [125]
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Table 1. Cont.

Antioxidant Model Effect

Allium sativum (200 mg/kg of body
weight)

Monosodium glutamate
(MSG)-induced neurotoxicity in
Wistar albino rats model

Improved short-term memory and gliosis by
enhancing SOD activity and reducing the lipid
peroxidation in the brain. It also reduced
caspase-3 and increased ki-67 expression,
causing retained brain tissue architecture [131]

Laminarin (50 and 100 mg/kg)
Brain injury induced by ischemic
insult
in gerbils

Pretreatment with this compound protected
neurons, attenuated reactive gliosis, and reduced
pro-inflammatory M1 microglia in the CA1 field
following ischemia [132]

Populus tomentiglandulosa (Ethanol
extract
200 mg/kg)

Brain injury induced by ischemic
insult
in gerbils

Inhibited neuronal loss and alleviated gliosis
observed in CA1 hippocampal area [134]

Glehnia littoralis (Ethanol extract, 100
and 200 mg/kg)

Brain injury induced by ischemic
insult in gerbils

Reduced astrogliosis and up-regulated SOD-1
expression in CA1 hippocampal area [135]

Wogonin (a flavone, 30 mg/kg) Neurotoxicity induced by γ-radiation
in rats.

Decreased the vacuolization and nuclear
pyknosis in the neuronal cells and focal gliosis in
cerebral cortex. Additionally, this compound
increased GSH, SOD, CAT and GPx, nuclear
factor erythroid 2-related factor 2 (Nrf2) and
heme oxygenase-1 (HO-1) mRNA and protein
expression and diminished MDA, TNF-α, IL-1β
and IL-6 levels and NF-κB mRNA and protein
expression [138]

Epigallocatechin-3-gallate (10 mg/kg
body weight/day intragastrical)

Acrylamide-induced apoptosis in
Sprague-Dawley rats

Inhibited oxidative stress by enhancing the
activity of antioxidant enzymes and glutathione
levels and reducing the formation of reactive
oxygen species and lipid peroxidation in the
cerebral cortex. Inhibited DNA damage and
apoptosis [231]

Melatonin (10 mg/kg/day)
C57BL/6 mice model of diabetic
retinophaty
Acute spinal cord injury model in rats

Inhibited the gliosis activation and
pro-inflammatory cytokine production (VEGF,
TNF-α, IL1-β and IL-6) throughout the
MEG3/miR-204/Sirt1 axis. In the spinal cord
injury model, melatonin attenuated gliosis and
down-regulated the pro-inflammatory markers
iNOS, IL-1β and TNF-α expressions. Moreover,
it increased SOD, CAT and GPx levels, decreased
MDA content, down-regulated caspase-3, Bax
and GFAP expressions and up-regulated Bcl-2
expression [147,148]

Acarbose (1000 ppm), 17-α-estradiol
(14.4 ppm), and nordihydroguaiaretic
acid (2500 ppm) mixed in the diet

Male mouse model of aging
Reduced the hypothalamic inflammation (TNF-α
and GFAP) and decreased hypothalamic reactive
gliosis associated with aging in males [141].

Quercetin (30 mg/kg/day,
intraperitoneal in LPS model and 10
mg/kg, intraperitoneal in trauma
brain injury)

Administration of LPS in mice
Repetitive traumatic brain injury
model in mice

In LPS model, reduced activated gliosis and
prevented neuroinflammation in the cortex and
hippocampus. Rescued the mitochondrial
apoptotic pathway and neuronal degeneration
by regulating Bax/Bcl2, and decreased activated
cytochrome c, caspase-3 activity and cleaving
PARP-1 in the cortical and hippocampal regions.
In trauma brain injury, reduced gliosis in CA1
[160,161]
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Table 1. Cont.

