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Abstract: Stress can elicit glucocorticoid release to promote coping mechanisms and influence
learning and memory performance. Individual memory performance varies in response to stress,
and the underlying mechanism is not clear yet. Peroxiredoxin 6 (PRDX6) is a multifunctional enzyme
participating in both physiological and pathological conditions. Several studies have demonstrated
the correlation between PRDX6 expression level and stress-related disorders. Our recent finding
indicates that lack of the Prdx6 gene leads to enhanced fear memory. However, it is unknown whether
PRDX6 is involved in changes in anxiety response and memory performance upon stress. The present
study reveals that hippocampal PRDX6 level is downregulated 30 min after acute immobilization
stress (AIS) and trace fear conditioning (TFC). In human retinal pigment epithelium (ARPE-19)
cells, the PRDX6 expression level decreases after being treated with stress hormone corticosterone.
Lack of PRDX6 caused elevated basal H2O2 levels in the hippocampus, basolateral amygdala, and
medial prefrontal cortex, brain regions involved in anxiety response and fear memory formation.
Additionally, this H2O2 level was still high in the medial prefrontal cortex of the knockout mice
under AIS. Anxiety behavior of Prdx6−/− mice was enhanced after immobilization for 30 min. After
exposure to AIS before a contextual test, Prdx6−/− mice displayed a contextual fear memory deficit.
Our results showed that the memory performance of Prdx6−/− mice was impaired when responding
to AIS, accompanied by dysregulated H2O2 levels. The present study helps better understand the
function of PRDX6 in memory performance after acute stress.
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1. Introduction

Acute stress can either facilitate or impair cognitive performance depending on a
combination of factors, such as timing related to stress and the types of cognitive func-
tion [1,2]. The hypothalamic-pituitary–adrenal (HPA) axis is activated to release stress
hormone glucocorticoid (GC) into the bloodstream and subsequently to liberate stored
energy required for stress-coping mechanisms [3,4]. Amario A. et al. reported that elevated
glucose, cortisol, and prolactin in the bloodstream are markers in responding to acute
immobilization stress (AIS) [5]. Stress-induced elevated energy metabolism leads to the
generation of reactive oxygen species (ROS) [6]. The hippocampus, a critical brain region
involved in learning and memory, is sensitive to stress hormones and oxidative stress [7–9].
Previous studies indicate that both glucocorticoid receptors (GRs) and mineralocorticoid
receptors (MRs) are highly expressed in the hippocampus [10,11]. These studies suggest
that the hippocampus is a critical brain region responsible for stress response, and GC is
implicated in memory performance [12,13]. Under stressful conditions, various factors in-
fluence the effects of stress on an individual’s memory performance [14]. Thus, finding the

Antioxidants 2021, 10, 1416. https://doi.org/10.3390/antiox10091416 https://www.mdpi.com/journal/antioxidants

https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://orcid.org/0000-0003-3862-7581
https://orcid.org/0000-0001-8070-5016
https://orcid.org/0000-0001-8760-3928
https://orcid.org/0000-0002-2795-2461
https://doi.org/10.3390/antiox10091416
https://doi.org/10.3390/antiox10091416
https://doi.org/10.3390/antiox10091416
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/antiox10091416
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com/article/10.3390/antiox10091416?type=check_update&version=1


Antioxidants 2021, 10, 1416 2 of 15

key molecules responsible for the complex relationship between acute stress and memory
formation will help better understand the underlying mechanism.

Peroxiredoxin 6 (PRDX6), a 25-kDa protein, is the sixth member of the peroxiredoxin
family [15]. It is the only mammalian peroxiredoxin that contains one active cysteine
residue and does not require thioredoxin in its catalytic cycle [15]. PRDX6 exerts glutathione
peroxidase (GPx) and acidic calcium-independent PLA2 (aiPLA2) activities [16–18], which
define its potential role in oxidative regulation and membrane lipid turnover [16,19,20].
PRDX6 is expressed in the brain, including the hippocampus [21], amygdala, and prefrontal
cortex [22]. The PRDX6 gene contains glucocorticoid responsive elements (GRE) on its
promoter region. It can be upregulated by dexamethasone (Dex), a selective GR agonist,
in lung epithelium cells [23,24]. Previous studies also showed that immunophilin FK506-
binding protein 52 (FKBP52), a chaperone protein promoting nuclear translocation of GRs,
positively correlates with PRDX6 level. Deletion of the Fkbp4 gene results in reduced PRDX6
levels [25,26]. PRDX6 is involved in various forms of stress-related disorders [21,27,28].
Our previous studies have identified the PRDX6 function in modulating hippocampal
synaptic plasticity and memory formation [29,30]. Thus, it is worth investigating whether
PRDX6 is involved in stress-related anxiety response and memory performance.

