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Abstract: Nitrobindins (Nbs) are all-β-barrel heme proteins and are present in prokaryotes and
eukaryotes. Although their function(s) is still obscure, Nbs trap NO and inactivate peroxynitrite.
Here, the kinetics of peroxynitrite scavenging by ferric Danio rerio Nb (Dr-Nb(III)) in the absence and
presence of CO2 is reported. The Dr-Nb(III)-catalyzed scavenging of peroxynitrite is facilitated by a
low pH, indicating that the heme protein interacts preferentially with peroxynitrous acid, leading
to the formation of nitrate (~91%) and nitrite (~9%). The physiological levels of CO2 dramatically
facilitate the spontaneous decay of peroxynitrite, overwhelming the scavenging activity of Dr-Nb(III).
The effect of Dr-Nb(III) on the peroxynitrite-induced nitration of L-tyrosine was also investigated.
Dr-Nb(III) inhibits the peroxynitrite-mediated nitration of free L-tyrosine, while, in the presence of
CO2, Dr-Nb(III) does not impair nitro-L-tyrosine formation. The comparative analysis of the present
results with data reported in the literature indicates that, to act as efficient peroxynitrite scavengers
in vivo, i.e., in the presence of physiological levels of CO2, the ferric heme protein concentration must
be higher than 10−4 M. Thus, only the circulating ferric hemoglobin levels appear to be high enough
to efficiently compete with CO2/HCO3

− in peroxynitrite inactivation. The present results are of
the utmost importance for tissues, like the eye retina in fish, where blood circulation is critical for
adaptation to diving conditions.

Keywords: Danio rerio heme-protein; effect of CO2; kinetics; peroxynitrite detoxification; tyrosine
protection; zebrafish nitrobindin

1. Introduction

Nitrosative stress plays a key role in the etiology of human diseases, such as atheroscle-
rosis, inflammation, cancer, and neurological diseases, being particularly relevant in the
onset of retinopathies and glaucoma [1–3]. In fact, reactive nitrogen species (RNS) can
cause protein, DNA, and lipid nitration, impairing their functions [4–11]. One of the most
potent biological nitrosative agents is peroxynitrite (ONOO−), which is produced when
nitric oxide (•NO) and superoxide (•O2

−) are combined at extremely rapid rates [4,5,9–13].
ONOO− diffuses through membrane anion channels as well as the conjugated peroxyni-
trous acid ONOOH (pKa = 6.9) [13]. ONOO− is relatively stable, while ONOOH decays
rapidly, with an apparent half-life of 1-2 s at physiological pH, yielding ~70% nitrate
(NO3

−) and H+, and ~30% nitrogen dioxide (•NO2) and hydroxyl (•OH) radicals via the
homolysis of the O–O bond. The secondary reactions of •NO2 and O•− lead to NO2

− and
O2 [4,9–13]. ONOO− reacts with biomolecules mainly by a direct reaction or immediately
after ONOOH is homolyzed to •NO2 and •OH [4,9–13].

At the end of the last century, carbon dioxide (CO2) was reported to react with
ONOO− [14,15]. Since the CO2 concentration is relatively high in vivo (~1.2 × 10−3 M at
physiological pH in equilibrium with ~2.4 × 10−2 M HCO3

− with a pKa ≈ 6.3 at 25.0 ◦C),
most of the ONOO− rapidly reacts with the CO2/HCO3

− species (depending on pH),
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leading mostly to the formation of 1-carboxylato-2-nitrosodioxidane adduct (ONOOCO2
−),

which displays an apparent half-life of 0.5–3 ms. This compound further decays (via
homolysis of the O–O bond), yielding the reactive species trioxocarbonate•− (CO3

•−) and
•NO2 (3% to 35%), which then proceed towards CO2 and NO3

− (or by direct yielding of
NO3

− and CO2 (65% to 90%) [9,11–21]). As a whole, the complexity of the peroxynitrite
inactivation mechanism can be sketched, as is shown in Scheme 1 [13,22–41], where Dr-
Nb(III) represents the contribution of heme proteins.
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Scheme 1. Dr-Nb(III)-mediated isomerization of peroxynitrite in the absence and presence of
CO2 (representing the CO2/HCO3

−/CO3
2− system). The disappearance of the pH-dependent

ONOO−/ONOOH species is characterized by the absorption decrease at 302 nm. For the sake of
clarity, only the final products of the peroxynitrite inactivation mechanisms (indicated by k0 and k0

H)
are reported, while the intermediate species are described in the text.

Moreover, the reaction of ONOO− with CO2/HCO3
−/CO3

2− redirects the ONOO−/
ONOOH-based oxidation of aromatic and aliphatic amino acid residues, facilitating the
nitration of tyrosine and tryptophan and limiting the oxidation of methionine and cys-
teine [5,9–15,20,21,42–45]. Remarkably, •NO2 and CO3

•− radicals are much stronger oxi-
dant species than their precursors •NO, O2

•−, and ONOO−/ONOOH [9–13,20,21,46].
Tyrosine nitration through the peroxynitrite pathway (see Scheme 1) is operative in

most fish, including zebrafish (Danio rerio), under stressed conditions [47,48]. Further,
the effect of the enrichment of CO2 in the atmosphere brings about the raising of CO2
levels also in the oceans [49]. Although the increased levels of CO2 create only limited
behavioral effects, they may significantly affect the body response to external insults. In
addition, the increased concentration of CO2 in the blood is of particular relevance in fish,
for which retinal circulation is of crucial importance due to the high hydrostatic pressure of
the environment where they live [50,51].

Here, the kinetics of ONOO−/ONOOH (hereafter peroxynitrite) inactivation by all-
β-barrel ferric Danio rerio nitrobindin (Dr-Nb(III)), in the absence and presence of CO2,
are reported and analyzed in parallel with those of all-α-helical globins. The present
results open a question on the competition between the protecting activity of heme proteins
(which inactivate the damaging reactions of peroxynitrite on L-tyrosine nitration) and
the non-protecting action of CO2/HCO3

−, which indeed depends on the levels of ferric
heme-proteins. Thus, the levels (and the scavenging activity) of most heme proteins might
be too low to act as peroxynitrite scavengers in vivo; only circulating ferric hemoglobin
(Hb(III)) levels appear to be high enough to efficiently compete with CO2/HCO3

−/CO3
2-

in peroxynitrite inactivation.

