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Abstract: Plant glutathione peroxidases (GPXs) are the main enzymes in the antioxidant defense
system that sustain H2O2 homeostasis and normalize plant reaction to abiotic stress conditions.
To understand the major roles of the GPX gene family in rapeseed (Brassica napus L.), for the first
time, a genome-wide study identified 25 BnGPX genes in the rapeseed genome. The phylogenetic
analysis discovered that GPX genes were grouped into four major groups (Group I–Group IV) from
rapeseed and three closely interrelated plant species. The universal investigation uncovered that the
BnGPXs gene experienced segmental duplications and positive selection pressure. Gene structure and
motifs examination recommended that most of the BnGPX genes demonstrated a comparatively well-
maintained exon-intron and motifs arrangement within the identical group. Likewise, we recognized
five hormones-, four stress-, and numerous light-reactive cis-elements in the promoters of BnGPXs.
Five putative bna-miRNAs from two families were also prophesied, targeting six BnGPXs genes.
Gene ontology annotation results proved the main role of BnGPXs in antioxidant defense systems,
ROS, and response to stress stimulus. Several BnGPXs genes revealed boosted expression profiles in
many developmental tissues/organs, i.e., root, seed, leaf, stem, flower, and silique. The qRT-PCR
based expression profiling exhibited that two genes (BnGPX21 and BnGPX23) were suggestively
up-regulated against different hormones (ABA, IAA, and MeJA) and abiotic stress (salinity, cold,
waterlogging, and drought) treatments. In short, our discoveries provide a basis for additional
functional studies on the BnGPX genes in future rapeseed breeding programs.

Keywords: antioxidant; abiotic stress; genomics; gene expression; gene ontology; hormones; miRNA;
rapeseed breeding

1. Introduction

Plants are frequently exposed to several environmental stresses, comprising both
abiotic and biotic, which significantly affect the growth and developmental processes [1–4].
These traumas can boost the production of reactive oxygen species (ROS), impairing cellu-
lar apparatuses and macromolecules, including DNA, proteins, and lipids, and eventually
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program the cells’ death [5–7]. In plants, ROS are chemical species formed by an inadequate
drop of oxygen; these species are well thought out as key signaling molecules, regulating
stress responses and contributing to plant production [6]. Primarily, ROS are produced
in the apoplast, mitochondria, plasma membrane, chloroplast, peroxisomes, endoplas-
mic reticulum, and cell walls [5,6]. Consequently, plants have advanced enzymatic and
nonenzymatic antioxidative defense systems to cope with the harmfulness of ROS [5,6,8].

Among different antioxidant enzymes, glutathione peroxidase (GPX; EC 1.11.1.9) is an
effective ROS scavenging enzyme that goes to the non-heme thiol peroxidase family and
observes glutathione (GSH) and thioredoxin (Trx) as dipping substrata [9]. In comparison
to mammals GPXs, plants GPXs have a partiality to Trx as a replacement for GSH as
the dipping substratum [10,11]. Furthermore, plants’ GPXs comprise cysteine (Cys) in
their functioning sites, whereas usually, mammals’ GPXs comprise selenocysteine (SeCys)
residue as a substitute to Cys [9,11,12].

In the recent past, several investigations have shown that the increased/up-regulated
activity/expression of GPX enzyme and GPX genes help plants to cope with various
environmental stresses. For instance, increased GPX activity helps different plants to
improves tolerance to oxidative stress in cucumber (Cucumis sativus L.), tobacco (Nicotiana
tabacum), and rice (Oryza sativa L.) seedlings [13]; water-deficit stress in wheat (Triticum
aestivum L.) [14]; salicylic acid-induced salinity stress in tomato (Solanum lycopersicum
L.) [15]; brassinosteroids-induced low-temperature stress tolerance in tomato [16]; etc. Sim-
ilarly, the increased/up-regulated expression levels of GPX genes increased the tolerance
to water-deficit stress in wheat [14]; drought tolerance in Hevea clones [17]; lead-induced
oxidative stress tolerance in wheat [18]; etc. However, in some cases, the stressed plants
also decreased the expression levels of GPX genes; for example, several GPX genes were
down-regulated in response to drought stress in sorghum (Sorghum bicolor L.) [19]. The
down-regulated expression of GPX genes could participate in the activation of some
downstream mechanisms.

Some functional studies showed, for example, that the silencing of mitochondrial
GPX1 gene in rice activated the damage of photosynthesis against salinity stress [20].
Knockdown of two GPX genes, including OsGPX1 and OsGPX3, could cruelly disturb
the steady growth and developmental processes in rice [21]. Overexpression of Rhodiola
crenulata RcGPX5 gene raises drought stress tolerance in Salvia miltiorrhiza plants [22].
In another investigation, the overexpression of the Arabidopsis AtGPXL5 gene resulted
in changed plant growth and redox status under salinity stress in Arabidopsis [23]. In a
nutshell, these studies specified that plant GPXs genes could regulate plant developmental
processes, stress responses, tolerance mechanisms.

Rapeseed (Brassica napus L.) is the second most significant oilseed crop and holds a
complex genome. Various abiotic stresses meaningfully restrict rapeseed production [24–27].
To our best knowledge, the GPX gene family has not been documented in rapeseed. Hence,
for the first time, the current study executed a genome-wide analysis to recognize GPX
genes in the rapeseed genome. To get further insight into GPX genes evolution in rapeseed,
their phylogenetic relations, synteny investigation, gene structures, conserved motifs, cis-
elements, miRNA predictions, and functional annotation were categorized. Furthermore,
their expression profile in several tissues/organs and under several hormones and abiotic
stress environments were broadly evaluated, which profoundly boosted our knowledge of
the GPX genes in rapeseed.