The present study demonstrates that PRDX6 expression level was downregulated
in response to corticosterone treatment in vitro, and after stressful training in vivo. After
receiving AIS, the H2O2 level is decreased in the Prdx6−/− mice brains. Additionally, AIS in-
duces anxiety in Prdx6−/− mice while attenuating their excessive fear of memory retrieval.

2. Materials and Methods
2.1. Animals

Male mice used in this study were 8–12-weeks old. Mice with a targeted deletion
of the Prdx6 gene were purchased from the Jackson Laboratory (#005974 B6.129-Prdx6
tm1pgn/pgn, Bar Harbor, NE, USA) and maintained at Tzu Chi University for more than
10 generations. The generation of the Prdx6 mice was described in the previous report [31].
One heterozygous (Prdx6+/−) male and two heterozygous (Prdx6+/−) female knockout
mice were mated to generate homozygous wild–type (Prdx6+/+) littermates and knockout
(Prdx6−/−) mice. Genotyping was performed as described in the previous report to confirm
the genotypes of the mice before every behavioral test [29]. All mice were kept in normal
laboratory conditions and had free access to food and water under a 12 h light/dark
cycle. All experiments in this study were conducted following the ethical guidelines of
the Taiwan Ministry of Science and Technology (MOST) (Taipei, Taiwan) and approved by
the Institutional Animal Care and Use Committee of Tzu Chi University, Hualian, Taiwan
(approval #104099-A, 24 January 2018). The ethical treatment of animals followed the
guidelines provided by Taiwan MOST.

2.2. Behavioral Tests
2.2.1. Acute Immobilization Stress (AIS)

To restrain the mice, we kept them in 50 mL plastic conical tubes with breathing holes
for 30 min. A non-transparent paper box was used to cover them for mimicking the dark
phase [13]. After 30 min of immobilization, stressed mice were returned to their home
cage and rested for 20 min. After the behavioral test, mice were sacrificed immediately for
hippocampal tissue collection.

2.2.2. Trace Fear Conditioning

We performed trace fear conditioning as described in our previous study with minor
modification [21]. Mice were habituated to the conditioning apparatus (17 cm (W) ×
17 cm (L) × 25 cm (H)) for 15 min three consecutive days. On the next day, three pairs of
tone (CS) and electric foot shock (US) were used to train the mice. Each pair consisted of
20 s tone (6000 Hz, 85 dB) and 1 s electric foot shock (1 mA) with a 10 s training interval.
Twenty-four hours later, mice were re-exposed to the conditioned chamber for 6 min to
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test their contextual fear memory. A video camera recorded the testing procedure, and
the freezing percentage was analyzed by tracking software (EthoVision XT 15, Noldus
Information Technology, Leesburg, VA, USA).

2.2.3. Open Field Test

To test mice’s locomotor function and anxiety response, they were placed into an open
field chamber (50 cm × 50 cm × 50 cm) and allowed to explore the chamber for 10 min
freely [21]. A top-view camera was used to record the traveling distance and moving speed.
The chamber was divided into three zones: outer, inner, and center. The time spent in
each zone was calculated using tracking software (EthoVision XT 15, Noldus Information
Technology, Leesburg, VA, USA).

2.2.4. Elevated plus Maze Test

We used an elevated plus-maze to evaluate the fear of height. Mice were placed in the
center of the 60 cm high maze [21] and allowed to freely explore the maze for 10 min. Their
motion was recorded by a top-view camera and analyzed by tracking software (EthoVision
XT 15, Noldus Information Technology, Leesburg, VA, USA) to obtain time spent in closed
arms and open arms.