2. Materials and Methods
2.1. Materials

Dr-Nb(III) was cloned, expressed, and purified as already reported [52]. The Dr-
Nb(III) concentration was determined spectrophotometrically by measuring the absorbance
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at 407 nm (ε = 1.57 × 105 M−1 cm−1) [52]. Apo-Dr-Nb was prepared, as already re-
ported [53]. Peroxynitrite was obtained from Cayman Chemical (Ann Arbor, MI, USA).
The concentration of peroxynitrite was determined spectrophotometrically at 302 nm
(ε = 1.705 × 103 M−1 cm−1) [12]. L-tyrosine (obtained from Merck KGaA, Darmstadt, Ger-
many) was dissolved in 5.0 × 10−2 M Bis-Tris propane buffer, at pH 7.0 and 22.0 ◦C; the
final L-tyrosine concentration was 1.0 × 10−4 M [25,30,36,39]. All the other chemicals were
purchased from Merck KGaA (Darmstadt, Germany). All chemicals were of analytical
grade and were used without further purification.

2.2. Methods

In the absence and presence of CO2, peroxynitrite isomerization by Dr-Nb(III) and
apo-Dr-Nb was investigated at pH 5.8, 7.0, and 8.5 (5.0 × 10−2 M Bis-Tris propane buffer)
and 22.0 ◦C, under anaerobic conditions. In the presence of CO2, peroxynitrite isomer-
ization by Dr-Nb(III) and apo-Dr-Nb was investigated by adding NaHCO3 (final concen-
tration, 5.0 × 10−1 M) to the Dr-Nb(III) and apo-Dr-Nb solutions; this NaHCO3 concen-
tration corresponds to different concentrations of CO2, HCO3

−, and CO3
2- depending

on pH. After the addition of NaHCO3, the Dr-Nb(III) and apo-Dr-Nb solutions were al-
lowed to equilibrate for at least 5 min; then, the pH was readjusted to the desired pH if
needed [25,27,28,30,36,39].

Peroxynitrite isomerization by Dr-Nb(III) and apo-Dr-Nb was investigated via rapid
mixing of the Dr-Nb(III) and apo-Dr-Nb solutions (final concentration ranging between
5.0 × 10−6 M and 3.5 × 10−5 M) with the peroxynitrite solution (final concentration ranging
between 2.5 × 10−5 M and 2.0 × 10−4 M); no gaseous phase was present. Peroxynitrite
isomerization was monitored at 302 nm [9,12,25–27,30,36,39] by the SFM-20/MOS-200
rapid-mixing stopped-flow apparatus (BioLogic Science Instruments, Claix, France); the
light path of the observation chamber was 10 mm and the dead-time was 1.3 ms.

Values of the pseudo-first-order rate constant for peroxynitrite isomerization by Dr-Nb(III)
and apo-Dr-Nb (i.e., kobs) were determined according to Equation (1) [13,22–41,54,55]:

[peroxynitrite]t = [peroxynitrite]i × e − kobs × t (1)

Values of the second-order rate constant for peroxynitrite isomerization by Dr-Nb(III)
(i.e., kon), and of the first-order rate constant for the spontaneous decay of peroxynitrite (i.e.,
k0), were obtained from the dependence of kobs on the Dr-Nb(III) concentration, according
to Equation (2) [13,22–41,54,55]:

kobs = kon × [Dr-Nb(III)] + k0 (2)

The reaction of peroxynitrite with L-tyrosine was investigated at pH 7.0 and 22.0 ◦C, as
reported elsewhere. The relative nitro-L-tyrosine yield (%) corresponds to: (yield with added
Dr-Nb(III) or apo-Dr)/(yield with no Dr-Nb(III) or apo-Dr-Nb) × 100 [13,25,30,34–36,39,55,56].

The percentage of NO3
− and NO2

− obtained from peroxynitrite isomerization was deter-
mined spectrophotometrically at 543 nm by using the Griess reagent and vanadium(III) chloride
(VCl3) to catalyze the conversion of NO3

− to NO2
−, according to literature [25,30,36,39,56].

Kinetic data were analyzed using the GraphPad Prism program, version 5.03 (Graph-
Pad Software, San Diego, CA, USA). The results are given as the mean values of at least
four experiments plus and minus the standard deviation. Data were analyzed using
GraphPad Prism 6 (GraphPad Software Inc., San Diego, CA, USA) and were expressed as
mean values ± standard deviation (SD). Statistical analysis was performed using either the
Student’s t-test or the one-way ANOVA comparison test (* p < 0.05; ** p < 0.01; *** p < 0.001;
**** p < 0.0001).

3. Results and Discussion

In the absence and presence of CO2, the absorbance at 302 nm decreases upon mixing
the Dr-Nb(III), apo-Dr-Nb, and peroxynitrite solutions over the whole pH range explored.
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According to the literature [13,22–41,54,55], this reflects peroxynitrite isomerization. No
absorbance spectroscopic changes were observed in the Soret region.

Under all the experimental conditions, the time course of peroxynitrite isomerization
in the absence and presence of Dr-Nb(III), apo-Dr-Nb, and CO2 was fitted to a single-
exponential decay for more than 93% of its course, according to Equation (1) (Figures 1–3,
panels A and B). The values of the pseudo-first-order rate constant for peroxynitrite iso-
merization catalyzed by Dr-Nb(III) (i.e., kobs) increase with the heme protein concentration
(Figures 1–3, panels C and D). Previous experiments have shown that, once bound to a
heme protein (likely as Fe(III)-ONOOH), peroxynitrite isomerizes to NO3

− at a rate of
~70 s−1 [13]. Therefore, since the values of kobs range between 1 × 10−1 s−1 and 8 s−1

(Figures 1–3, panel C), they indicate that, under our conditions, the formation of the Dr-
Nb(III)-OONOH species represents the rate-limiting step of the catalytic process. Notably,
the Dr-Nb(III)-OONOH conversion to Dr-Nb(III) and NO3