2. Materials and Methods
2.1. Documentation of GPX Gene Family in Rapeseed

As defined in recent reports [28,29], two methods were employed to classify GPX
genes in the Brassica napus genome, including BLASTP and the Hidden Markov Model
(HMM) [28]. The sequence of Brassica napus genome was downloaded from the BnPIR
database (http://cbi.hzau.edu.cn/bnapus/index.php, accessed on 1 July 2021) [30]. For
BLASTP, we used eight Arabidopsis thaliana GPXs (Table S1) amino acid sequences as an
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enquiry by e-value set to 1e−5. The amino acid sequences of eight AtGPXs were retrieved
from the TAIR Arabidopsis genome database (http://www.arabidopsis.org/, accessed on 1
July 2021) [31]. Moreover, a local software, HMMER 3.1 [32], was used for hunting the GPX
genes with default constraints. Then, the HMM profile of the GPX domain (Pfam: PF00255)
obtained as of the Pfam database (http://pfam.xfam.org/, accessed on 1 July 2021) was
employed to detect GPX gene sequences. Finally, 25 BnGPX genes were recognized by
merging the two methods in the rapeseed genome. Furthermore, we recognized GPX genes
in diverse plant species, i.e., Brassica rapa and Brassica oleracea, and their genome sequences
downloaded from the JGI Phytozome 12.0 database (https://phytozome.jgi.doe.gov/pz/
portal.html, accessed on 1 July 2021) [33] through a similar method.

2.2. Characterization of GPX Gene Family

The physico-chemical characteristics, including molecular weight and isoelectric
points, were examined by means of the online ProtParam tool (http://web.expasy.org/
protparam/, accessed on 1 July 2021) [34]. The subcellular localization of BnGPX pro-
teins was prophesied from the WoLF PSORT server (https://wolfpsort.hgc.jp/, accessed
on 1 July 2021) [35]. The genes structures of BnGPX was created via TBtools software
(V 1.068; https://github.com/CJ-Chen/TBtools, accessed on 1 July 2021) [36]. The con-
served motifs of BnGPX protein sequences were recognized by employing the MEME
website (https://meme-suite.org/meme/db/motifs, accessed on 1 July 2021) [37].

2.3. Phylogenetic Tree and Synteny Analysis of BnGPX Family Proteins

To perceive the evolutionary relationship of the BnGPX gene family, we created a
phylogenetic tree for Brassica napus, Brassica oleracea, Brassica rapa, and A. thaliana protein
sequences. The sequence alignment was carried out using MEGA 7 software (https://
megasoftware.net/home, accessed on 1 July 2021) [38]. The neighbor-joining (NJ) scheme
was executed to develop a phylogenetic tree with 1000 bootstrap replicates using Evolview
v3 website (https://www.evolgenius.info/evolview, accessed on 1 July 2021) [39] to show
the phylogenetic tree. Synteny relationships of GPX genes were established by python-
package, JCVI (https://github.com/tanghaibao/jcvi, accessed on 1 July 2021) [40] from
Brassica napus, Brassica oleracea, Brassica rapa, and Arabidopsis thaliana. We precalculated the
Ka/Ks ratios of all GPXs by employing KaKs_Calculator 2.0 software (https://sourceforge.
net/projects/kakscalculator2/, accessed on 1 July 2021) [41].

2.4. Cis-Elements Analysis in the BnGPX Gene Promoters

To study the putative cis-elements in the BnGPXs promoters, we obtained the 2Kb
sequence upstream of start codons in the Brassica napus genome. Then, the promoter
sequence of the individual gene was examined using the PlantCARE website (http://
bioinformatics.psb.ugent.be/webtools/plantcare/html/, accessed on 1 July 2021) [42], and
the figure was drawn using TBtools (V 1.068) [36].

2.5. Estimation of Presumed miRNA Targeting BnGPX Genes and Functional Annotation Study

The coding sequence (CDS) of BnGPXs was used to recognize possible target miRNAs
in the psRNATarget database (http://plantgrn.noble.org/psRNATarget/, accessed on 1
July 2021) [43] with default constraints. The interaction network between the miRNAs
and BnGPX genes was drawn by Cytoscape software (V3.8.2) (https://cytoscape.org/
download.html, accessed on 1 July 2021). Gene ontology (GO) annotation examination
was accomplished by uploading all BnGPXs protein sequences to the eggNOG website
(http://eggnog-mapper.embl.de/, accessed on 1 July 2021) [44]. Then, TBtools was used
to execute the GO enrichment examination.

2.6. Expression Analysis of BnGPX Genes in Diverse Tissues

For tissue-specific expression profiling, we downloaded RNA-seq data (BioProject
ID: PRJCA001495, accessed on 1 July 2021) of rapeseed from the National Genomics Data
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Center. The complete method was described in a recent work [28]. Mainly, cuffquant and
Cuffnorm were employed to create normalized counts in transcripts per million (TPM)
values. Based on TPM estimates, the expression heat map was formed using GraphPad
Prism 8 software (https://www.graphpad.com/, accessed on 1 July 2021) [45].