2.3. Cell Culture

ARPE-19 was kindly provided by Rong-Kung Tsai at the Institute of Medical Sciences,
Tzu Chi University, Taiwan. The cells were initially purchased from the Bioresource
Collection and Research Center (BCRC, Hsinchu, Taiwan). In this study, the cells were
cultured in a medium comprising 10% fetal bovine serum (FBS) in Dulbecco’s Modified
Eagle Medium: nutrient mixture F-12 (DMEM/F12), 100 U/mL penicillin, and 100 ug/mL
streptomycin. The cells were maintained in a 37 ◦C humidified incubator with 5% CO2
atmosphere. Cells were seeded in 96-well plates for 24 h to achieve 80% confluence. A
0.01% DMSO or varying doses of corticosterone (1, 10 and 100 nM) was added into the
medium for 1 h. Thiazolyl Blue Tetrazolium Blue (MTT) was then conducted to measure
cell viability. Briefly, 10 µL of MTT solution (5 mg/mL) in phosphate-buffered saline (PBS)
was added to each well and incubated for 3 h at 37 ◦C. The supernatant was removed and
replaced by 100 µL DMSO. A 570 nm wavelength was used to obtain the intensity of MTT
under a microplate reader (Thermo Scientific Multiskan Spectrum, Waltham, MA, USA).

2.4. Immunocytochemistry and Image Analysis

For immunocytochemistry, ARPE-19 cells (5 × 103) were seeded in 24-well plates
containing 10 mm coverslips and maintained in an incubator at 37 ◦C overnight. After that,
GC was added to the cells for 1 h, then cells were washed three times with 1× PBS and
fixed with 4% paraformaldehyde (PFA) for 30 min at room temperature. Fixed cells were
washed three times with a washing buffer (1× PBS containing 0.3% Triton X-100), then
added with a blocking buffer (1 mg/mL BSA containing 0.3% Triton X-100) for 1 h at room
temperature on a shaker. Next, cells were incubated with 200 µL of monoclonal mouse
anti-PRDX6 antibody (1:200, Bethyl Laboratories, Inc, Montgomery, TX, USA) overnight at
4 ◦C. Next, cells were washed three times with a washing buffer for 10 min/time. The fixed
cells were then incubated in a secondary antibody (Alexa 488-conjugated goat anti-rabbit
IgG (1:200, ThermoFisher Scientific, Waltham, MA, USA)) for 1 h followed by washing with
the washing buffer. The stained cells were counterstained with DAPI (1:10,000) for 5 min.
The images were observed under a fluorescent microscope (Nikon model# ECLIPSE Ni-E,
Tokyo, Japan). The percentage of labeled cells (450 µm × 450 µm) was quantified using
ImageJ software version 15.2a (download from National Institutes of Health, Bethesda,
MD, USA).
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2.5. Western Blot (WB) Analysis

WB analysis procedure was the same as described in our previous study [29]. The hip-
pocampal tissues were lysed in 1X radioimmunoprecipitation assay (RIPA) buffer (Merck
Millipore, Burlington, MA, USA) containing phosphatase and protease inhibitors and kept
on ice for 30 min. The lysates were then centrifuged at 13,000 rpm for 15 min at 4 ◦C. Protein
samples (30 µg) were collected in 1x sample buffer (SB) with 10% reducing agent (RA) and
separated by 10% SDS-PAGE. Proteins were then transferred to a PVDF membrane (0.22 µm
pore size). After that, the members were washed three times with 1X PBS containing 0.1%
Tween-20. We probed the proteins of interest with corresponding primary antibody: mono-
clonal mouse anti-PRDX6 (1:2000, Bethyl laboratories, Inc, USA) and secondary antibodies:
HRP-conjugated goat anti-mouse antibody (1:10,000, cell signaling technology, Danvers,
MA, USA). The enhanced chemiluminescence reagents (Western Lightning® Plus-ECL,
PerkinElmer, MA, USA) were used before detecting blots under the UVP Biospectrum
810 imaging system to visualize proteins at a specific molecular weight. The intensities of
protein bands were quantified using ImageJ software version 15.2a (National Institutes of
Health, Bethesda, MD, USA) to measure protein expression levels.