− is faster by at least 10-fold
than the formation of the Dr-Nb(III)-OONOH complex.
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Figure 1. Effect of Dr-Nb(III) on the kinetics for peroxynitrite isomerization, at pH 5.8 and 22.0 ◦C.
(A) Averaged time courses of the Dr-Nb(III)-catalyzed isomerization of peroxynitrite in the ab-
sence of CO2. The time course analysis, according to Equation (1), allowed us to determine the
following values of kobs: trace a, 3.1 s−1, R = 0.998; trace b, 7.6 s−1, R = 0.998. The Dr-Nb(III)
concentration was: trace a, 1.0×10−5 M; trace b, 3.0 × 10−5 M. (B) Averaged time courses of the
Dr-Nb(III)-catalyzed isomerization of peroxynitrite in the presence of CO2. The time course analysis,
according to Equation (1), allowed us to determine the following values of kobs: trace a, 7.4 s−1,
R = 0.999; trace b, 1.3 × 101 s−1, R = 0.998. The Dr-Nb(III) concentration was: trace a, 1.0 × 10−5 M;
trace b, 3.0 × 10−5 M. The CO2 concentration was 1.2 × 10−3 M. (C) Dependence of kobs on the
concentration of Dr-Nb(III) in the absence of CO2. Data were analyzed according to Equation (2)
with kon = 2.2 × 105 M−1 s−1 and k0 = 8.1 × 10−1 s−1; R = 0.989, p = 0.0006. (D) Dependence of kobs

on the concentration of Dr-Nb(III) in the presence of CO2. Data obtained were analyzed according
to Equation (2) with kon = 2.8 × 105 M−1 s−1 and k0 = 4.1 s−1; R = 0.991, p = 0.0005. (E) Averaged
time courses of peroxynitrite isomerization by apo-Dr-Nb in the absence of CO2. The time course
analysis, according to Equation (1), allowed us to determine the following values of kobs: trace a,
8.3 × 10−1 s−1; trace b, 7.7 × 10−1 s−1. The apo-Dr-Nb concentration was: trace a, 1.0 × 10−5 M;
trace b, 3.0 × 10−5 M. For clarity, trace b has been up-shifted of 0.3 units. (F) Averaged time courses of
peroxynitrite isomerization by apo-Dr-Nb in the presence of CO2. The time course analysis, according
to Equation (1), allowed us to determine the following values of kobs: trace a, 4.3 s−1; trace b, 3.9 s−1.
The apo-Dr-Nb concentration was: trace a, 1.0 × 10−5 M; trace b, 3.0 × 10−5 M. For clarity, trace
b has been up-shifted of 0.3 units. The CO2 concentration was 1.2 × 10−3 M. (G) Dependence of
kobs on the concentration of apo-Dr-Nb in the absence of CO2. The symbol on the ordinate indicates
the value of k0: 8.0 × 10−1 s−1. The average value of kobs obtained in the presence of apo-Dr-Nb is:
8.1 × 10−1 s−1. (H) Dependence of kobs on the concentration of apo-Dr-Nb in the presence of CO2.
The symbol on the ordinate indicates the value of k0: 4.1 s−1. The average value of kobs obtained
in the presence of apo-Dr-Nb and CO2 is: 4.1 s−1. In panels G and H, the differences among the
kobs values are not statistically significant. The peroxynitrite concentration was 2.0 × 10−4 M. The
HCO3

− concentration was 5.0 × 10−1 M. Where not shown, the standard deviation is smaller than
the symbol.
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(A) Averaged time courses of the Dr-Nb(III)-catalyzed isomerization of peroxynitrite in the absence of
CO2. The time course analysis according to Equation (1) allowed us to determine the following values
of kobs: trace a, 7.3 × 10−1 s−1, R = 0.998; trace b, 1.8 s−1, R = 0.999. The Dr-Nb(III) concentration was:
trace a, 1.0 × 10−5 M; trace b, 3.0 × 10−5 M. (B) Averaged time courses of the Dr-Nb(III)-catalyzed
isomerization of peroxynitrite in the presence of CO2. The time course analysis according to Equation (1)
allowed us to determine the following values of kobs: trace a, 1.5 × 101 s−1, R = 0.999; trace b, 1.7 × 101 s−1,
R = 0.998. The Dr-Nb(III) concentration was: trace a, 1.0 × 10−5 M; trace b, 3.0 × 10−5 M. The CO2

concentration was 1.2 × 10−3 M. For clarity, trace b has been up-shifted of 0.3 units. (C) Dependence of
kobs on the concentration of Dr-Nb(III) in the absence of CO2. Data were analyzed according to Equation
(2) with kon = 4.7 × 104 M−1 s−1 and k0 = 3.1 × 10−1 s−1; R = 0.989, p = 0.0006. (D) Dependence of kobs

on the concentration of Dr-Nb(III) in the presence of CO2. (E) Averaged time courses of peroxynitrite
isomerization by apo-Dr-Nb in the absence of CO2. The time course analysis according to Equation (1)
allowed us to determine the following values of kobs: trace a, 3.1 × 10−1 s−1; trace b, 2.7 × 10−1 s−1.
The apo-Dr-Nb concentration was: trace a, 1.0 × 10−5 M; trace b, 3.0 × 10−5 M. For clarity, trace b has
been up-shifted of 0.3 units. (F) Averaged time courses of peroxynitrite isomerization by apo-Dr-Nb in
the presence of CO2. The time course analysis according to Equation (1) allowed us to determine the
following values of kobs: trace a, 1.5 × 101 s−1; trace b, 1.6 × 101 s−1. The apo-Dr-Nb concentration was:
trace a, 1.0 × 10−5 M; trace b, 3.0 × 10−5 M. For clarity, trace b has been up-shifted of 0.3 units. The CO2

concentration was 1.2 × 10−3 M. (G) Dependence of kobs on the concentration of apo-Dr-Nb in the absence
of CO2. The symbol on the ordinate indicates the value of k0: 3.1 × 10−1 s−1. The average value of kobs

obtained in the presence of apo-Dr-Nb is: 3.0 × 10−1 s−1. (H) Dependence of kobs on the concentration of
apo-Dr-Nb in the presence of CO2. The symbol on the ordinate indicates the value of k0: 1.5 × 101 s−1. The
average value of kobs obtained in the presence of apo-Dr-Nb and CO2 is: 1.5 × 101 s−1. In panels D, G, and
H, the differences among the kobs values are not statistically significant. The peroxynitrite concentration
was 2.0 × 10−4 M. The HCO3

− concentration was 5.0 × 10−1 M. Where not shown, the standard deviation
is smaller than the symbol.
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The analysis of the data shown in Figures 1–3 (panels C and D), according to Equation 
(2), allowed us to determine the values of kon and k0, corresponding to the slope and the y-
intercept of the linear plots, respectively (Table 1). Moreover, the values of k0 were 
measured in the absence of Dr-Nb(III) via the rapid mixing of the peroxynitrite solution 
with the appropriate Bis-Tris propane buffer solution (Figures 1–3, panels E and F). Both 
in the absence and presence of CO2, the values of k0 obtained by the different methods 
match well with each other (Table 1) and agree well with those previously reported 
[12,13,25,27,28,30,33,34,36,39,54] (see Table 2). 
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(A) Averaged time courses of the Dr-Nb(III)-catalyzed isomerization of peroxynitrite in the absence of
CO2. The time course analysis according to Equation (1) allowed us to determine the following values of
kobs: trace a, 1.0 × 10−1 s−1, R = 0.998; trace b, 3.7 × 10−1 s−1, R = 0.999. The Dr-Nb(III) concentration
was: trace a, 1.0 × 10−5 M; trace b, 3.0 × 10−5 M. (B) Averaged time courses of the Dr-Nb(III)-catalyzed
isomerization of peroxynitrite in the presence of CO2. The time course analysis according to Equation (1)
allowed us to determine the following values of kobs: trace a, 4.8 × 101 s−1, R = 0.999; trace b, 4.8 × 101 s−1,
R = 0.998. The Dr-Nb(III) concentration was: trace a, 1.0 × 10−5 M; trace b, 3.0 × 10−5 M. The CO2

