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Abstract: Phlorizin is a plant-derived molecule with relevant anti-diabetic activity, making this
compound a potential functional component in nutraceutical formulations for the management
of glycemia. It is noteworthy that promising sources for the extraction of phlorizin include apple
tree leaves, a by-product of apple fruit production. The main aim of this study was to optimize
the extraction process of phlorizin from Annurca apple tree leaves (AALs) using response surface
methodology (RSM), and to determine the potential nutraceutical application of the obtained extract.
The results of the RSM analysis indicate a maximum phlorizin yield of 126.89 ± 7.579 (mg/g DW)
obtained under the following optimized conditions: MeOH/H2O, 80:20 + 1% HCOOH as the
extraction solvent; 37.7 ◦C as the extraction temperature; and 170 min as the time of extraction.
The HPLC-DAD-HESI-MS/MS analysis performed on the extract obtained under such conditions,
named optimized Annurca apple leaves extract (OAALE), led to the identification of twenty-three
phenolic molecules, with fifteen of them quantified. To explore the nutraceutical potential of OAALE,
the in vitro antioxidant activity was evaluated by DPPH, ABTS, and FRAP assays, resulting in
21.17 ± 2.30, 38.85 ± 0.69, and 34.14 ± 3.8 µmol Trolox equivalent/g of extract, respectively. Moreover,
the IC50 of 0.330 mg/mL obtained from the advanced glycation end-product inhibition assay, further
supported the antidiabetic potential of OAALE.

Keywords: waste product; antioxidant activity; response surface methodology; antidiabetic activity;
phlorizin

1. Introduction

Phlorizin (phloretin-2-O-β-D-glucopyranoside) is the glucoside of phloretin, a member
of dihydrochalcones, which are a family of bicyclic flavonoids. It was first isolated by a
French scientist from apple tree bark in 1835 [1]. This molecule was largely studied
for its multiple health effects, such as its anti-inflammatory, antioxidant, anticancer, and
antibacterial activities [2]. Particularly, phlorizin plays an important role as a dietary
polyphenol that is able to regulate glucose homeostasis by reducing intestinal glucose
uptake [2]. More specifically, in diabetic rats, phlorizin was shown to inhibit intestinal
and renal glucose uptake via sodium-dependent glucose transporters (SGLTs), resulting
in a reduction in hyperglycemia without altering insulin secretion [3]. Other studies
reported that phlorizin was not only able to reduce glucose plasma levels, but it also
improved lipid metabolism [4], accelerated liver glycogen synthesis [5], decreased hepatic
gluconeogenesis [6], and exerted hypoglycemic effects in type 2 diabetes mellitus mice [6].

The main natural sources of phlorizin are the plants of the Malus genus, although
it also reaches a valuable concentration in other plant species, such as Punica granatum
(pulp) [7], Polygonum cuspidatum (flower), Prunus persica (pulp) [8], Rosa canina (flesh) [9],
Vaccinium vitis-idaea (flesh) [10], and Vaccinium macrocarpon [11]. Specifically, phlorizin
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is not equally distributed in all parts of the apple tree, however, it reaches its maximum
concentration in the non-edible parts of the plant, e.g., leaves [12], twigs [13], root bark,
seeds [14], and unripe fruits [15]. Phloretin, and its glucoside phlorizin, are found to be the
major phenolic compounds in apple leaves, reaching a concentration ranging from 5.4% to
14% of leaf dry weight (DW) [12] Moreover, the phlorizin content of leaves seems to be less
affected by some variables, such as apple cultivar or harvesting period, than its aglycone,
making phlorizin concentration stable over time and in the type of apple cultivar analyzed.

Considering the conventional method of cultivation, during the pruning period in
summer, unripe fruits and leaves are harvested to improve the quality of fruit production,
resulting in a high amount of non-utilized apple leaves that would be classified as agro-food
waste materials [12]. As widely reported, the interest of the nutraceutical industry in the
reutilization of agro-food waste products is progressively increasing, since they represent
still rich sources of biologically active compounds that can be conveniently used for the
formulation of food supplements [16]. In this context, apple leaves may be considered
an excellent source of bioactive compounds, especially phlorizin, their major phenolic
component. Currently, the main apple-derived waste product reutilized by nutraceutical
industries is root bark. Interestingly, compared to root barks, apple leaves have a similar
dihydrochalcones content and are also produced in higher amounts and in every cycle of
cultivation. Therefore, these byproducts could be considered a more convenient alternative
raw material for the formulation of nutraceutical products rich in phlorizin. Due to the
aforementioned biological activities ascribed to phlorizin, several extraction methods have
been developed to optimize the extraction yield of this molecule from plant materials.
In this regard, similarly to other polyphenolic compounds, the hydrochloric mixture is
considered the more exhaustive solvent for its extraction [2].

Annurca apple is the only apple cultivar native to Southern Italy, listed as a Protected
Geographical Indication (PGI) product by the European Council (Commission Regulation
(EC) No.417/2006)). Annurca polyphenolic fraction is largely studied for its beneficial
effects on the control and management of cholesterol plasma levels in healthy and mildly
hypercholesterolemic subjects [17]. On the other hand, there has been a lack of studies
regarding the chemical characterization of Annurca apple leaves (AALs) in the scientific
literature. Moreover, compared to other apple cultivars, both local (native of the same
region of Annurca apple, i.e., Rosa di Serino, Limoncella) and commercial ones (Pink Lady
and Golden Delicious), Annurca apple showed the highest title in dihydrochalcones, and
this trend would also be reproduced in the leaves [18,19].