2.7. Plant Material and Stress Conditions

In the current study, a typical cultivated variety, ZS11, was used for stress treatments.
The seeds of the ZS11 genotype were obtained from Wuhan Zhongyou Seed Technology
Co., Ltd., Wuhan, China. The stress treatments were performed as designated in previous
work [28]. Briefly, the vigorous seeds were carefully chosen and sterilized with 10%
hypochlorous acid solution for 5 min. The seeds were grown on water-saturated filter
paper in a chamber (25 ◦C day/night and 16 h/8 h light/dark cycle) until the radicle’s
extent turned up about 5 mm. For stress treatment, sprouted seeds were uncovered
to 150 mM NaCl solution for salt stress, 15% PEG6000 solution for drought stress, and
4 ◦C for cold stress on water-saturated filter paper. For waterlogging stress, the seeds
were flooded with water in the Eppendorf tube. To explore the influence of numerous
hormones, the germinated seeds were planted in Murashige and Skoog (MS) medium
supplied with 100 µM of each hormone such as abscisic acid (ABA), gibberellic acid (GA),
methyl jasmonate (MeJA), and indole-acetic acid/auxin (IAA). The samples were collected
at 0 (CK), 2, 4, 6, and 8 h after the treatments. Three biological repetitions were carried out
for all the treatments. All the samples were rapidly frozen in liquid nitrogen and were kept
at −80 ◦C for expression analysis.

2.8. RNA Extraction and qRT-PCR Analysis

Total RNA extraction and cDNA synthesis was performed using TransZol Up Plus
RNA Kit (TransGen Biotech, Beijing, China) and cDNA Synthesis SuperMix (TransGen
Biotech, Beijing, China) according to manufacturer instructions. The qRT-PCR was con-
ducted with an ABI StepOne real-time fluorescence quantitative PCR instrument (Applied
Biosystems, Foster City, CA, USA) using SYBR® Green Supermix (Bio-Rad). The BnACTIN
was used as an internal control. The qRT-PCR reaction was performed as follows: 94 ◦C
for 10 min, followed by 40 cycles of 94 ◦C for 15 s, 60 ◦C for 30 s, and 72 ◦C for 10 s.
Each qRT-PCR reaction was carried out with three biological triplicates, and the data were
observed using the 2−∆∆CT method [28,46]. All the primers used in this experiment are
listed in Table S1. The heatmap was formed using GraphPad Prism 8 software [45].

3. Results
3.1. Documentation and Characterization of GPX Gene Family in Rapeseed

Based on BLASTP examinations against the rapeseed genome employing eight Ara-
bidopsis AtGPXs proteins as enquiries, a total of 25 presumed GPX genes were recognized
in the complete rapeseed genome (Table 1). Henceforth, these genes are named “BnGPX1-
BnGPX25”, among which 13 genes (BnGPX1–BnGPX13) were located on the A subgenome,
and 12 genes (BnGPX14–BnGPX25) were located on the C subgenome (Table 1). Compre-
hensive data of the 25 BnGPX genes is shown in Table 1. In brief, gene length varied from
1028 bp (BnGPX17) to 4654 bp (BnGPX9) with 5–6 exons in each sequence (Table 1). Eleven
genes comprise six exons, and 14 genes consist of five exons (Table 1). The CDS length var-
ied from 363 bp (BnGPX10) to 726 bp (BnGPX23), whereas the protein length altered from
120 (BnGPX10) to 241 (BnGPX23) amino acids (Table 1). The predicted molecular weights
of the 25 BnGPX proteins ranged from 13.45 kDa (BnGPX10) to 26.97 kDa (BnGPX22), and
the isoelectric points ranged from 5.18 (BnGPX24) to 9.58 (BnGPX22) (Table 1). The subcel-
lular localization results anticipated that 16 BnGPX proteins are located on the chloroplast,
6 proteins are located on the cytoplasm, 2 proteins (BnGPX3 and BnGPX9) are located
on extracellular, and 1 protein (BnGPX20) is located on the nucleus (Table 1). Moreover,
8 GPX genes (BolGPX1–BolGPX8) from the Brassica oleracea and 12 GPX genes were also
discovered from Brassica rapa (BraGPX1–BraGPX12) genomes (Table S2).

https://www.graphpad.com/
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Table 1. Information of the 25 BnGPX genes discovered in rapeseed genome.

Gene ID Gene
Name Gene Position (bp)

Gene
Length

(bp)

CDS
Length

(bp)
Exon

Protein
Length
(AA)

Molecular
Weight
(kDa)

Isoelectric
Point (pI)

Subcellular
Localization

BnaA02T0266400ZS BnGPX1 A02:18048650-18049870 − 1220 690 6 229 25.28 9.21 Chloroplast

BnaA03T0152400ZS BnGPX2 A03:7777692-7779631 − 1939 510 6 169 18.92 6.34 Cytoplasm

BnaA03T0210900ZS BnGPX3 A03:11008433-11009656 − 1223 501 5 166 18.39 8.92 Extracellular

BnaA03T0529000ZS BnGPX4 A03:29805209-29806435 + 1226 720 5 239 26.84 9.46 Chloroplast

BnaA04T0003000ZS BnGPX5 A04:177901-178974 − 1073 507 5 168 18.85 8.82 Chloroplast

BnaA04T0301400ZS BnGPX6 A04:25656674-25657708 − 1034 507 5 168 18.99 8.99 Chloroplast

BnaA05T0000100ZS BnGPX7 A05:5755-6787 − 1032 561 5 186 21.00 8.86 Cytoplasm

BnaA05T0124600ZS BnGPX8 A05:7501774-7503157 + 1383 510 6 169 18.93 6.34 Cytoplasm