concentration was 1.2 × 10−3 M. For clarity, trace b has been up-shifted of 0.3 units. (C) Dependence of
kobs on the concentration of Dr-Nb(III) in the absence of CO2. Data were analyzed according to Equation
(2) with values of kon = 1.1 × 104 M−1 s−1 and k0 = 4.9 × 10−2; R = 0.995, p = 0.0002. (D) Dependence of
kobs on the concentration of Dr-Nb(III) in the presence of CO2. (E) Averaged time courses of peroxynitrite
isomerization by apo-Dr-Nb in the absence of CO2. The time course analysis according to Equation (1)
allowed us to determine the following values of kobs: trace a, 5.3 × 10−2 s−1; trace b, 5.2 × 10−2 s−1.
The apo-Dr-Nb concentration was: trace a, 1.0 × 10−5 M; trace b, 3.0 × 10−5 M. For clarity, trace b has
been up-shifted of 0.3 units. (F) Averaged time courses of peroxynitrite isomerization by apo-Dr-Nb in
the presence of CO2. The time course analysis according to Equation (1) allowed us to determine the
following values of kobs: trace a, 5.3 × 101 s−1; trace b, 4.5 × 101 s−1. The apo-Dr-Nb concentration was:
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of CO2. The symbol on the ordinate indicates the value of k0: 4.9 × 10−2 s−1. The average value of kobs

obtained in the presence of apo-Dr-Nb is: 4.9 × 10−2 s−1. (H) Dependence of kobs on the concentration of
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H the differences among the kobs values are not statistically significant. The peroxynitrite concentration
was 2.0 × 10−4 M. The HCO3

− concentration was 5.0 × 10−1 M. Where not shown, the standard deviation
is smaller than the symbol.

The analysis of the data shown in Figures 1–3 (panels C and D), according to Equation (2),
allowed us to determine the values of kon and k0, corresponding to the slope and the y-intercept
of the linear plots, respectively (Table 1). Moreover, the values of k0 were measured in the
absence of Dr-Nb(III) via the rapid mixing of the peroxynitrite solution with the appropriate
Bis-Tris propane buffer solution (Figures 1–3, panels E and F). Both in the absence and presence
of CO2, the values of k0 obtained by the different methods match well with each other (Table 1)
and agree well with those previously reported [12,13,25,27,28,30,33,34,36,39,54] (see Table 2).
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Table 1. Effect of pH and CO2 on the values of kon and k0 for Dr-Nb(III)-induced isomerization of
peroxynitrite at 22.0 ◦C a.

pH − CO2 + CO2
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Table 2. Effect of pH and CO2 on values of kon and k0 for heme-protein-induced isomerization of 
peroxynitrite. 

Heme-Protein ‒ CO2 + CO2 
   
 kon (M−1 s−1) k0 (s−1) kon (M−1 s−1) k0 (s−1) 

Ma-Pgb(III) a 3.8 × 104 2.8 × 10−1 n.d. n.d. 
Mt-trHbN(III) b 6.2 × 104 2.7 × 10−1 n.d. n.d. 
Ph-trHbO(III) c 2.9 × 104 2.8 × 10−1 n.d. n.d. 
Cj-trHbP(III) d 9.6 × 105 3.0 × 10−1 8.8 × 105 2.1 × 101 
Efc-Mb(III) e 2.9 × 104 3.5 × 10−1 7.7 × 104 1.7 × 101 
Pc-Mb(III) f 1.6 × 104 n.d. n.d. n.d. 
Hs-Hb(III) e 1.2 × 104 3.0 × 10−1 3.9 × 104 1.7 × 101 
Mt-Nb(III) g 6.9 × 104 2.6 × 10−1 n.d. n.d. 
At-Nb(III) g 3.7 × 104 3.0 × 10−1 n.d. n.d. 
Dr-Nb(III) h 4.7 × 104 3.1 × 10−1 n.d. 1.5 × 101 
Hs-Nb(III) i 3.4 × 104 2.6 × 10−1 n.d. n.d. 

a pH 7.4 and 20.0 °C. From [55]. b pH 7.0 and 20.0 °C. From [34]. c pH 7.0 and 20.0 °C. From [35]. d 
pH 7.3 and 25.0 °C. From [36]. e pH 7.0 and 20.0 °C. From [25]. f pH 7.5 and 20.0 °C. From [27]. g pH 
7.2 and 25.0 °C. From [40]. h pH 7.0 and 22.0 °C. Present study. i pH 7.1 and 25.0 °C. From [39]. n.d., 
not determined. 

As shown in Table 1, the values of kon for the interaction between Dr-Nb(III) and 
peroxynitrite were unaffected by CO2/HCO3−/CO32−, suggesting that CO2/HCO3−/CO32− 
does not alter the binding properties of Dr-Nb(III). The values of kon for peroxynitrite 
isomerization via all-α-helical globins and all-β-barrel nitrobindins ranged between 1.2 × 
104 M−1 s−1 for Hs-Hb(III) [25] and 6.9 × 104 M−1 s−1 for Mt-Nb(III) [40] (Table 2), suggesting 
that the very different structural organization [40,57–61] is not at the root of the different 
rate of peroxynitrite isomerization. However, the coordination of the heme-Fe(III) atom, 
the in- or out-of-plane position of the metal with respect to the pyrrole nitrogen atoms of 
the porphyrin, the ligand accessibility of the heme-Fe(III) atom, and its Lewis acidity may 
tune the kinetics of the related peroxynitrite decomposition [36]. 

To outline the role of the metal center, the values of kobs have been determined as a 
function of (i) apo-Dr-Nb concentration (at a fixed peroxynitrite concentration) and (ii) 
peroxynitrite concentration (at fixed Dr-Nb(III) concentration). Apo-Dr-Nb does not 
induce the isomerization of peroxynitrite; in fact, the values of kobs and k0 match each other 
in the presence of apo-Dr-Nb (Figures 1–3, panels E–H), as reported for apo-Efc-Mb, apo-
Hs-Hb, and apo-Hs-Nb [25,39]. As shown in Figure 4, the values of kobs slightly decrease 
with an increasing peroxynitrite concentration, reflecting either the slow isomerization 
process of peroxynitrite-peroxynitrous acid dimers or their slow dissociation preceding 
the Dr-Nb(III)-catalyzed isomerization of peroxynitrite [30,36]. 
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Table 2. Effect of pH and CO2 on values of kon and k0 for heme-protein-induced isomerization
of peroxynitrite.