In light of these considerations, the main goal of the present study was to investigate
the potential of Annurca apple tree leaves (AALs) as a source of phenolic compounds,
especially phlorizin. Moreover, the response surface methodology (RSM) was used to
reach the maximum phlorizin extraction rate from AAL. After the determination of the
optimum extraction condition (OEC), the polyphenolic composition of the extract obtained
in OEC, named OAALE (Optimized Annurca Apple Leaves Extract), was investigated and
its in vitro antioxidant and antidiabetic activities were studied.

2. Materials and Methods
2.1. Reagents

All chemicals, reagents, and standards used were analytical or LC–MS grade reagents.
The water was treated in a Milli-Q water purification system (Millipore, Bedford, MA, USA)
before use. Catechin (purity ≥ 98% HPLC), procyanidin B1 (purity ≥ 90% HPLC), procyani-
din B2 (purity ≥ 90% HPLC), procyanidin B3 (purity ≥ 95% HPLC), procyanidin C1 (purity
≥ 90% HPLC), chlorogenic acid (purity ≥ 95% HPLC), caffeic acid (purity ≥ 98% HPLC),
syringic acid (purity ≥ 98% HPLC), gallic acid (purity ≥ 98% HPLC) rutin (purity ≥ 94%
HPLC), p-coumaric acid (purity ≥ 98% HPLC), epicatechin (purity ≥ 98% HPLC), ferulic
acid (purity ≥ 99% HPLC), quercetin 3-O-glucoside (purity ≥ 98% HPLC), kaempferol
3-O-glucoside (purity ≥ 90% HPLC), quercetin (purity ≥ 98% HPLC), and the reagents for
in vitro studies were purchased from Sigma-Aldrich (Milan, Italy).
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2.2. Sample Collection and Extraction Protocol

AAL were harvested in October 2021 from the orchards of “Giaccio Frutta” society
(Vitulazio, Caserta, Italy, 41◦100 N–14◦130 E). The AALs were frozen at −80 ◦C, lyophilized,
and ground to obtain a homogeneous powder that constituted the production batch used for
the experiments. As reported in Table 1, for the optimization of phlorizin extraction protocol
from AALs, different extraction times (30, 60, 120, 240 min), solvent compositions (80%
aqueous methanol solution containing 0.1, 1, or 5% formic acid), incubation temperatures
(30, 35, and 45 ◦C), with and without a sonication stage of 30 min, were opportunely
combined. According to the general extraction protocol applied, 250 mg of AALs were
treated with 2 mL of extraction solvent, as previously optimized by Othman et al. [12] the
mixture obtained was left in incubation at selected temperatures and times on an orbital
shaker. At the end of the extraction time, where expected, 30 min of sonication (continuous
operative mode, 150 W Power, 40 kHz Frequency; Branson Fisher Scientific 150E Sonic
Dismembrator) was performed. After that, the samples were centrifuged for 5 min at
12,000× g. The supernatants were filtered with a 0.22 µm nylon filter (Cell Treat, Shirley,
MA, USA) and stored at −20 ◦C until analysis. All extractions were performed in triplicate.

Table 1. Independent variables and their values used for the model set.

Independent Variable Factor Levels

Incubation time (min) 30 60 120 240

% Acid in the extraction solvent 0.1 1 5

Temperature (◦C) 45 35 25

Sonication Yes No

Total runs 69

2.3. HPLC Analyses of Samples
2.3.1. Qualitative Polyphenolic Composition by HPLC-DAD-HESI-MS/MS

An HPLC DIONEX UltiMate 3000 (Thermo Fisher Scientific, San Jose, CA, USA)
equipment, coupled with an autosampler, a binary solvent pump, a diode-array detector
(DAD), and an LTQ XL mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA),
were used for the analysis. The chromatographic analysis was performed according to
Maisto et al., with slight modifications [20]. The separation conditions were as follows:
column temperature was set at 35 ◦C, the injection volume was 5 µL, and the flow rate was
set at 1 mL/min. The selected column was the Kinetex® C18 column (250 mm × 4.6 mm,
5 µm; Phenomenex, Torrance, CA, USA). The mobile phases were water at 0.1% formic
acid (A) and acetonitrile at 0.1% formic acid (B). Elution was performed according to the
following conditions: 0–3 min hold at 5% solvent B, from 5% (B) to 40% (B) in 20 min and
95% (B) in 10 min, followed by 5 min of maintenance; for the remaining 10 min, the column
was equilibrated to the initial conditions. Regarding the mass parameters, the source was a
heated electrospray interface (HESI), operated in negative ionization with full scanning (FS)
and data-dependent acquisition (DDA). Phenolic acids, hydroxycinnamic acids, flavanols,
and flavanones were monitored at 280 nm, while flavonols were monitored at 360 nm.
Collision-induced fragmentation was made using argon, with a collision energy of 35.0 eV.
The ion source was set using the following parameters: sheath gas flow rate: 30; auxiliary
gas flow rate: 10; capillary temperature: 320 ◦C; source heated temperature: 150 ◦C; source
voltage: 3.5 kV; source current: 100 µA; capillary voltage: 31 V; and tube lens: 90 V.

2.3.2. Quantitative Polyphenols Analysis by HPLC-DAD-FLD

The quantitative analysis of OECE was performed with the HPLC Jasco Extrema
LC-4000 system (Jasco Inc., Easton, MD, USA), equipped with an autosampler, a binary
solvent pump, a diode-array detector (DAD), and a fluorescence detector (FLD). The chro-
matographic analysis was performed according to our previously developed method [20].