2.6. Intracellular ROS Accumulation Measurement

After AIS, the brain tissues were fixed with 4% PFA overnight at room temperature
before being submerged in 30% sucrose at 4 ◦C until sinkage. The cryopreserved brains
were cut coronally by cryotome with 20 µm thickness. The sections were selected based
on brain coordinates: at bregma 1.98 to 2.34 mm for medial prefrontal cortex (mPFC) and
−1.28 to −2.92 mm for hippocampus and basolateral amygdala (BLA). Selected sections
were stained with 1 µM of dihydroethidium (DHE) for 5 min at room temperature followed
by three times of washing in 1× PBS, 10 min each and cover-slipped. To measure the level
of intracellular H2O2, the stained sections were imaged under the confocal microscope
(Nikon model#C2+, Japan). For calculating the fluorescent intensity in each brain area,
3 fields (200 × 200 µm) from 3 sections per mouse were quantified using ImageJ software
(National Institutes of Health, Bethesda, MD, USA).

2.7. Statistical Analysis

The SPSS (version 25, IBM Corporation, Armonk, NY, USA) was used for statistical
analysis, and the graphs were made using GraphPad Prism version 8.0 (San Diego, CA,
USA). All data are plotted as mean ± standard error of the mean (mean ± SEM) with
95% confidence interval as statistically significant (p < 0.05). Student’s t-tests were used to
compare the data of two independent groups. For multiple comparisons, we performed
a one-way ANOVA followed by a Bonferroni post hoc test. The mixed-design repeated
measures ANOVA was used to analyze the data of related dependent groups. The sample
sizes for each experiment are shown in figure legends.

3. Results
3.1. PRDX6 Expression Level Was Decreased in ARPE-19 Cells Treated with Stress
Hormone Glucocorticoid

We first conducted an in vitro experiment to evaluate the effect of stress hormone
glucocorticoid on the expression level of PRDX6. We added GC to ARPE-19 cells, which
express PRDX6 protein and have steroid receptors [32,33]. We added glucocorticoids of
1, 20, and 100 nM to the cells to mimic stress stimulation in vitro. Interestingly, PRDX6
expression level was significantly reduced under 100 nM GC treatment according to the
immunostaining results (Figure 1A,B) (F4,25 = 4.506; p = 0.008). To understand whether GC
treatment causes cytotoxicity, we performed MTT assay, and found that cell viability was
similar among groups (Figure 1C) (F4,25 = 0.191; p = 0.941).
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Figure 1. PRDX6 levels in response to 1 h of glucocorticoid (GC) treatment at 1, 20, and 100 nM doses. (A) Immunofluorescent
images with 400×magnification of PRDX6 expressed in ARPE-19 cells after administration of GC. (B) Quantification of
PRDX6 expression levels after GC treatments (n = 6–9 per group, one-way ANOVA followed by Bonferroni’s post hoc
test). (C) Viability of ARPE-19 cells treated with GC. All data represent the mean ± the SEM. * p < 0.05. GC, glucocorticoid;
PRDX6, peroxiredoxin 6; DAPI, 4′,6-diamidino-2-phenylindole.

3.2. PRDX6 Expression Level Was Downregulated in Response to AIS and TFC

To investigate whether PRDX6 responds to acute stress, we measured blood glucose
level (Figure 2A; upper panel) and expression levels of PRDX6 after AIS (Figure 2C; upper
panel). By 30 min of immobilization, we observed a significant alteration of blood glucose
level (Figure 2B) (F2,23 = 15.185; p = 0.000). Immediately after AIS application, blood
glucose level was significantly increased (Figure 2B) (p = 0.000), then dropped to basal
level 30 min (Figure 2B) (p = 1.000) after the completion of AIS. We next investigated the
PRDX6 expression level in the hippocampus after receiving 30 min of AIS. Western blot
analysis revealed that mice that received AIS expressed significantly lower PRDX6 than
the home-caged group in the hippocampus (Figure 2D) (t6 = 3.449, p = 0.014).
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Figure 2. PRDX6 expression and blood glucose levels in response to acute immobilization stress (AIS). (A) The procedure of
AIS treatment and blood glucose measurement. (B) Blood glucose level (mg/dL) of home caged, immediately and 30 min
after completing AIS. Blood was collected from the tail vein (n = 8 per group, one-way ANOVA followed by Bonferroni’s
post hoc test). (C) Tissue samples were collected from the hippocampus immediately after the completion of immobilization.
(D) Immunoblots of PRDX6 and β-actin expression levels in the hippocampus (n = 4 per group). Quantification data for
PRDX6 expression levels (Student’s t-test) after receiving 30 min of AIS. All data represent the mean ± the SEM. # p < 0.05.
PRDX6, peroxiredoxin 6; AIS, acute immobilization stress.