Heme-Protein − CO2 + CO2

Antioxidants 2022, 11, x FOR PEER REVIEW 7 of 14 
 

Table 1. Effect of pH and CO2 on the values of kon and k0 for Dr-Nb(III)-induced isomerization of 
peroxynitrite at 22.0 ° a. 

pH ‒ CO2 + CO2 
   
 kon (M−1 s−1) k0 (s−1) kon (M−1 s−1) k0 (s−1) 

5.8 (2.2 ± 0.3) × 105 (8.1 ± 0.8) × 10−1 (2.8 ± 0.3) × 105 4.1 ± 0.4 
7.0 (4.7 ± 0.5) × 104 (3.1 ± 0.3) × 10−1 n.d. (1.5 ± 0.2) × 101 
8.5 (1.1 ± 0.1) × 104 (4.9 ± 0.5) × 10−2 n.d. (4.8 ± 0.5) × 101 

a The CO2 concentration was 1.2 × 10−3 M. 5.0 × 10−2 M Bis-Tris propane buffer. n.d., not determined. 

Table 2. Effect of pH and CO2 on values of kon and k0 for heme-protein-induced isomerization of 
peroxynitrite. 

Heme-Protein ‒ CO2 + CO2 
   
 kon (M−1 s−1) k0 (s−1) kon (M−1 s−1) k0 (s−1) 

Ma-Pgb(III) a 3.8 × 104 2.8 × 10−1 n.d. n.d. 
Mt-trHbN(III) b 6.2 × 104 2.7 × 10−1 n.d. n.d. 
Ph-trHbO(III) c 2.9 × 104 2.8 × 10−1 n.d. n.d. 
Cj-trHbP(III) d 9.6 × 105 3.0 × 10−1 8.8 × 105 2.1 × 101 
Efc-Mb(III) e 2.9 × 104 3.5 × 10−1 7.7 × 104 1.7 × 101 
Pc-Mb(III) f 1.6 × 104 n.d. n.d. n.d. 
Hs-Hb(III) e 1.2 × 104 3.0 × 10−1 3.9 × 104 1.7 × 101 
Mt-Nb(III) g 6.9 × 104 2.6 × 10−1 n.d. n.d. 
At-Nb(III) g 3.7 × 104 3.0 × 10−1 n.d. n.d. 
Dr-Nb(III) h 4.7 × 104 3.1 × 10−1 n.d. 1.5 × 101 
Hs-Nb(III) i 3.4 × 104 2.6 × 10−1 n.d. n.d. 

a pH 7.4 and 20.0 °C. From [55]. b pH 7.0 and 20.0 °C. From [34]. c pH 7.0 and 20.0 °C. From [35]. d 
pH 7.3 and 25.0 °C. From [36]. e pH 7.0 and 20.0 °C. From [25]. f pH 7.5 and 20.0 °C. From [27]. g pH 
7.2 and 25.0 °C. From [40]. h pH 7.0 and 22.0 °C. Present study. i pH 7.1 and 25.0 °C. From [39]. n.d., 
not determined. 

As shown in Table 1, the values of kon for the interaction between Dr-Nb(III) and 
peroxynitrite were unaffected by CO2/HCO3−/CO32−, suggesting that CO2/HCO3−/CO32− 
does not alter the binding properties of Dr-Nb(III). The values of kon for peroxynitrite 
isomerization via all-α-helical globins and all-β-barrel nitrobindins ranged between 1.2 × 
104 M−1 s−1 for Hs-Hb(III) [25] and 6.9 × 104 M−1 s−1 for Mt-Nb(III) [40] (Table 2), suggesting 
that the very different structural organization [40,57–61] is not at the root of the different 
rate of peroxynitrite isomerization. However, the coordination of the heme-Fe(III) atom, 
the in- or out-of-plane position of the metal with respect to the pyrrole nitrogen atoms of 
the porphyrin, the ligand accessibility of the heme-Fe(III) atom, and its Lewis acidity may 
tune the kinetics of the related peroxynitrite decomposition [36]. 

To outline the role of the metal center, the values of kobs have been determined as a 
function of (i) apo-Dr-Nb concentration (at a fixed peroxynitrite concentration) and (ii) 
peroxynitrite concentration (at fixed Dr-Nb(III) concentration). Apo-Dr-Nb does not 
induce the isomerization of peroxynitrite; in fact, the values of kobs and k0 match each other 
in the presence of apo-Dr-Nb (Figures 1–3, panels E–H), as reported for apo-Efc-Mb, apo-
Hs-Hb, and apo-Hs-Nb [25,39]. As shown in Figure 4, the values of kobs slightly decrease 
with an increasing peroxynitrite concentration, reflecting either the slow isomerization 
process of peroxynitrite-peroxynitrous acid dimers or their slow dissociation preceding 
the Dr-Nb(III)-catalyzed isomerization of peroxynitrite [30,36]. 

Antioxidants 2022, 11, x FOR PEER REVIEW 7 of 14 
 

Table 1. Effect of pH and CO2 on the values of kon and k0 for Dr-Nb(III)-induced isomerization of 
peroxynitrite at 22.0 ° a. 

pH ‒ CO2 + CO2 
   
 kon (M−1 s−1) k0 (s−1) kon (M−1 s−1) k0 (s−1) 

5.8 (2.2 ± 0.3) × 105 (8.1 ± 0.8) × 10−1 (2.8 ± 0.3) × 105 4.1 ± 0.4 
7.0 (4.7 ± 0.5) × 104 (3.1 ± 0.3) × 10−1 n.d. (1.5 ± 0.2) × 101 
8.5 (1.1 ± 0.1) × 104 (4.9 ± 0.5) × 10−2 n.d. (4.8 ± 0.5) × 101 

a The CO2 concentration was 1.2 × 10−3 M. 5.0 × 10−2 M Bis-Tris propane buffer. n.d., not determined. 

Table 2. Effect of pH and CO2 on values of kon and k0 for heme-protein-induced isomerization of 
peroxynitrite. 