Antioxidants 2022, 11, 1933 4 of 15

Procyanidins were detected by a fluorescence detector that was set with an excitation
wavelength of 272 nm and an emission wavelength of 312 nm, while the phenolic acids,
hydroxycinnamic acids, flavanols, and flavanones were acquired at 280 nm, and flavonols
at 360 nm (Supplementary Materials Figures S1–S4). The analyses were performed at a
flow rate of 1 mL/min, with solvent A (2% acetic acid) and solvent B (0.5% acetic acid in
acetonitrile and water 50:50, v/v) using Kinetex® C18 column (250 mm × 4.6 mm, 5 µm;
Phenomenex, Torrance, CA, USA): 0–5 min of 10% (B), from 10% (B) to 55% (B) in 50 min
and 95% (B) in 10 min, followed by 5 min of maintenance. Peak identifications were based
on a comparison of retention times with analytical standards and standard addition to the
samples. The quantitative analyses were performed using the calibration curve calculated
with six different concentrations in a concentration range of 0.1–1000 ppm and triplicate
injections at each concentration level.

2.4. Total Phenolic Content Determination

The total phenol content (TPC) was performed by Folin–Ciocalteau’s assay, using
gallic acid as the reference standard (Sigma-Aldrich, St. Louis, MO, USA). Briefly, 0.1 mL
of samples (appropriately diluted with water to achieve a measured absorbance value
included the linear range of the spectrophotometer) were added in sequence: 0.5 mL of
Folin–Ciocalteau’s (Sigma-Aldrich, St. Louis, MO, USA) reagent and 0.2 L of an aqueous
solution of Na2CO3 7% (w/v%), bringing the final volume to 10 mL with water. Then, the
samples were mixed and left in incubation in the dark for 90 min. After the reaction time,
the absorbance was acquired at 760 nm (Jasco Inc., Easton, MD, USA). All the samples were
analyzed in triplicate and the concentration of total polyphenols was calculated in gallic
acid equivalents (GAEs).

2.5. Antioxidant Activity
2.5.1. DPPH• Radical Scavenging Assay

The radical scavenging ability of the antioxidants in the sample was evaluated using
the stable radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) with a maximum absorbance at
517 nm. The analysis was performed by mixing 100 µL of each sample (opportunely diluted
in extraction mixture) with 1000 µL of a methanol solution of DPPH (153 mmol/L). The
mixture obtained was left in incubation in the darkness for 9 min of reaction time. The
decrease in absorbance was evaluated using a UV–visible spectrophotometer (Beckman,
Los Angeles, CA, USA). All determinations were performed in triplicate. DPPH• inhibition
was calculated according to the formula: [(Ai − Af)/Ac] × 100, where Ai is the absorbance
of the sample at t = 0, Af is the absorbance of the sample after the reaction time and Ac
was the absorbance of the control (1000 µL of a methanol solution of DPPH + 100 µL
of methanol). The obtained results are expressed in µmol of Trolox (6-hydroxy-2,5,7,8-
tetramethylchroman-2-carboxylic acid) equivalent (TE). Moreover, the results were also
reported as EC50, which is the amount of antioxidant compound necessary to inhibit the
initial DPPH• concentration by 50% [21].

2.5.2. Ferric Reducing/Antioxidant Power (FRAP) Assay

When a Fe3+-TPTZ complex is reduced to the Fe2+ ion by an antioxidant under acidic
conditions, a blue color develops, with maximum absorbance at 593 nm [18]. Thereby, the
antioxidant effect (reducing ability) of the sample was evaluated by monitoring the forma-
tion of a Fe2+–TPTZ complex with a spectrophotometer (Jasco Inc., Easton, MD, USA). The
test was performed as reported by Benzie and Strain (1996) [22], with slight modifications.
The Frap working solution was prepared by mixing 10 vol of 0.3 M acetate buffer, pH 3.6
(3.1 g sodium acetate and 16 mL glacial acetic acid), 1 vol of 10 mM TPTZ prepared in
40 mM HCl, and 1 vol of 20 mM FeCl3. All the components of the working solutions were
freshly prepared and used on the same day of preparation. Before performing the assay,
all the solutions were brought to 37 ◦C. The amount of 2.85 mL of working solution was
mixed with 0.15 mL diluted samples and incubated at 37 ◦C for 4 min. After the incubation
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time, the absorbance was acquired at 593 nm (Jasco Inc., Easton, MD, USA). The blank was
represented by the only working solution. For the calculation of antioxidant activity, the
blank absorbance value was subtracted from the absorbances of the samples. All analyses
were performed in triplicate. A standard curve was plotted with Trolox, and the results are
expressed as µmol TE.

2.5.3. ABTS• Radical Scavenging Assay

The assay relied on the capability of antioxidant molecules to react ABTS•+ radical
(2,20-azinobis(3-ethylbenzotiazoline-6-sulfonate)), a chromophore with specific absorption
at 734 nm. The test was performed according to the experimental protocol previously
performed by Babbar et al. (2011) [23] with some modifications.

ABTS solution was prepared by mixing 2.5 mL of ABTS 7.0 mM ethanol solution and
44 µL of potassium persulfate 140 mM solution, which was left to incubate for at least 7 h,
at 5 ◦C in darkness. After this time, to prepare the working solution, the obtained mixture
was diluted with the ethanol–water solution until an absorbance value of 0.700 ± 0.05 was
acquired at 754 nm (Jasco Inc., Easton, MD, USA). The assay was performed by mixing
1000 µL ABTS working solution with 100 µL of the sample opportunely diluted in the
extraction solvent. The mixture was incubated for 2.5 min in the dark. After this time,
the sample absorbances were read at 734 nm, with a visible discoloration of the sample
with high antiradical activity. The control was prepared by replacing the sample with the
same volume of ethanol. The radical inhibition was calculated according to the formula:
[(Ai − Af)/Ac] × 100, (2), where Ai is the absorbance of the sample at t = 0, Af is the
absorbance after 2.5 min, and Ac is the absorbance of the control at time zero. Trolox was
used as a standard antioxidant. The results are expressed both as µmol of TE and EC50,
which is the amount of antioxidant necessary to decrease the initial ABTS•+ concentration
by 50% [21].