To understand whether the levels of PRDX6 would be altered under a different type
of stress, we investigated the hippocampal PRDX6 levels after TFC (Figure 3A). No dif-
ference in the percentage of baselines freezing was detected between naïve and trained
mice (Figure 3B) (t18 = −0.375, p = 0.712). Trained mice showed significantly increased
freezing percentages during three trials (Figure 3B) (trial 1: F1,18 = 14.342; p = 0.001; trial
2: F1,18 = 17.018; p = 0.001; trial 3: F1,18 = 28.781; p = 0.000). Total freezing behavior
of the trained group was significantly higher than that of the naïve group (Figure 3C)
(t17 = −6.411, p = 0.000), indicating they were able to learn the task. Trained mice also dis-
played higher freezing response to the conditioned context than the naïve mice (Figure 3D)
(t16 =−3.563, p = 0.003). Three hours after TFC (Figure 3E), hippocampal PRDX6 expression
level was decreased in the naïve and TFC groups compared with the home-caged group
(Figure 3F) (F2,12 = 18.531; p = 0.000). Twenty minutes after the fear memory retrieval test
for the conditioned context (Figure 3E), PRDX6 was decreased in the TFC group compared
with naïve and home-caged groups (Figure 3G) (F2,14 = 10.858; p = 0.002). The results
confirmed that TFC leads to a reduction in hippocampal PRDX6 as well as AIS.

3.3. Decreased H2O2 Level in the Hippocampal CA1, Basolateral Amygdala and Medial Prefrontal
Cortex in Response to AIS in Prdx6−/− Mice

To investigate whether PRDX6 affects H2O2 levels in mice after AIS, we measured the
H2O2 levels by DHE staining in the hippocampal CA1, basolateral amygdala (BLA), and
medial prefrontal cortex (mPFC) of Prdx6+/+ and Prdx6−/− mice, with or without AIS. Our
results showed that Prdx6−/− mice without receiving AIS had higher H2O2 levels in the
hippocampal CA1 (Figure 4A,B, F3,35 = 7.162; p = 0.001), BLA (Figure 4C,D, F3,35 = 37.266;
p = 0.001), and mPFC (Figure 4E,F, F3,35 = 54.506; p = 0.001) than Prdx6+/+ mice. Prdx6+/+

mice receiving AIS had significantly decreased H2O2 levels in mPFC compared with
Prdx6+/+ mice without AIS (Figure 4E,F). The H2O2 levels in Prdx6−/− mice with AIS were
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significantly reduced in hippocampal CA1 (Figure 4A,B), BLA (Figure 4C,D), and mPFC
(Figure 4E,F) when compared with Prdx6−/− mice without AIS. In addition, Prdx6−/− mice
with AIS demonstrated higher H2O2 levels in mPFC than Prdx6+/+ mice receiving 30 min
of AIS (Figure 4E,F). These results indicated that the 30 min of AIS reduced H2O2 levels in
the three brain regions of Prdx6−/− mice.
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were collected and proteins were extracted from the hippocampus 3 h after the TFC and 20 min after a contextual test.
(B) Freezing percentages of baseline and after each tone-shock pair presented as a learning curve (n = 8–9 mice per group,
two-way repeated measure ANOVA for within group and Student’s t-test for between group). (C) Total percentage
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20 min after a contextual test. All data represent the mean ± the SEM. # p < 0.05. PRDX6, peroxiredoxin 6; TFC, trace fear
conditioning; HC, home caged.
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(n = 3 per group). All data represent the mean ± the SEM. # p < 0.05 and ## p < 0.001. AIS, acute immobilization stress;
PRDX6, peroxiredoxin 6, BLA, basolateral amygdala, mPFC, medial prefrontal cortex. Bar = 100 µm.