Heme-Protein ‒ CO2 + CO2 
   
 kon (M−1 s−1) k0 (s−1) kon (M−1 s−1) k0 (s−1) 

Ma-Pgb(III) a 3.8 × 104 2.8 × 10−1 n.d. n.d. 
Mt-trHbN(III) b 6.2 × 104 2.7 × 10−1 n.d. n.d. 
Ph-trHbO(III) c 2.9 × 104 2.8 × 10−1 n.d. n.d. 
Cj-trHbP(III) d 9.6 × 105 3.0 × 10−1 8.8 × 105 2.1 × 101 
Efc-Mb(III) e 2.9 × 104 3.5 × 10−1 7.7 × 104 1.7 × 101 
Pc-Mb(III) f 1.6 × 104 n.d. n.d. n.d. 
Hs-Hb(III) e 1.2 × 104 3.0 × 10−1 3.9 × 104 1.7 × 101 
Mt-Nb(III) g 6.9 × 104 2.6 × 10−1 n.d. n.d. 
At-Nb(III) g 3.7 × 104 3.0 × 10−1 n.d. n.d. 
Dr-Nb(III) h 4.7 × 104 3.1 × 10−1 n.d. 1.5 × 101 
Hs-Nb(III) i 3.4 × 104 2.6 × 10−1 n.d. n.d. 

a pH 7.4 and 20.0 °C. From [55]. b pH 7.0 and 20.0 °C. From [34]. c pH 7.0 and 20.0 °C. From [35]. d 
pH 7.3 and 25.0 °C. From [36]. e pH 7.0 and 20.0 °C. From [25]. f pH 7.5 and 20.0 °C. From [27]. g pH 
7.2 and 25.0 °C. From [40]. h pH 7.0 and 22.0 °C. Present study. i pH 7.1 and 25.0 °C. From [39]. n.d., 
not determined. 

As shown in Table 1, the values of kon for the interaction between Dr-Nb(III) and 
peroxynitrite were unaffected by CO2/HCO3−/CO32−, suggesting that CO2/HCO3−/CO32− 
does not alter the binding properties of Dr-Nb(III). The values of kon for peroxynitrite 
isomerization via all-α-helical globins and all-β-barrel nitrobindins ranged between 1.2 × 
104 M−1 s−1 for Hs-Hb(III) [25] and 6.9 × 104 M−1 s−1 for Mt-Nb(III) [40] (Table 2), suggesting 
that the very different structural organization [40,57–61] is not at the root of the different 
rate of peroxynitrite isomerization. However, the coordination of the heme-Fe(III) atom, 
the in- or out-of-plane position of the metal with respect to the pyrrole nitrogen atoms of 
the porphyrin, the ligand accessibility of the heme-Fe(III) atom, and its Lewis acidity may 
tune the kinetics of the related peroxynitrite decomposition [36]. 

To outline the role of the metal center, the values of kobs have been determined as a 
function of (i) apo-Dr-Nb concentration (at a fixed peroxynitrite concentration) and (ii) 
peroxynitrite concentration (at fixed Dr-Nb(III) concentration). Apo-Dr-Nb does not 
induce the isomerization of peroxynitrite; in fact, the values of kobs and k0 match each other 
in the presence of apo-Dr-Nb (Figures 1–3, panels E–H), as reported for apo-Efc-Mb, apo-
Hs-Hb, and apo-Hs-Nb [25,39]. As shown in Figure 4, the values of kobs slightly decrease 
with an increasing peroxynitrite concentration, reflecting either the slow isomerization 
process of peroxynitrite-peroxynitrous acid dimers or their slow dissociation preceding 
the Dr-Nb(III)-catalyzed isomerization of peroxynitrite [30,36]. 

kon (M−1 s−1) k0 (s−1) kon (M−1 s−1) k0 (s−1)
Ma-Pgb(III) a 3.8 × 104 2.8 × 10−1 n.d. n.d.

Mt-trHbN(III) b 6.2 × 104 2.7 × 10−1 n.d. n.d.
Ph-trHbO(III) c 2.9 × 104 2.8 × 10−1 n.d. n.d.
Cj-trHbP(III) d 9.6 × 105 3.0 × 10−1 8.8 × 105 2.1 × 101

Efc-Mb(III) e 2.9 × 104 3.5 × 10−1 7.7 × 104 1.7 × 101

Pc-Mb(III) f 1.6 × 104 n.d. n.d. n.d.
Hs-Hb(III) e 1.2 × 104 3.0 × 10−1 3.9 × 104 1.7 × 101

Mt-Nb(III) g 6.9 × 104 2.6 × 10−1 n.d. n.d.
At-Nb(III) g 3.7 × 104 3.0 × 10−1 n.d. n.d.
Dr-Nb(III) h 4.7 × 104 3.1 × 10−1 n.d. 1.5 × 101

Hs-Nb(III) i 3.4 × 104 2.6 × 10−1 n.d. n.d.
a pH 7.4 and 20.0 ◦C. From [55]. b pH 7.0 and 20.0 ◦C. From [34]. c pH 7.0 and 20.0 ◦C. From [35]. d pH 7.3 and
25.0 ◦C. From [36]. e pH 7.0 and 20.0 ◦C. From [25]. f pH 7.5 and 20.0 ◦C. From [27]. g pH 7.2 and 25.0 ◦C. From
[40]. h pH 7.0 and 22.0 ◦C. Present study. i pH 7.1 and 25.0 ◦C. From [39]. n.d., not determined.
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ynitrite were unaffected by CO2/HCO3
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2−, suggesting that CO2/HCO3
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2− does

not alter the binding properties of Dr-Nb(III). The values of kon for peroxynitrite isomerization
via all-α-helical globins and all-β-barrel nitrobindins ranged between 1.2 × 104 M−1 s−1 for
Hs-Hb(III) [25] and 6.9 × 104 M−1 s−1 for Mt-Nb(III) [40] (Table 2), suggesting that the
very different structural organization [40,57–61] is not at the root of the different rate of
peroxynitrite isomerization. However, the coordination of the heme-Fe(III) atom, the in-
or out-of-plane position of the metal with respect to the pyrrole nitrogen atoms of the
porphyrin, the ligand accessibility of the heme-Fe(III) atom, and its Lewis acidity may tune
the kinetics of the related peroxynitrite decomposition [36].

To outline the role of the metal center, the values of kobs have been determined as
a function of (i) apo-Dr-Nb concentration (at a fixed peroxynitrite concentration) and
(ii) peroxynitrite concentration (at fixed Dr-Nb(III) concentration). Apo-Dr-Nb does not
induce the isomerization of peroxynitrite; in fact, the values of kobs and k0 match each other
in the presence of apo-Dr-Nb (Figures 1–3, panels E–H), as reported for apo-Efc-Mb, apo-
Hs-Hb, and apo-Hs-Nb [25,39]. As shown in Figure 4, the values of kobs slightly decrease
with an increasing peroxynitrite concentration, reflecting either the slow isomerization
process of peroxynitrite-peroxynitrous acid dimers or their slow dissociation preceding the
Dr-Nb(III)-catalyzed isomerization of peroxynitrite [30,36].