BnaA07T0222500ZS BnGPX9 A07:22717658-22722312 + 4654 717 6 238 26.86 9.68 Extracellular

BnaA08T0269900ZS BnGPX10 A08:25981327-25984256 − 2929 363 5 120 13.45 6.28 Chloroplast

BnaA09T0247900ZS BnGPX11 A09:18151781-18152884 − 1103 525 5 174 19.09 6.81 Chloroplast

BnaA09T0577200ZS BnGPX12 A09:58245269-58246443 − 1174 717 5 238 26.45 9.23 Chloroplast

BnaA09T0721600ZS BnGPX13 A09:65850924-65853242 + 2318 513 6 170 19.20 9.17 Chloroplast

BnaC02T0362600ZS BnGPX14 C02:37887177-37888540 − 1363 690 6 229 25.36 9.3 Chloroplast

BnaC03T0178400ZS BnGPX15 C03:10008604-10010540 − 1936 510 6 169 18.99 5.6 Cytoplasm

BnaC03T0248900ZS BnGPX16 C03:15285876-15287196 − 1320 630 5 209 23.29 8.76 Chloroplast

BnaC04T0001100ZS BnGPX17 C04:225671-226699 + 1028 537 5 178 20.16 9.13 Cytoplasm

BnaC04T0156100ZS BnGPX18 C04:14243676-14245017 + 1341 510 6 169 18.93 6.34 Cytoplasm

BnaC04T0257400ZS BnGPX19 C04:36128046-36129247 − 1201 549 6 182 20.30 8.58 Chloroplast

BnaC04T0617900ZS BnGPX20 C04:71165478-71166588 + 1110 477 6 158 18.10 9.05 Nucleus

BnaC06T0239400ZS BnGPX21 C06:34932165-34933231 + 1066 540 5 179 20.22 9.18 Chloroplast

BnaC07T0506700ZS BnGPX22 C07:58481304-58482530 + 1226 720 5 239 26.97 9.58 Chloroplast

BnaC08T0428600ZS BnGPX23 C08:47326442-47327687 − 1245 726 5 241 26.71 9.33 Chloroplast

BnaC09T0141600ZS BnGPX24 C09:10653827-10654957 + 1130 561 5 186 21.09 5.18 Chloroplast

BnaC09T0292200ZS BnGPX25 C09:28600420-28601680 − 1260 516 6 171 18.80 8.32 Chloroplast

In the genomic position, the positive (+) and negative (−) signs indicate the existence of a gene on the positive and negative strand of that
specific marker, respectively.

3.2. Phylogenetic Relationships of GPX Genes

To discover the evolutionary history between the BnGPX, BolGPX, BraGPX, and AtGPX
genes, an unrooted phylogenetic tree was assembled by a multiple sequence alignment
(MSA) of the prophesied GPX protein sequences from Brassica napus, Brassica oleracea,
Brassica rapa, and Arabidopsis thaliana, which was gathered into four main groups (Group
I–Group IV) (Figure 1). The findings revealed that Group I was comprised of 10 GPX
members (4 BnGPXs, 2 BraGPXs, 2 BolGPXs, and 2 AtGPX); Group II was comprised of
17 GPX members (7 BnGPXs, 4 BraGPXs, 3 BolGPXs, and 3 AtGPX); Group III contained
17 GPX members (9 BnGPXs, 2 BolGPX, 4 BraGPXs, and 2 AtGPXs); and Group IV was
comprised of 9 GPX members (5 BnGPXs, 1 BolGPXs, 2 BraGPXs, and 1 AtGPXs) (Figure 1).
Overall, GPXs clustering into the identical sub-group may possess parallel functions. It
is worth mentioning that BnGPX genes were spread in each group with homologs from
other plant species, and Group II and III were observed to have more BnGPXs, BolGPXs,
BraGPXs, and AtGPXs members than the other three groups (Figure 1). Additionally, it was
noticed that the BnGPXs have a stronger phylogenetic link with the BolGPXs and BraGPXs
in each group.
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Figure 1. A neighbor-joining phylogenetic tree assessment of GPX genes in Brassica napus, Brassica
oleracea, Brassica rapa, and Arabidopsis thaliana. Overall, 25 BnGPXs from Brassica napus (red triangle),
8 BolGPXs from Brassica oleracea (blue star), 12 BraGPXs from Brassica rapa (green box), and 8 AtGPXs
from Arabidopsis thaliana (yellow circles) were clustered into four groups (Groups I–IV), symbolized
by unique colors.

3.3. Evaluation of Chromosomal Dispersal and Synteny Links of BnGPX Genes

The development of new gene family followers in plants’ genome advancement is
comparatively ascribed to tandem and segmental doubling events [47]. Thus, the corre-
sponding events were explored in BnGPXs to clarify the rapeseed GPX gene duplication
events. The chromosomal scatterings of 25 BnGPX genes were appraised. Notably, 8 out of
the 19 chromosomes had BnGPX genes (Figure 2). Concisely, chromosomes A03, A05, A07,
A09, C03, C04, C06, and C08 had only one BnGPX gene (Figure 2). Remarkably, the residual
chromosomes did not have any BnGPX gene, and no tandem repeat paralogous genes were
found in any regions. Moreover, eight paralogous genes were identified on the A03, A05,
A07, A09, C03, C04, C06, and C08 chromosomes (Figure 2). These conclusions revealed
that the duplication events played a critical role in developing the BnGPX family genes.