Antioxidant Model Effect

Curcumin (200 mg/kg by oral gavage
in nanoparticles model and 1 µM and
50 µM in astrocyte cell lines)

Neurotoxicity induced by zinc oxide
nanoparticles in rats
Oxidative stress induced by hydrogen
peroxide in A172 (human
glioblastoma cell line) and HA-sp
(human astrocytes cell line derived
from the spinal cord) astrocytes

In nanoparticle models, ameliorates the
deleterious effect of neurotoxins on the cerebellar
cortex through its antioxidant (GPx and total
antioxidant capacity increase and nitric oxide
and MDA decrease), antiapoptotic (caspase-3
and p53 decrease), and anti-inflammatory
(COX-2, IL-6 and TNF-α decrease) effects [155]
In the astrocytes cell lines, protects astrocytes
from hydrogen peroxide-induced oxidative
stress but also reverses the inflammation,
apoptosis and mitochondria fragmentation and
dysfunction induced by oxidative stress
(inhibiting up-regulation of GFAP, vimentin and
Prdx6) [156]

11. Conclusions

Obesity is one of the main public health problems worldwide, in addition to being
associated with comorbidities such as type 2 diabetes and other metabolic diseases that
cause alterations in several regions of the body. Neuroinflammation in obese patients is
clearly evident; nevertheless, gliosis is not considered an important comorbidity. This
disease has not been appropriately treated, diagnosed and prevented; therefore, it is a
risk factor for the appearance of neurodegenerative diseases. The literature that were
consulted mainly focused on the damage that obesity causes to the hypothalamus, and the
structure associated with the ingestion and satiety processes; nevertheless, damage due to
neuroinflammation has also been described in frontal cortex, parietal cortex, basal ganglia,
thalamus, hippocampus and cerebellum. In this review, we point out the most important
aspects of gliosis in obese patients, the available diagnosis tools and antioxidants’ capacity
for the prevention and treatment of this condition.

Antioxidants are efficient in reducing neuroinflammation and promoting neuropro-
tection in models of nervous system damage; however, studies evaluating the effect of
antioxidants in gliosis in obese patients are limited. According to what we found in this re-
view, we can mention that curcumin, quercetin and melatonin could be the most promising
antioxidants for the management of gliosis in patients with obesity, due to their mechanism
of action and their safety. In addition, further research is warranted regarding Acarbose,
17-α-estradiol and nordihydroguaiaretic acid, because they have been shown to reduce
neuroinflammation specifically in the hypothalamus, the brain region most affected by
obesity. This was conducted with the aim of proposing novel therapeutic targets in gliosis
due to obesity. However, most of these studies have been reported in animal models;
therefore, further clinical studies in human are urgently needed.
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Wyleżoł, M.; et al. Does Long-Term High Fat Diet Always Lead to Smaller Hippocampi Volumes, Metabolite Concentrations,
and Worse Learning and Memory? A Magnetic Resonance and Behavioral Study in Wistar Rats. PLoS ONE 2015, 10, e0139987.
[CrossRef]

108. Lee, D.; Thaler, J.P.; Berkseth, K.E.; Melhorn, S.J.; Schwartz, M.W.; Schur, E.A. Longer T(2) relaxation time is a marker of
hypotha-lamic gliosis in mice with diet-induced obesity. Am. J. Physiol. Endocrinol. Metab. 2013, 304, E1245–E1250. [CrossRef]

109. Kreutzer, C.; Peters, S.; Schulte, D.M.; Fangmann, D.; Türk, K.; Wolff, S.; van Eimeren, T.; Ahrens, M.; Beckmann, J.; Schafmayer,
C.; et al. Hypothalamic Inflammation in Human Obesity Is Mediated by Environmental and Genetic Factors. Diabetes 2017, 66,
2407–2415. [CrossRef]

110. Baufeld, C.; Osterloh, A.; Prokop, S.; Miller, K.R.; Heppner, F.L. High-fat diet-induced brain region-specific phenotypic spectrum
of CNS resident microglia. Acta Neuropathol. 2016, 132, 361–375. [CrossRef]

111. Schur, E.A.; Melhorn, S.J.; Oh, S.K.; Lacy, J.M.; Berkseth, K.E.; Guyenet, S.J.; Sonnen, J.A.; Tyagi, V.; Rosalynn, M.; De Leon, B.;
et al. Radiologic evidence that hypothalamic gliosis is associated with obesity and insulin resistance in humans. Obesity 2015, 23,
2142–2148. [CrossRef]