As shown in Figures 1–3 (panel D) and in Figure 4 (panel B) it turns out that, in the
presence of 5.0 × 10−1 M CO2/HCO3

−/CO3
2−, the role of Dr-Nb(III) in characterizing

the rate constant of peroxynitrite isomerization becomes progressively less relevant as the
pH is raised since values of k0 for peroxynitrite isomerization obtained in the presence of
CO2/HCO3

−/CO3
2− are faster by about two orders of magnitude than those obtained in

its absence (Table 1). This indicates that CO2/HCO3
−/CO3

2− dramatically speeds up the
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decay of peroxynitrite through direct interaction, without interfering with peroxynitrite
binding to Dr-Nb(III) [9,12,13,25,27,28,30,32–34,36].
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2− on
the observed rate of peroxynitrite isomerization was investigated. Thus, the protonation
equilibria of OONO−/HOONO and CO2/HCO3

−/CO3
2− were considered. The effect

of CO2 on peroxynitrite isomerization in the absence of heme proteins (i.e., kobs) can be
described by Equation (3):
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where k0 and k0
H are the intrinsic degradation rates of OONO− and HOONO, respec-

tively, [H+] (= 10−pH) is the proton concentration, KP (= ([OONO−] × [H+])/[HOONO])
is the protonation constant of peroxynitrite, [L] is the reactant concentration (in our case
[HCO3

−] = 5.0 × 10−1 M), Kc1 ([H2O]) (= ([HCO3
−] × [H+])/[CO2] = 10−6.34) is the protona-

tion equilibrium constant between HCO3
− and CO2, Kc2 (= ([CO3

2−] × [H+])/[HCO3
−] = 10−10.25)

is the protonation equilibrium constant between CO3
2− and HCO3

−; kc1 and kc1
H are the

second-order rate constants for the reaction of CO2 with OONO− and HOONO, respec-
tively, kc2 and kc2

H are the second-order rate constants for the reaction with HCO3
− of

OONO− and HOONO, respectively, and kc3 and kc3
H are the second-order rate constants

for the reaction with CO3
2− of OONO− and HOONO, respectively.

The pH-dependence of peroxynitrite degradation in the absence of CO2/HCO3
−/CO3

2−

(i.e., [L] = 0, see Equation (3)), allowed us to determine the values of k0 (= 3.0 × 10−2 s−1),
k0

H (= 8.3 × 10−1 s−1) and KP (= 10−6.8) (Figure 5, panel A), showing that HOONO
decays to NO3

− faster than OONO−, with a pKa ≈ 6.8 [13,36]. On the other hand, as
already outlined before [9,13,22,27,28,30,36,39], when CO2/HCO3

−/CO3
2− is present (i.e.,
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[L] = 5.0 × 10−1 M), the rate of peroxynitrite degradation becomes much faster and in-
creases with a rising pH (see Table 1 and [36]). Therefore, employing Equation (3) and
knowing the values of Kc1 and Kc2 (see above), the pH dependence of peroxynitrite degra-
dation (Figure 5, panel B) gives information on the different values of kci and kci

H (with
i = 1, 2, 3). The inspection of Table 3 allows for the following considerations:

(i) kc1, kc2
H, and kc3

H are not playing any role, likely because either one or both
reactants are too scarcely populated over the pH range investigated for the pseudo-first-
order rate constant to have a detectable value, which can then be considered as ≈0 s−1;

(ii) At pH ≤ 6.2, the peroxynitrite degradation rate is mostly characterized by the
reaction between HOONO and CO2, corresponding to kc1

H = 8.0 M−1 s−1);
(iii) For 6.2 < pH < 8.2, the peroxynitrite degradation rate is mostly characterized by

the reaction between OONO− and HCO3
−, corresponding to kc2 = 6.2 × 101 M−1 s−1;

(iv) For pH ≥ 8.2, the peroxynitrite degradation rate is mostly characterized by the
reaction between OONO− and CO3

2−, corresponding to kc3 = 1.8 × 103 M−1 s−1.
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Figure 5. pH dependence of the peroxynitrite isomerization rate constant in the absence of
CO2/HCO3

−/CO3
2− (A), in the presence of 5.0 × 10−1 M CO2/HCO3

−/CO3
2− (B), and in the pres-

ence of 3.0 × 10−2 M CO2/HCO3
−/CO3

2− (C). In all three panels, the continuous lines correspond
to kobs, as defined in Equation (3), under different conditions (i.e., [L] = 0 (A), [L] = 5.0 × 10−1 M (B),
[L] = 3.0×10−2 M (C), employing the parameters reported in Table 3. In (A,B), the open circles
correspond to experimental data obtained from the literature [36] on the peroxynitrite isomerization
rate constants as a function of pH under the conditions described above. The continuous lines were
obtained according to Equation (3) by the non-linear least-squares fitting of data. In (C), the open
circles correspond to values of kobs in the presence of 3.0 × 10−5 M Dr-Nb(III) in the absence of
CO2/HCO3

−/CO3
2− at different pH values (present study). Data shown in (C) indicate that, at

pH 5.8, the efficiency of the heme protein (at the indicated concentration) is higher than that of the
CO2/HCO3

−/CO3
2− system, while at pH 8.5, the efficiency is lower.

Table 3. Values of the parameters fitting data with Equation (3).

Parameter Value

k0 (s−1) (3.0 ± 0.5) × 10−2

k0
H (s−1) (8.3 ± 1.0) × 10−1

KP (M) (1.6 ± 0.3) × 10−7

Kc1 (M) (4.6 ± 0.9) × 10−7

Kc2 (M) (5.6 ± 1.2) × 10−11

kc2 (M−1s−1) (6.2 ± 1.3) × 101

kc3 (M−1s−1) (1.7 ± 0.4) × 103

kc1
H (M−1s−1) 8.0 ± 2.1

Obviously, the value of kobs and its pH dependence depend on the CO2/HCO3
−/CO3

2−

levels (i.e., [L]), envisaging that the relative levels of the ferric heme protein and CO2/HCO3
−/

CO3
2− are crucial in defining the respective role for peroxynitrite detoxification. Of note,
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data reported in Figures 1–3 (panel D) refer to [CO2/HCO3
−/CO3

2−] = 5.0 × 10−1 M, while
in the bloodstream, the physiological levels of CO2/HCO3

−/CO3
2− (~3.0 × 10−2 M) are

about 10-20 fold lower. Therefore, under these conditions, kobs decreases significantly even
in the presence of CO2/HCO3

−/CO3
2−, as indicated by Equation (3) (Figure 5, panel C).