Antioxidants 2021, 10, 1481 7 of 18

Antioxidants 2021, 10, x FOR PEER REVIEW 7 of 19 
 

the A03, A05, A07, A09, C03, C04, C06, and C08 chromosomes (Figure 2). These conclu-
sions revealed that the duplication events played a critical role in developing the BnGPX 
family genes.  

 
Figure 2. Circular drawings of the chromosomal distribution and inter-chromosomal organization 
of BnGPX genes. Gray lines in the background signify all the syntenic blocks in the rapeseed genome 
and the red lines indicate syntenic GPX gene pairs. 

Collinearity analysis uncovered robust orthologs of the GPX genes among Brassica 
napus and the other hereditary plant species (Figure 3; Table S3). In short, in the A subge-
nome, 7 Brassica napus genes exhibited syntenic links with 5 AtGPXs, 1 BraGPXs, and  
BolGPXs. In the C subgenome, 9 Brassica napus genes presented syntenic links with 4 
AtGPXs, 3 BraGPXs, and 2 BolGPXs (Figure 3). Particularly, numerous homologues of Ar-
abidopsis thaliana, Brassica rapa, and Brassica oleracea withstood a syntenic alliance with 
BnGPXs, implying that whole-genome duplication (segmental duplication) events por-
trayed a vital role in BnGPXs gene family evolution in the rapeseed genome (Table S3). 

 

Figure 2. Circular drawings of the chromosomal distribution and inter-chromosomal organization of
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Collinearity analysis uncovered robust orthologs of the GPX genes among Brassica
napus and the other hereditary plant species (Figure 3; Table S3). In short, in the A
subgenome, 7 Brassica napus genes exhibited syntenic links with 5 AtGPXs, 1 BraGPXs,
and BolGPXs. In the C subgenome, 9 Brassica napus genes presented syntenic links with
4 AtGPXs, 3 BraGPXs, and 2 BolGPXs (Figure 3). Particularly, numerous homologues
of Arabidopsis thaliana, Brassica rapa, and Brassica oleracea withstood a syntenic alliance
with BnGPXs, implying that whole-genome duplication (segmental duplication) events
portrayed a vital role in BnGPXs gene family evolution in the rapeseed genome (Table S3).
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The Ka/Ks ratio is a substantial index in estimating the replication events and selection
pressures [48]. Thus, to comprehend the evolutionary constraints on the BnGPX gene family,
the Ka, Ks, and Ka/Ks ratio was evaluated. The results stated that all the repeated BnGPX
gene pairs had a Ka/Ks ratio of <1 (Table S3); however, two gene pairs (BnGPX4/BraGPX4
and BnGPX7/BraGPX7) had a Ka/Ks ratio of >1 and experienced positive selection pressure
(Table S3). Almost all genes experienced segmental duplication events. Similarly, Brassica
rapa, Brassica oleracea, and Arabidopsis thaliana also experienced the purifying selective
pressure (Table S3). Overall, the findings signify that the rapeseed GPX family genes
might have encountered purifying and positive selection burden during the course of
their evolution.

3.4. Evaluation of Gene Structures and Conserved Motifs of BnGPX Genes

The gene structures (exon-intron arrangements) of the BnGPX genes were examined
to gain insight into the expansion of rapeseed GPX family genes. The results showed that
introns of the BnGPXs ranged from 4–5 (Figure 4A), and exons ranged from 5–6 in each
sequence (Table 1). Group I contained 4 introns, whereas Groups II–IV include 4–5 introns.
A similar trend was also observed for exons (5–6/gene) within the same groups (Figure 4A;
Table 1). Mainly, BnGPX2 and BnGPX15 have diverse gene structures in Group II. In short,
Groups II, III, and IV exhibited analogous intron-exon arrangements, and only Group I had
a distinct intron-exon arrangement. These outcomes stipulated that GPX members within a
group astonishingly had the same gene structures, steady with their phylogenetic relatives.
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UTR regions, yellow color displays the GSHPx domains, and black horizontal line demonstrates
the introns. (C) Conserved motifs configurations are named in the BnGPXs. Unique color boxes
demonstrate distinct motifs.
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Additionally, we examined the full-length protein sequences of 25 BnGPXs to dis-
tinguish their conserved motifs. The conserved motif of the BnGPX genes varied from
4–8. Overall, ten conserved motifs were recognized, and the motif dispersals were also
analogous within the groups (Groups I–IV) (Figure 4B; Table S4). For example, all mem-
bers of Group I comprise 8; Group II contains 5–7; Group III includes 5–8; and Group IV
encompasses 4–8 conserved motifs (Figure 4B). Notably, only BnGPX10 had four motifs in
Group IV (Figure 4B). Interestingly, motif 7 was specific to Group I; motif 9 was specific to
Group II; motif 10 was limited to two genes (BnGPX14 and BnGPX1) in Groups III and IV;
and other motifs were nearly equally distributed on all the genes (Figure 4B). In a nutshell,
the group organization’s evenness was strongly retained by exploring the conserved motifs
dispersals, gene structures, and phylogenetic links, demonstrating that the GPX proteins
have exceptionally preserved amino acid residues and members contained by a group
might have analogous roles.