2.6. Advanced Glycation End-Product (AGE) Inhibition Assay

The inhibition of AGE generation by OAALE extract and the standard phenolic
rutin was performed according to the method reported by Schiano et al. [15] with slight
modifications. The amount of 500 µL of serial dilutions for each sample (0.075–70 mg/mL
of final concentrations for OAALE and 0.05–2 mg/mL for rutin) prepared in distilled water
were added to a working solution composed of 500 µL of bovine serum albumin (50 mg/L),
250 µL fructose (1.25 mol/L) and 250 µL of glucose (25 mol/L). All the elements of this
reaction mixture were dissolved in phosphate buffer (200 mmol/L; pH 7.4) containing
sodium azide (0.02% w/v). The mixture was incubated at 37 ◦C for 7 days. After this
incubation time, the fluorescence was acquired at an excitation wavelength of 355 nm and
an emission of 460 nm (Perkin-Elmer LS 55, Waltham, MA, USA). Distilled water was
used as a negative control, while the blank was carried out by replacing the fructose and
glucose with phosphate buffer. The inhibitory activity was expressed as a percentage of
glycation inhibition (GI), using the following formula: GI (%) = [(Fs − Fsb)/(Fc − Fcb)]
× 100, (4) where Fs is the fluorescence intensity in the presence of the sample; Fsb is the
fluorescence intensity in the absence of fructose and glucose; Fc is the fluorescence intensity
in the absence of sample; and Fcb is the fluorescence intensity in the absence of sample,
fructose, and glucose. Finally, the results are reported as EC50.

2.7. Statistics

Unless otherwise stated, all experimental results are expressed as the mean ± standard
deviation (SD) of three repetitions. Graphics and IC50 values determination were calculated
using GraphPad Prism 8 software. The RSM optimization was performed with Minitab
software version 21.1.0.
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3. Results and Discussion
3.1. Optimisation of Phloridzin Extraction using RSM Model

The choice to optimize the phlorizin extraction conditions in MeOH 80% was due to
the capacity of this solvent to reach the maximum extraction rate not only of phlorizin,
but also of total polyphenols [2,20,23]. The temperature was kept constantly below 40 ◦C
to avoid the temperature-dependent decomposition of polyphenols during the extraction
process. Generally, the stability of polyphenols at high-temperature values depends on the
class of polyphenols considered and, obviously, on their chemical structure. Specifically,
it was well accepted that the polyphenols concentration was significantly stable (p < 0.05)
during the extraction process at a temperature lower than 40 ◦C [24]. The experimental
data show that the phlorizin concentration ranged from 70.80 mg/g (p < 0.001) (60 min,
25 ◦C, 1% HCOOH with 30 min of sonication) to 141.59 mg/g (120 min, at 35 ◦C, +1%
HCOOH, without sonication). Initially, four independent commonly modified factors,
i.e., extraction time (30, 60, 120, and 240 min), temperature (45, 35, and 25 ◦C), and %
acid in the extraction solvent (5, 1, and 0.1% of formic acid), combined with or without a
single cycle of sonication (30 min), were selected for the optimization of phlorizin yield in
the hydroalcoholic solvent. Considering the independent factors analyzed, according to
preliminary ANOVA analysis, only the extraction temperature (A) and extraction time (B),
without sonication assistance, were significantly correlated with the phlorizin extraction
rate, as explained in the Pareto-chart graphic with α = 0.05 (Figure 1).
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Based on the statistical results of model fitting, the best model to optimize the phlorizin
output would be by reducing the statistical analysis to two-factor interaction (2FI, i.e., A
and B) (Figure 1). The multiple regression analysis of phlorizin values showed that the
model was significant (p < 0.0001), did not present a lack of fit (p = 0.182), and a percentage
predictivity of the model was of 73.56% (R-sq 77.58%, R-sq(adj) 75.88%; R-sq(pre) 73.41%).
Second-order quadratic polynomial models were found to be adequate to describe the
effect of the two independent and significative factors on the phlorizin output, as described
by Equation (1), in terms of uncoded units.

Phlorizin Concentration = −57.9 + 8.46 A + 0.3209 B − 0.1254 A*A − 0.001609 B*B + 0.00597 A*A (1)
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where factors A and B are the temperature and extraction time, respectively. According to
the process model (Equation (1)), factors A and B affected the phlorizin yield in different
ways. Specifically, temperature (A) was reported in the polynomial Equation (5) times
vs. three times of the extraction time (B), highlighting that the extraction temperature
played a predominant role in influencing the phlorizin yield. Moreover, as described by
Equation (1), the increase in factor B may lead to a decrease in phlorizin yield. It was well
accepted that the extended extraction time can damage the extracted phlorizin and degrade
extract quality [25]. The dominant role of temperature in influencing the polyphenols
extraction rate was largely described [25]. A high extraction temperature indeed decreases
the viscosity of the extraction medium, which helps the solvent penetrate the plant matrix,
resulting in faster kinetics [26]. Moreover, the increment in solvent temperature may
decrease the surface tension and, consequently, enhances the wetting of the plant particles,
leading to a higher extraction yield [27] contrastingly, as confirmed by Equation (1), the
temperature value must be kept within some limits, beyond which it determines the
degradation of polyphenols. The same effect was also shown by the 3D response surface
(Figure 2a). The predictive model studied indicates that the theoretical condition to achieve
the maximum phlorizin extraction consisted of the hydroalcoholic extraction (MeOH/H2O,
80:20 + 1% HCOOH), conducted at 37.7 ◦C for 170 min, as reported in Figure 2. These
variables were combined to set up another new extraction from LAA to verify and confirm
the theoretical phlorizin concentration (129.29 mg/g) described by the multiple response
prediction analysis.
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Therefore, the experimental phlorizin concentration obtained in the extract, by the
application of these optimized conditions, was 126.89 ± 7.579, with an EA of 101.89%.
Because of the low absolute error values achieved by the comparison between observed
and predicted values, the proposed model may be used to predict the experimental value.