The pH-dependent mechanism of peroxynitrite degradation can be described by Scheme 2,
which reports the different pathways for peroxynitrite degradation.
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According to Equation (3), the effects of the heme protein and CO2/HCO3
−/CO3

2− levels were
simulated (Figure 5, panel C), with the values of the rates at [CO2/HCO3

−/CO3
2−] = 3.0 × 10−2 M

and [Dr-Nb(III)] = 3.0 × 10−5 M (see Figures 1–3, panels C). At acidic pH values, the role of
Dr-Nb(III) (= 3.0 × 10−5 M) is prevalent for peroxynitrite isomerization, while at a neutral
pH the role of Dr-Nb(III) (= 3.0 × 10−5 M) is equivalent to that of the CO2/HCO3

−/CO3
2−

system (Figure 5C). For alkaline pH values, Dr-Nb(III) levels higher than 3.0 × 10−5 M
would be required to play a relevant role in peroxynitrite detoxification (see Figure 5, panel C).

The relative importance of the heme proteins and CO2/HCO3
−/CO3

2− catalyzing the
peroxynitrite isomerization is crucial since, according to the literature [9,12,25,30,36,62,63],
ferric heme proteins prevent L-tyrosine nitration, which, instead, occurs either in the
presence of apo-Dr-Nb and/or of CO2/HCO3

−/CO3
2− (Figure 6) (see also Scheme 1).

In fact, the relative yield of NO3
− and NO2

−, obtained from peroxynitrite isomerization
catalyzed by Dr-Nb(III), ranged between 89 and 92%, and between 7 and 12%, respec-
tively. However, in the absence of Dr-Nb(III) and/or in the presence of apo-Dr-Nb and/or
CO2/HCO3

−/CO3
2−, the values of the relative yield of NO3

− and NO2
− ranged between

69 and 74%, and between 7 and 12%, respectively (Table 4). The great relevance of these
observations is confirmed by the fact that, under stressed conditions, zebrafish triggers
a defense mechanism through nitrosative stress and peroxynitrite production for which
its degradation may be, on one side, enhanced by the elevated levels of CO2 [48,49], but,
on the other side, inhibited by the consequent lowering of the pH level. In any event,
the correlation between the peroxynitrite degradation by ferric heme proteins and CO2
levels appears to be relevant within in vivo models of zebrafish, and it may have important
consequences for the O2 supply to poorly oxygenated tissues, such as the retina [50,51].
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Figure 6. Effect of Dr-Nb on L-tyrosine nitrosylation induced from peroxynitrite, at pH 7.0 and 22.0 ◦C.
(A) Dependence of the nitro-L-tyrosine yield on the Dr-Nb(III) (open squares) and apo-Dr-Nb (open
circles) concentration in the absence of CO2 (One-way ANOVA: open squares, **** p < 0.0001, 0 M
versus 10 × 10−6 M, 20 × 10−6 M, and 30 × 10−6 M). (B) Dependence of the nitro-L-tyrosine yield
on the Dr-Nb(III) (filled squares) and apo-Dr-Nb (filled circles) concentration in the presence of CO2.
The symbols on the y-axis (open and filled triangle) indicate the nitro-L-tyrosine yield in the absence
and presence of CO2, respectively. The L-tyrosine concentration was 1.0 × 10−4 M. The peroxynitrite
concentration was 2.0 × 10−4 M. Where not shown, the standard deviation is smaller than the symbol.

Table 4. Percentage of NO3
− and NO2

− obtained from peroxynitrite isomerization at pH 7.0 and at
22.0 ◦C a.

Dr-Nb(III) Apo-Dr-Nb CO2 NO3− NO2−

(M) (M) (M) (%) (%)
0.0 0.0 0.0 73 ± 8 28 ± 3
0.0 0.0 1.2 × 10−3 69 ± 7 30 ± 3
0.0 3.5 × 10−5 0.0 71 ± 8 29 ± 3
0.0 3.5 × 10−5 1.2 × 10−3 74 ± 7 25 ± 2

3.5 × 10−5 0.0 0.0 89 ± 9 12 ± 2
3.5 × 10−5 0.0 1.2 × 10−3 93 ± 8 7 ± 1
3.5 × 10−5 3.5 × 10−5 0.0 91 ± 9 10 ± 1
3.5 × 10−5 3.5 × 10−5 1.2 × 10−3 92 ± 9 8 ± 1

a The peroxynitrite concentration was 2.0 × 10−4 M; 5.0 × 10−2 M Bis-Tris propane buffer.

4. Conclusions

Ferric heme proteins and the CO2/HCO3
−/CO3

2− system are the major players in
peroxynitrite detoxification, for which efficiency depends on both the concentration of
these two actors and the pH level. CO3

2− is much more effective at peroxynitrite inacti-
vation, as compared to CO2, with HCO3

− displaying an intermediate activity. Of note,
the CO3

2− levels were much lower than those of the other two components in the system
under physiological conditions. Although ferric heme proteins are intrinsically much more
effective than the CO2/HCO3

−/CO3
2− system, their levels are usually significantly lower

than CO2/HCO3
−/CO3

2−. Since over the physiological pH range the rate of peroxyni-
trite detoxification by CO2/HCO3

−/CO3
2− (i.e., ~3.0 × 10−2 M) is ~1.5 s−1, values of

kobs (= kon × [heme-Fe(III)]), for peroxynitrite scavenging by ferric heme-proteins must
be larger than 2 s−1. Overall, only the level of the circulating Hs-Hb(III) (~2.0 × 10−4 M;
corresponding to about 2–3% of the total Hs-Hb in red cells) appears to be sufficient to play
a relevant role in the detoxification by peroxynitrite under physiological conditions.

Furthermore, it must be remarked that acidification, which often occurs in the blood-
stream of fish when they dive to depth [64–66] and can even be magnified by increased
levels of CO2 [49], decreases the effect of the CO2/HCO3

−/CO3
2− system, rendering the

role of ferric heme proteins even more crucial. This is especially important in the ocular sys-
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tem and in the protection of the retina against oxidative stress linked to peroxynitrite [3,50].
Therefore, under specific environmental conditions (typical of diving fish), Dr-Nb(III)
indeed may play a relevant physiological role in peroxynitrite scavenging from poorly
oxygenated tissues, such as the retina.
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