3.5. Cis-Elements in the Promoters of BnGPX Genes

To discriminate the gene functions and regulatory roles, cis-regulatory elements in
BnGPXs promoter regions were inspected by searching a 2000 bp upstream region from each
gene’s transcriptional activation site against the PlantCARE database. The complete data of
cis-elements are offered in Table S5. The results display that five phytohormone-correlated
(auxin, (abscisic acid (ABA), gibberellin (GA), methyl jasmonate (MeJA), and salicylic
acid (SA)) responsive elements comprising TCA-element, TGA-element, CGTCA-motif,
ABRE, AuxRR-core, TGACG-motif, TATC-box, GARE-motif, P-box, etc., were documented
(Figure 5; Table S5). Predominantly, many phytohormone-connected elements were proph-
esied to be definite to some genes and extensively scattered (Figure 5), suggesting the
decisive role of these genes in phytohormone arbitration.

Additionally, four abiotic stress-accompanying (drought, low-temperature, anaerobic,
and light) elements, comprising ARE, LAMP-element, LTR, MRE, TCCC-motif, GT1-motif,
chs-CMA1a, AE-box, box 4, G-box, MBS, etc. were recognized (Figure 5; Table S5). Primar-
ily, several light-responsive elements were found to be extensively disseminated among
all of the genes (Figure 5; Table S5), suggesting the extensive role of BnGPXs against light
stress. On the whole, outcomes directed that BnGPXs expression levels may depart under
phytohormone and abiotic stress environments.

3.6. Genome-Wide Investigation of miRNA Targeting BnGPX Genes

Earlier reports demonstrated that miRNA-mediated regulation is associated with the
stress responses in plants. Hence, to enhance our familiarity of miRNA-mediated post-
transcriptional regulation on BnGPXs, the current study discovered five miRNAs targeting
six BnGPX genes (Figure 6A; Table S6). The miRNA-targeted sites are shown in Figure 6B,
and the comprehensive data of all miRNAs targeted sites/genes are introduced in Table
S6. The outcomes disclosed that 4 members of the bna-miR164 family targeted four genes
(BnGPX3, BnGPX4, BnGPX16, and BnGPX22); and one member of the bna-miR396 family
targeted two genes (BnGPX13 and BnGPX20) (Figure 6; Table S6). Primarily, BnGPX3,
BnGPX4, BnGPX16, and BnGPX22 were projected to be targeted by a superior number
of miRNAs (Figure 6A; Table S6). The expression profiling of predicted miRNAs and
their targeted sites/genes needs confirmation in the further investigation to oversee their
biological functions in the rapeseed genome.
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3.7. Functional Annotation Evaluation of BnGPX Genes

To further distinguish the BnGPX genes’ roles, GO annotation and enrichment analysis
were carried out based on biological process (BP), molecular function (MF), and cellular
component (CC) classes. The BP, MF, and CC annotation conclusions presented abun-
dant suggestively enriched terms (Table S7). For instance, the BP enrichment analysis
uncovered that these genes were principally involved in response to hydrogen peroxide
(GO:0042542), response to an organic substance (GO:0010033), cellular response to abiotic
stimulus (GO:0071214), response to reactive oxygen species (GO:0000302), etc. (Table S7).
Results of MF annotation revealed that these genes are involved in oxidoreductase activity
(GO:0016684), antioxidant activity (GO:0016209), molecular_function (GO:0003674), glu-
tathione peroxidase activity (GO:0004602), peroxidase activity (GO:0004601), etc. (Table S7).
These terms also validate the function of BnGPX genes in ROS scavenging and antioxidant
defense systems. The CC enrichment analysis confirms that these genes are mainly linked
with cellular anatomical entity (GO:0110165), cytoplasm (GO:0005737), obsolete intracel-
lular part (GO:0044424), obsolete cell part (GO:0044464), and organelle (GO:0043226), etc.
(Table S7). Notably, few of these terms follow the prediction of subcellular localization of
the GPX proteins. In short, CC, BP, and MF-GO annotation results proved the main role of
BnGPXs in antioxidant defense systems, ROS, and response to stress stimulus.
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3.8. Tissue-Specific Expression Profiles of BnGPX Genes in Rapeseed

The tissue-specific expression profiles of BnGPXs genes were observed in six diverse
tissues and organs, i.e., roots, stems, leaves, flowers, seeds, and silique, using RNA-seq
data from Brassica napus (ZhongShuang 11 variety) (BioProject ID PRJCA001495). The
expression profiles of the BnGPX genes altered in the different tissues and organs. As
illustrated in Figure 7, group II genes exhibit higher expression in all of the tissues except
BnGPX8, BnGPX12, and BnGPX18, which displayed relatively lower expression in seeds
(Figure 7). On the other hand, group I and III genes show relatively lower expression in all
of the tissues except BnGPX2, BnGPX4, BnGPX15, and BnGPX22 that showed somehow
higher expression in leaf, flower, seeds, and silique (Figure 7). Thus, it is noteworthy that
group II genes may play substantial roles in rapeseed developmental processes.
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The red color indicates high and the blue color indicates low expression levels. The expression heat
map was generated based on transcripts per million (TPM) values.