112. Berkseth, K.E.; Guyenet, S.J.; Melhorn, S.J.; Lee, D.; Thaler, J.P.; Schur, E.A.; Schwartz, M.W. Hypothalamic gliosis associated
with high-fat diet feeding is reversible in mice: A combined immunohistochemical and magnetic resonance imaging study.
Endocrinology 2014, 155, 2858–2867. [CrossRef]

113. Castaner, O.; Goday, A.; Park, Y.M.; Lee, S.H.; Magkos, F.; Shiow, S.T.E.; Schröder, H. The Gut Microbiome Profile in Obesity: A
Systematic Review. Int. J. Endocrinol. 2018, 2018, 4095789. [CrossRef] [PubMed]

114. Chunchai, T.; Thunapong, W.; Yasom, S.; Wanchai, K.; Eaimworawuthikul, S.; Metzler, G.; Lungkaphin, A.; Pongchaidecha, A.;
Sirilun, S.; Chaiyasut, C.; et al. Decreased microglial activation through gut-brain axis by prebiotics, probiotics, or synbiotics
effectively restored cognitive function in obese-insulin resistant rats. J. Neuroinflamm. 2018, 15, 11. [CrossRef] [PubMed]

115. Kang, E.B.; Koo, J.H.; Jang, Y.C.; Yang, C.H.; Lee, Y.; Cosio-Lima, L.M.; Cho, J.Y. Neuroprotective Effects of Endurance Exercise
Against High-Fat Diet-Induced Hippocampal Neuroinflammation. J Neuroendocrinol. 2016, 28, 5. [CrossRef] [PubMed]

116. Rivera, P.; Pérez-Martín, M.; Pavón, F.J.; Serrano, A.; Crespillo, A.; Cifuentes, M.; López-Ávalos, M.D.; Grondona, J.M.; Vida, M.;
Fernández-Llebrez, P.; et al. Pharmacological administration of the isoflavone daidzein enhances cell pro-liferation and reduces
high fat diet-induced apoptosis and gliosis in the rat hippocampus. PLoS ONE 2013, 31, e64750. [CrossRef]

117. Fernández-Tomé, S.; Hernández-Ledesma, B. Current state of art after twenty years of the discovery of bioactive peptide lunasin.
Food. Res. Int. 2019, 116, 71–78. [CrossRef]

118. Chatterjee, C.; Gleddie, S.; Xiao, C.W. Soybean Bioactive Peptides and Their Functional Properties. Nutrients 2018, 10, 1211.
[CrossRef]

119. Hsieh, C.C.; Wang, Y.F.; Lin, P.Y.; Peng, S.H.; Chou, M.J. Seed peptide lunasin ameliorates obesity-induced inflammation and
regulates immune responses in C57BL/6J mice fed high-fat diet. Food. Chem. Toxicol. 2021, 147, 111908. [CrossRef]

120. Sharma, P.; Verma, P.K.; Sood, S.; Pankaj, N.K.; Agarwal, S.; Raina, R. Neuroprotective potential of hydroethanolic hull extract of
Juglans regia L. on isoprenaline induced oxidative damage in brain of Wistar rats. Toxicol. Rep. 2021, 8, 223–229. [CrossRef]

121. Dal Monte, M.; Cammalleri, M.; Amato, R.; Pezzino, S.; Corsaro, R.; Bagnoli, P.; Rusciano, D. A Topical Formulation of Melato-
ninergic Compounds Exerts Strong Hypotensive and Neuroprotective Effects in a Rat Model of Hypertensive Glaucoma. Int. J.
Mol. Sci. 2020, 21, 9267. [CrossRef]

122. Anyanwu, B.O.; Orish, C.N.; Ezejiofor, A.N.; Nwaogazie, I.L.; Orisakwe, O.E. Neuroprotective effect of Costus after on low dose
heavy metal mixture (lead, cadmium and mercury) induced neurotoxicity via antioxidant, anti-inflammatory activities. Toxicol.
Rep. 2020, 7, 1032–1038. [CrossRef]
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