3.2. Quantitative Polyphenols Analysis by HPLC-DAD-FLD

Chromatographic analysis for the quantification of OAALE polyphenolic composition
was performed as previously described in Section 2.3. The HPLC-DAD-FLD analysis
resulted in the identification and quantification of 15 different selected phenolic compounds,
counting flavanols, procyanidins, phenolic acids, and flavonols. The obtained results
are reported in Table 2. As expected, phlorizin and phloretin were some of the most
abundant and representative polyphenols contained in OAALE. Beyond dihydrochalcones,
the second most representative class of polyphenols In OAALE were flavanols. Quercetin-
3-O-glucoside and Kaempferol-3-O-glucoside reached a valuable concentration in OAALE
of 3.27 and 20.09 mg/g, respectively. Similarly, Othman et al. reported a relevant flavanol
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content in the apple leaf extract. Moreover, among the flavanols detected by the same
researchers, quercetin-3-O-rhamnoside was the most abundant polyphenolic compound
in extracts obtained from the leaves of different apple cultivars. Chlorogenic acid was
the major phenolic acid detected in OCE, followed by caffeic acid, 0.209 and 0.0785 mg/g
of dry weight, respectively. Additionally, other studies related to apple leaf extracts also
reported chlorogenic acid as the most abundant phenolic acid [28]. As regards the dimeric
procyanidin content, a higher amount was observed for procyanidin B2 (0.454 mg/g),
followed by procyanidin B1 and B3. Our results are in line with other evidence about the
procyanidin B2 as the most abundant procyanidin compound in apple leaf extract [29].

Table 2. Quantitative analysis of OAALE determined by HPLC-DAD-FLD analysis.

Compound Mean Value ± SD (mg/g)

Chlorogenic acid 0.2090 ± 0.0040
Caffeic acid 0.0785 ± 0.0013

p-Cumaric acid 0.0081 ± 0.0001
Procyanidin B1+B3 0.1634 ± 0.0003

Procyanidin B2 0.4540 ± 0.0080
Epicatechin 0.2000 ± 0.0037

Rutin 0.3510 ± 0.0010
Quercetin-3-O-glucoside 3.2740 ± 0.0010

Kaempferol-3-O-rhamnoside 0.1680 ± 0.0070
Kaempferol-3-O-glucoside 20.0970 ± 0.3820

Apigenin-7-O-glucoside 0.0081 ± 0.0001
Phloridzin 126.8900 ± 7.5790
Quercetin 0.0152 ± 0.0001
Phloretin 0.8650 ± 0.0070

Values are expressed in mg/g ± standard deviation (SD) of three repetitions. Procyanidins B1 and B3 peaks were
partially overlapped and were quantified as a mixture of two compounds using the procyanidin B1 calibration curve.

3.3. Qualitative Polyphenols Analysis by HPLC-HESI-MS/MS

OCE polyphenolic composition was characterized by HPLC-HESI-MS/MS, as re-
ported in Section 2.3. Based on a comparison with the literature data, 23 compounds were
putatively identified (Table 3). Compound 1 showed a [M-H]− ion at m/z 197. The base
peak ion at m/z 182 [M-H-CH3]− and the fragment ions of its tandem mass spectrum at
m/z 179 [M-H-H2O]−, m/z 153 [M-H-CO2]− and m/z 138 [M-H-CO2-CH3]−, suggested
the presence of a carboxylic acid, a methoxy and a phenolic group. According to the mass
fragmentation pattern, compound 1 was identified as syringic acid [30]. Compounds 2 and
4 displayed a [M-H]− ion at m/z 163 and a base peak ion at m/z 119 [M-H-CO2]−. The
fragment ions at m/z 145 [M-H-H2O]− and at m/z 135 [M-H-CO]− indicated the presence
of the hydroxycinnamic acid scaffold and a phenol group. In agreement with the literature
data, compounds 2 and 4 were annotated as p-coumaric acid isomers [31]. Compound 3
showed a [M-H]− ion at m/z 353 and was putatively identified as a caffeoylquinic acid.
The base peak ion at m/z 191 [M-H-CA]− and the fragment ion at m/z 179 [M-H-QA]−

were due to the loss of the caffeic acid and the quinic acid group, respectively. By com-
parison with an authentic analytical standard, compound 3 was identified as chlorogenic
acid [32]. Caffeic acid (5) displayed a [M-H]− ion at m/z 179. The base peak ion at m/z 135
[M-H-CO2]− and the fragment ions at m/z 161 [M-H-H2O]− and m/z 107 [M-H-CO-CO2]−