3.9. Response of BnGPX Genes to Different Hormones and Abiotic Stress Treatments

To investigate the BnGPX genes’ expression profiles under various hormones (ABA,
GA, IAA, and MeJA) and abiotic stress (salinity, cold, waterlogging, and drought) con-
ditions, the qRT-PCR-based expression profiling of 8 randomly chosen BnGPX genes
was performed (Figure 8). In response to all of these stress environments, BnGPX21 and
BnGPX23 were up-regulated under IAA (5.68, 5.64, 5.33, and 3.68 folds for BnGPX21;
4.13, 4.91, 5.49, and 5.22 folds for BnGPX23), salinity (4.83, 6.14, 6.54, and 5.81 folds for
BnGPX21; 5.28, 5.40, 7.11, and 7.96 folds for BnGPX23), cold (4.09, 5.38, 4.5, and 3.21 folds
for BnGPX21; 3.1, 3.9, 4.6, and 4.14 folds for BnGPX23), waterlogging (5.44, 6.09, 5.14, and
5.97 folds for BnGPX21; 1.84, 7.24, 6.51, and 4.70 folds for BnGPX23), and drought (5.71,
6.51, 7.15, and 7.59 folds for BnGPX21; 2.63, 9.09, 11.37, 14.10 folds for BnGPX23) conditions
at 2, 4, 6, and 8 h, respectively, compared to CK (Figure 8), whereas BnGPX23 was also
up-regulated under ABA (5.55, 7.27, 9.43, and 7.39 folds) and MeJA (14.97, 16.01, 26.26,
and 26.03 folds) treatments at 2, 4, 6, and 8 h, respectively, compared to CK (Figure 8).
Under GA treatment, only BnGPX2 was up-regulated (10.9, 11.04, and 14.75 folds) at 2, 6,
and 8 h, respectively, compared to CK. On the other hand, BnGPX1 and BnGPX2 showed
considerable expression under ABA, IAA, salinity, waterlogging, and drought conditions at
certain time points (Figure 8). In comparison, the rest of the genes showed lower expression
under all of the stress conditions. The results signify that mainly BnGPX21 and BnGPX23
genes could play a vital role in alleviating the harmful impact of different hormones and
abiotic stress conditions in rapeseed.
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4. Discussion

Rapeseed is an allotetraploid crop that practices widespread genome replication and
integration activities [49]. However, rapeseed yield is influenced by numerous abiotic
pressures, including temperature (cold/heat), high salinity, drought, waterlogging, and
heavy metals toxicity [24,27,50]. The generation of ROS in response to normal and stress
atmospheres is assessed and scavenged via GPXs, which is considered one of the most
effective ROS antioxidant scavenging enzymes [6,9]. Further, GPX enzyme and GPX genes
also contribute to several plant physiological, biochemical, and molecular mechanisms to
withstand harsh environmental stresses [5,6]. In the recent past, GPX gene families have
been reported in numerous crop plants, including five GPX genes in date palm (Phoenix
dactylifera L.) [51] and in Rhodiola crenulate [52]; six genes in cucumber (Cucumis sativus
L.) [53], watermelon (Citrullus lanatus L.) [54], and Lotus japonicus [55]; seven genes in
sorghum (Sorghum bicolor L.) [19]; eight genes in Thellungiella salsuginea [56] and peach
fruit (Prunus persica L.) [57]; 13 genes in cotton (Gossypium hirsutum L.) [58]; and 14 genes
in bread wheat [59]. To the best of our knowledge, the GPX gene family was yet to be
reported in rapeseed that responds to multiple stress conditions. The availability of the
entire rapeseed genome justifies the genome-wide description of the GPX gene family,
which could be used for forthcoming rapeseed breeding programs.

According to the available literature, the current study identified the largest GPX
gene family (25 BnGPXs) in the rapeseed genome (Table 1), which were grouped into four
major groups (Figure 1). Deviations in the GPXs gene numbers between different plant
species may be attributed to gene replication experiences, involving tandem and segmental
replications, and participate in spreading GPXs for deviation. Gene replication of GPX
genes was also uncovered in different plant species [19,57,58]. The current study showed
that BnGPXs underwent segmental duplication, purifying and positive selection burden
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during their evolution (Table S3). Subsequently, these consequences recommended that
BnGPXs replication activities might play an imperative role in gene evolution.

The phylogenetic tree showed that GPXs genes from rapeseed and other three plant
species, including Brassica rapa, Brassica oleracea, and Arabidopsis thaliana, were categorized
into four main groups (Figure 1), which was constant with the grouping in other plant
species such as Thellungiella salsuginea [56], cotton [58], sorghum [19], and bread wheat [59].
Fascinatingly, each group comprised one or more GPXs genes from all plant species, and
every BnGPX was extremely correlated to its homologs in the other three plant species,
particularly in Brassica rapa and Brassica oleracea, suggesting that the mutual ancestor was
self-possessed of pairs of possible orthologs. Additionally, gene structure analysis discov-
ered that most of the BnGPX genes owned five introns (Figure 4; Table 1); however, the
number of exons ranged widely from four to five, and introns number varied from five to
six in each group (Figure 4). Similar findings were also reported in cucumber, where all
GPX genes had four to five introns and four to five exons [53]. In cotton, six exons and five
introns were found in 13 GPX genes [58]. The exon-intron gatherings’ divergence was prac-
ticed by three essential methods (exon/intron-gain/loss, exonization/pseudoexonization,
and insertion/deletion), and they are precisely supported to structural divergence [60].
Remarkably, the GPX genes in each group offered parallel exon-intron organization and
conserved motifs (Figure 4), indicating that these genes may take part in the matching
roles associated with multiple abiotic cues. Similar discoveries have also been described in
Thellungiella salsuginea [56], cotton [58], sorghum [19], and bread wheat [59].