highlighted the linkage of a carboxylic acid and a phenolic acid. One procyanidin dimer
B-type linkage (6) showed a [M-H]− ion at m/z 577 and a base peak ion at m/z 425 [M-
H-C8H8O3]−, due to the RDA fission. The fragment ions at m/z 451 [M-H-C6H6O3]−, at
m/z 289 [M-H-C15H12O6]− and at m/z 287 [M-H-C15H14O6]− were produced by the HRF
and the QM cleavage, respectively. By comparison with the authentic analytical standard,
compound 6 was identified as procyanidin B2 [31]. Compound 7 displayed a [M-H]− ion at
m/z 289 and was putatively identified as epicatechin. The base peak ion at m/z 245 [M-H-
C2H4O]− and the fragment ion at m/z 137 [M-H-C8H8O3]−, due to the RDA fragmentation,
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were in agreement with the literature data [33]. Two 4-O-coumaroylquinic acid isomers
(compounds 8 and 9) were tentatively identified. They showed a [M-H]− ion at m/z 337
and three fragment ions at m/z 191 [QA-H]−, at m/z 173 [QA-H-H2O]− and at m/z 163
[M-H-QA]−, due to the fragmentation of the quinic acid moiety. However, the base peak
ion at m/z 173 [QA-H-H2O]− indicated the linkage between quinic acid and coumaric acid
moieties with the 4-OH group. Therefore, compounds 8 and 9 were putatively identified as
4-O-coumaroylquinic acid isomers [34]. Four quercetin O-hexoside isomers (compounds
10, 14, 17, and 20) were putatively detected. They showed an [M-H]− ion at m/z 463
and a base peak ion at m/z 301 [M-H-Hex]− due to the fragmentation of the hexoside
group. The fragments at m/z 445 [M-H-H2O]− and at m/z 179 [M-H-Hex-C7H6O2]−, due
to the RDA fragmentation, confirmed the presence of the flavonol scaffold and agreed
with literature data [35]. Two quercetin O-rutinoside isomers (compounds 11 and 13) were
tentatively identified and displayed a [M-H]− ion at m/z 609. The base peak ion at m/z
301 [M-H-Glu-Rha]−, due to the loss of the disaccharide group, and the fragment ions at
m/z 463 [M-H-Rha]− and at m/z 179 [M-H-Glu-Rha-C7H6O2]−, which derived from the
RDA fragmentation, were consistent with the literature data [35]. However, compound 13
was identified as rutin by comparison with the authentic analytical standard. Compound
12 displayed a [M-H]− ion at m/z 433. The base peak ion at m/z 271 [M-H-Hex]− and the
fragment ions at m/z 313 [M-H-C4H8O4]− and at m/z 151 [M-H-Hex-C8H8O]−, due to
the RDA fragmentation, allowed the identification of the flavanone scaffold. Therefore,
compound 12 was annotated as naringenin O-hexoside [35]. Compound 15 showed a
[M-H]− ion at 431. The base peak ion at m/z 269 [M-H-Hex]− and the fragment ion at
m/z 311 [M-H-C4H8O4]− are derived from the cleavage of the hexoside group and the
RDA fragmentation, respectively. Based on the tandem mass spectrum and by compari-
son with an analytical standard, compound 15 was identified as apigenin 7-O-glucoside.
Compound 16 displayed a [M-H]− ion at m/z 593 and was annotated as kaempferol O-
rutinoside. The base peak ion at m/z 285 [M-H-Pent-Hex]− and the fragment ions at m/z
327 [M-H-Pent-C4H8O4]− and m/z 257 [M-H-Pent-Hex-CO]− confirmed the linkage of the
disaccharide rutinose and the aglycone kaempferol [36]. Compound 18 showed a [M-H]−

ion at m/z 433. The base peak ion at m/z 301 [M-H-Pent]− and the fragment ion at m/z
179 [M-H-Pent-C7H6O2]− allowed us to identify the presence of the pentoside group and
the flavanol scaffold. Based on the tandem mass spectrum, compound 18 was annotated
as quercetin O-pentoside. Quercetin O-rhamnoside (19) displayed an [M-H]− ion at m/z
447 and a base peak ion at m/z 301 [M-H-Rha]− for the loss of the rhamnoside unit. The
fragment ions at m/z 429 [M-H-H2O]−, m/z 179 [M-H-Rha-C7H6O2]− and m/z 151 [M-
H-Rha-C8H6O3]− confirmed the presence of the flavanol scaffold and are consistent with
the literature data. Compound 21 displayed a [M-H]− ion at m/z 435. The base peak ion
at m/z 273 [M-H-Hex]− and the prominent fragment ion at m/z 167 [M-H-Hex-C7H6O]−

indicated the presence of the chalcone scaffold and the linkage of the hexoside group.
Based on these data and by comparison with an analytical standard, compound 21 was
identified as phloridzin. Kaempferol 3-O-rhamnoside (22) showed a [M-H]− ion at m/z
431. Its tandem mass spectrum displayed a base peak ion at m/z 285 [M-H-Rha]− and two
fragment ions at m/z 327 [M-H-C4H8O3]− and m/z 179 [M-H-Rha-C7H6O]−, due to the
loss of the sugar moiety and RDA fragmentation [36]. The identity of compound 22 was
confirmed by comparison with the analytical standard. Compound 23 displayed a [M-H]−

ion at m/z 273. Its tandem mass spectrum is characterized by a base peak ion at m/z 167
[M-H-C7H6O]− and a fragment ion at m/z 125 [M-H-C9H8O2]−, which is linked to the
presence of the chalcone moiety. Based on these data and by comparison with an analytical
standard, compound 23 was identified as phloretin [36].
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Table 3. Polyphenolic composition of OAALE extracts determined by HPLC-HESI–MS/MS analysis.

No. Compound Rt (min) UV–Vis (nm) m/z Diagnostic Fragment Ref.