To better comprehend the role of the BnGPX genes in contradiction of some environ-
mental factors, cis-elements in the promoter regions were predicted. The outcomes demon-
strated that two major kinds of cis-elements were identified, i.e., stress- and phytohormone-
responsive (Figure 5; Table S5). Almost all recognized cis-elements were allied with phyto-
hormones (ABA, MeJA, GA, SA, and auxin), and abiotic stress (drought, low-temperature,
light, and anaerobic induction) (Table S5). The previous report suggests that cis-elements
support plant stress responses [61]. Moreover, these gene functions were additionally deep-
rooted by the GO annotation investigation (Table S7). Our results are in agreement with
previous reports, where GPX genes contributed to several stress responses [19,51,55,56,59].
These conclusions can increase our comprehension of BnGPX genes under varied environ-
mental circumstances.

In recent years, ample miRNAs have been documented by genome-wide investigation
in rapeseed to take part in various environmental issues [62–66]. None of the previously
reported GPXs gene families in different plants has reported miRNA-targeting GPX genes.
Therefore, for the first time, the current study discovered five miRNAs from two families
(miR164 and miR396) targeting six BnGPX genes (Figure 6; Table S6). In a recent study,
Vm-milR37 subsidized in pathogenicity through regulating the VmGPX gene, which takes
part in the oxidative stress response throughout Valsa mali infection [67]. Notably, there
is no report on miRNAs targeting GPX genes in plants. However, the identified miRNAs
have been documented in different plants and stress conditions. For instance, miR164
regulated the salinity stress tolerance mechanism in maize (Zea mays L.) [68]. In another
study, miR164-targeted NAC genes undesirably regulated drought stress tolerance in rice
plants [69]. Further, miR164 negatively regulated the resistance of wheat to stripe rust [70].
Similarly, another miRNA (miR396) arbitrated amendment in plant growth and salt stress
responses in creeping bentgrass (Agrostis stolonifera) [71]. Further, miR396 was found
to be elaborated in plant response to vernalization and flower advancement in Agrostis
stolonifera [72]. In another study, the overexpression of osa-MIR396c declines salinity and
alkali stress tolerance in rice [73]. It is worth mentioning that these findings support our
outcomes and endorse that bna-miRNAs might play critical roles in the contradiction of
various stresses by fluctuating the transcript profiles of GPX genes in rapeseed.

Growing evidence specifies that GPXs genes may display diverse expression profiles in
different organs/tissues and under stress circumstances [19,51,55,56,59]. Hence, the tissue-
specific expression profiles of BnGPXs genes were evaluated in six diverse developmental
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tissues using RNA-seq data (Figure 7), and these results are in agreement with previous
reports. For example, six watermelon ClGPX genes presented higher expressions in flowers
and fruits [54]. In cotton, almost all GhGPXs genes exhibited the uppermost expression
in flowers [58]. In cucumber, some CsGPX genes showed higher expression in roots and
flowers [53]. The innumerable expression profiles of BnGPX genes (mainly from Group II)
specify that they may play diverse purposeful roles at certain developmental procedures
in rapeseed.

Similarly, the expression profiles of eight BnGPX genes were appraised under diverse
phytohormones and abiotic stress treatments (Figure 8). Among all evaluated genes,
BnGPX21 and BnGPX23 showed higher expression under almost all stress treatments
except GA (Figure 8). These consequences agreed with earlier discoveries where several
GPX genes exhibited sophisticated expression against stress treatments. For example, in
watermelon, almost all ClGPX genes were up-regulated in response to cold, drought, and
salinity stresses [54]. Nearly all T. salsuginea TsGPXs genes were suggestively up-regulated
at a one-time point under salinity and drought treatments [56]. Pennisetum glaucum PgGPX
expression levels were highly induced by salinity and drought conditions [12]. In cucumber,
almost all six CsGPX genes were significantly up-regulated at some time points against
cold, salinity, drought, and ABA treatments [53]. These discoveries offered robust evidence
that GPX genes play a well-maintained role in defending abiotic and hormone stresses in
diverse plant species.

5. Conclusions

In conclusion, a total of 25 BnGPX genes were identified in the rapeseed genome.
To gain in-depth insights into the evolution of the GPX gene family in rapeseed genome,
gene structure, phylogenetic and synteny, conserved motifs, cis-elements, GO annotation,
miRNA prediction, tissue-specific expression, and expression profiling against diverse hor-
mones, and abiotic stress treatments were carried out. The BnGPX genes were differentially
expressed in numerous tissues/organs, signifying that these genes might contribute precise
roles in rapeseed development. The outcomes of gene expression profiling in response to
diverse abiotic stresses and hormones treatments discovered that several BnGPX genes
might contribute to stress responses and hormone signaling pathways. These discoveries
will lay the basis for studying the roles of BnGPX genes in rapeseed developmental pro-
cesses and response to several stresses using different functional validation options, such
as overexpression, knockout via CRISPR/Cas system, etc.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/antiox10091481/s1, Table S1: A list of primers used for gene expression analysis in qRT-PCR,
Table S2: The sequence of GPX family genes in Brassica napus, Arabidopsis thaliana, Brassica oleracea, and
Brassica rapa, Table S3: The data of gene duplication type, Ka, Ks, and Ka/Ks ratio values of B. napus
and other three plant species, Table S4: Information on the 10 identified motifs in BnGPX proteins,
Table S5: Information on hormone- and stress-related cis-elements identified in the promoters regions
of BnGPXs, Table S6: Information on miRNA targeted BnGPX genes, Table S7: The GO enrichment
analysis of BnGPX genes.
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