1 Syringic acid 9.56 210, 260 197 182 [M-H-CH3]−, 179 [M-H-H2O]−,
153 [M-H-CO2]−, 138 [M-H-CO2-CH3]− [30]

2 Coumaric acid isomer 1 11.17 215, 310 163 145 [M-H-H2O]−, 135 [M-H-CO]−, 119
[M-H-CO2]− [31]

3 Chlorogenic acid 11.52 215, 295, 325 353 191 [M-H-CA]−, 179 [M-H-QA]−,
173 [M-H-CA-H2O]−, 161 [M-H-QA-H2O]− [32]

4 Coumaric acid isomer 2 11.71 210, 305 163 145 [M-H-H2O]−, 135 [M-H-CO]−,
119 [M-H-CO2]−, 101 [M-H-CO2-H2O]− [31]

5 Caffeic acid 11.95 205, 280 179 161 [M-H-H2O]−, 151 [M-H-CO]−,
135 [M-H-CO2]−, 107 [M-H-CO-CO2]− [32]

6 Procyanidin B2 12.35 210, 295 577
451 [M-H-C6H6O3]−, 425 [M-H-C8H8O3]−,

289 [M-H-C15H12O6]−, 287
[M-H-C15H14O6]−

[31]

7 4-O-Coumaroylquinic
acid isomer 1 12.90 215, 310 337 319 [M-H-H2O]−, 191 [QA-H]−,

173 [QA-H-H2O]−, 163 [M-H-QA]− [33]

8 4-O-Coumaroylquinic
acid isomer 2 13.15 215, 310 337 319 [M-H-H2O]−, 191 [QA-H]−,

173 [QA-H-H2O]−, 163 [M-H-QA]− [34]

9 Quercetin O-hexoside
isomer 1 14.81 255, 355 463

445 [M-H-H2O]−, 301 [M-H-Hex]−,
179 [M-H-Hex-C7H6O2]−, 161

[M-H-Hex-C7H8O3]−
[34]

10 Quercetin O-rutinoside
isomer 1 14.94 205, 280, 310 609

591 [M-H-H2O]−, 463 [M-H-Rha]−,
301 [M-H-Glu-Rha]−, 179
[M-H-Glu-Rha-C7H6O2]−

[35]

11 Naringenin O-hexoside 15.19 215, 280, 310 433 415 [M-H-H2O]−, 313 [M-H-C4H8O4]−,
271 [M-H-Hex]−, 151 [M-H-Hex-C8H8O]− [35]

12 Rutin 15.21 210, 280, 320 609
591 [M-H-H2O]−, 463 [M-H-Rha]−,

301 [M-H-Glu-Rha]−, 179
[M-H-Glu-Rha-C7H6O2]−

[35]

13 Quercetin O-hexoside
isomer 2 15.58 255, 355 463 445 [M-H-H2O]−, 343 [M-H-C4H8O4]−,

301 [M-H-Hex]−, 179 [M-H-Hex-C7H6O2]− [35]

14 Apigenin O-hexoside 15.93 215, 280, 320 431 413 [M-H-H2O]−, 353 [?],
311 [M-H-C4H8O4]−, 269 [M-H-Hex]− [35]

15 Kaempferol O-rutinoside 16.07 255, 350 593
575 [M-H-H2O]−, 327 [M-H-Pent-C4H8O4]−,

285 [M-H-Pent-Hex]−, 257
[M-H-Pent-Hex-CO]−

[36]

16 Quercetin O-hexoside
isomer 3 16.12 255, 350 463 445 [M-H-H2O]−, 343 [M-H-C4H8O4]−,

301 [M-H-Hex]−, 179 [M-H-Hex-C7H6O2]− [36]

17 Quercetin O-pentoside 16.74 265, 320 433
415 [M-H-H2O]−, 301 [M-H-Pent]−,

179 [M-H-Pent-C7H6O2]−, 151
[M-H-Pent-C8H6O3]−

[37]

18 Quercetin O-rhamnoside 16.89 255, 345 447
429 [M-H-H2O]−, 301 [M-H-Rha]−,

179 [M-H-Rha-C7H6O2]−, 151
[M-H-Rha-C8H6O3]−

[37]

19 Quercetin O-hexoside
isomer 4 17.02 280, 320 463 445 [M-H-H2O]−, 343 [M-H-C4H8O4]−,

301 [M-H-Hex]−, 179 [M-H-Hex-C7H6O2]− [37]

20 Phloridzin 17.57 220, 285 435 417 [M-H-H2O]−, 273 [M-H-Hex]−, 167
[M-H-C13H16O6]− [38]

21 Kaempferol
3-O-rhamnoside 18.16 215, 265, 315 431 403 [M-H-CO]−, 327 [M-H-C4H8O3]−, 285

[M-H-Rha]−, 179 [M-H-Rha-C7H6O]− [36]

22 Quercetin O-rutinoside
isomer 2 19.01 220, 280, 320 609 591 [M-H-H2O]−, 463 [M-H-Rha]−, 343

[M-H-Rha-C4H8O4]−, 301 [M-H-Glu-Rha]− [36]

23 Phloretin 22.28 220, 285 273 255 [M-H-H2O]−, 167 [M-H-C7H6O]−, 125
[M-H-C9H8O2]− [36]

3.4. Total Polyphenols and In Vitro Antiradical Activity of OAALE

The antiradical potential of apple leaves, as vegetal matrices [39], considering their
well-accepted relation with diabetes and oxidative stress [40], prompted us to evaluate the
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total phenolic content (TPC) and the in vitro antiradical activity of OAALE. Thus, to obtain
a general overview of its total polyphenolic content, Folin–Ciocalteau’s test was performed
on OAALE, resulting in 23.70 ± 1.23 mg GAE/g of Annurca apple leaves (AALs). As
expected, the TPC of AALs was higher than the TPC of Annurca apple fruit (AAF), which
was 1.94 mg/g of DW of whole fruit (peel and pulp) [41]. The calculation of antiradical
activity was measured by the application of DPPH, ABTS, and FRAP assays on OAALE, as
described in Section 2. Results are reported in Table 4.

Table 4. Antiradical activity of AAL extract evaluated by DPPH, ABTS, and FRAP assays.

Antiradical Activity (µmol TE/g AAL DW ± SD)

DPPH Assay ABTS Assay FRAP Assay
21.17 ± 2.30 38.82 ± 0.69 34.14 ± 3.83

The results are expressed as µmol TE per gram of AAL. Abbreviations: AALs, Annurca apple leaves; DPPH,
2,2diphenyl-1-picrylhydrazyl; ABTS, 2,20-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid); FRAP, ferric reducing
antioxidant power; TE, Trolox equivalent, DW, dry weight. Values are mean ± standard deviation (SD) of
three repetitions.

Regarding the antiradical activity, OAALE has shown a higher relevant activity com-
pared to AAF (antiradical activity, respectively, of 0.048 for ABTS, 0.01559 for DPPH, and
0.0266 µmol TE/g DW for FRAP) [41]. Moreover, in order to standardize the results of
the various activities studied, the results of DPPH and ABTS assays were also calculated
as EC50, which is the quantity of antioxidants necessary to decrease the concentration of
the initial solution by 50% [21]. Figure 3 reported that the OAALE extract exhibited an
EC50 of 0.828 mg/mL for the DPPH assay and 0.542 mg/mL for the ABTS assay. Therefore,
these results would support the relevant potential application of OAALE as a source of
antiradical agents, with the indubitable benefit of re-evaluating food waste. It is notewor-
thy that increasing evidence from in vitro and clinical trials indicates that oxidative stress
may play a relevant role in the pathogenesis of diabetes. High levels of free radicals, and
the concomitant decrease in antioxidant defense mechanisms, may lead to the injury of
biological structures, which is recognized as the main pathological origin for the generation
and development of diabetes-related complications [40].
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3.5. In Vitro Antidiabetic Activity

Increasing evidence has identified the formation of advanced glycation end-products
(AGEs) as a major pathogenic risk agent related to hyperglycemia and diabetes-related
complications. It is also well known that the continuous AGEs accumulation in tissues and
organs is directly linked to the development of chronic diabetic-related complications, such
as retinopathy, nephropathy, neuropathy, and macrovascular disease [15,42]. AGEs are
proteins or fats combined with blood sugars after exposure to a glycation process through
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the Maillard reaction [43]. These compounds are extremely and negatively stable and
resistant to enzymatic activities, resulting in their relevant accumulation in different tissues,
which may cause a remarkable morphological change in cell tissue, with a continuous
deterioration of tissue structure and the alteration of their physiological function [15,42].
Therefore, the concentration-dependent inhibition of AGEs formation after the treatment
with OAALE was evaluated, with the results reported in Figure 4. The calculated IC50
value was 0.330 mg/mL. In this regard, phlorizin and phloretin may be considered the
main actors of OAALE potential valuable biological activity. In support of this hypothesis,
these two molecules represent the main polyphenolic components of OAALE and, as
reported in other studies, both of them demonstrated the inhibition of AGEs formation in a
concentration-dependent manner, at a concentration range of 0.01–1.0 mM [44].

Figure 4. Inhibition of advanced glycation end-product formation (%) by OAALE. Values represent
the mean ± standard deviation of triplicate readings.

In this context, although dihydrochalcones were the most abundant molecules in
OAALE, we also showed a valuable concentration of other classes of polyphenols (as
reported in Sections 3.2 and 3.3), which may contribute to the inhibition of AGEs formation.
Specifically, polyphenol antiglycation properties are due to their capacity to stop the
formation of a principal precursor of the Maillard reaction, the methylglyoxal (MGO) [45].
While phenolic acids and flavanols (e.g., gallic acid, p-coumaric acid, and epicatechin)
described a direct inhibition mechanism by a reduction in the carbonyl groups of MGO,
an indirect reaction with an MGO dicarbonyl moiety was reported [45,46]. Based on such
a consideration, the IC50 of 0.330 mg/mL would be attributed to the synergic action of
dihydrochalcones and other polyphenols contained in OAALE.

4. Conclusions

The previously described results indicate that AAL could be considered an excellent
by-product source of bioactive compounds, especially phlorizin. Notably, the optimization
of the extraction protocol conducted using the RSM methodology allowed us to evaluate
the maximum extractable phlorizin amount contained in AAL (126.89 mg/g). The extract
obtained under optimized conditions (OAALE) was also chemically characterized and its
in vitro potential biological activity was tested. The promising results about the antioxidant
activity and the inhibition of AGEs formation may suggest that AALs are a powerful func-
tional ingredient, useful for the formulation of nutraceutical products for the management
of diabetes disease. Further investigations about the beneficial potential exerted by the
formulation in a diabetes model are required to assess the effective application in the
management of this pathological condition. In addition, future perspectives include the
possibility of performing a toxicological analysis aiming to exclude the possible residues of
the means used to treat apple trees.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox11101933/s1, Figure S1: HPLC-FLD chromatogram of
OAALE extract; Figure S2: Zoomed area of HPLC-FLD chromatogram of OAALE extract; Figure S3:
HPLC-DAD chromatogram at 280 nm of OAALE extract; Figure S4: HPLC-DAD chromatogram at
360 nm of OAALE extract.
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