3.4. Prdx6−/− Mice Exhibited an Abnormal Locomotion and Anxiety Response after AIS

Acute immobilization can affect locomotion and anxiety response [34,35]. To confirm
the phenomena, mice were immobilized for 30 min and kept in their home cage for
another 30 min before a locomotion test with an open field and an anxiety behavior test
with an elevated-plus maze. Interestingly, AIS caused less traveling distance (Figure 5A)
(t12 = 2.983; p = 0.011) and lower moving speed (Figure 5B) (t12 = 2.985; p = 0.011) of
Prdx6−/− mice. No difference was detected in time spent in outer (Figure 5C) (t12 = −2.146;
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p = 0.053), middle (Figure 5D) (t12 = 1.387; p = 0.191), and inner (Figure 5E) (U = 13; p = 0.141)
areas between Prdx6−/− and Prdx6+/+ mice. Moreover, Prdx6−/− mice entered the inner
area less often than their wild-type littermates (Figure 5F) (t12 = 2.817; p = 0.016). In the
elevated-plus maze test, there was no difference in time spent in closed arms (Figure 5G)
(U = 21; p = 0.654). However, Prdx6−/− mice spent significantly less time in open arms
compared with wild-type littermates (Figure 5H) (t12 = 2.213; p = 0.047) after receiving
30 min of AIS. No significant difference was recorded in entering frequency into closed
(Figure 5I) (U = 19; p = 0.479) and open arms (Figure 5J) (U = 17; p = 0.324) of the elevated-
plus maze between genotypes. The traveling distance (Figure 5K) (U = 14; p = 0.179) and
moving speed (Figure 5L) (U = 14; p = 0.179) of Prdx6−/− mice on an elevated plus maze
were comparable to those of wild-type mice.
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for 30 min and recovered for another 30 min before the open field and elevated plus-maze tests (n = 7 per group). (A) The
traveling distance and (B) moving speed of Prdx6−/− and Prdx6+/+ mice for 10 min after AIS. The time spent in (C) the outer,
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3.5. The Prdx6−/− Mice Demonstrated Lower Memory Retrieval to Context after AIS Compared
with Non-AIS Prdx6−/− Group

Post-traumatic stress disorder (PTSD) is a stress-related psychiatric disorder associ-
ated with the dysregulation of HPA axis activity [36]. We next used AIS to investigate
whether the lack of PRDX6 affects memory performance under acute stress conditions.
In this experiment, mice received 30 min of immobilization 1 h before the contextual test
(Figure 6A). Total freezing percentage during TFC were similar among groups (Figure 6B)
(F3,28 = 1.524; p = 0.233). The contextual test was performed 24 h after training. To further
examine the effect of AIS on the ability to retrieve contextual fear memory, thirty minutes of
AIS was applied to trace fear-conditioned mice 1 h before the beginning of the memory test-
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ing. We observed a significant difference in contextual fear memory retention (Figure 6C)
(F3,28 = 9.295; p = 0.000). Freezing response to the context of the Prdx6−/− mice was higher
than that of the wild-type mice for the non-AIS groups (Figure 6C) (p = 0.011). We detected
that AIS reduced memory retrieval to the context in the Prdx6−/− mice compared with the
non-AIS Prdx6−/− mice (Figure 6C) (p = 0.001), and the freezing percentage was similar to
the wild-type level (Figure 6C) (p = 1.000, Prdx6+/+ with AIS vs. Prdx6−/− with AIS).
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(A) Schematic representation of the experimental procedure. After TFC, mice received 30 min of immobilization and
recovered for another 30 min before the contextual test. (B) The percentage of total freezing of Prdx6+/+ or Prdx6−/−

mice during the TFC (n = 7–8 per group, one-way analysis of variance (ANOVA) followed by Bonferroni’s post hoc test).
(C) The percentage of freezing to context. All data represent the mean ± the SEM. # p < 0.05. PRDX6, ns; not significant,
peroxiredoxin 6; AIS, acute immobilization stress; TFC, trace fear conditioning.

4. Discussion

The present study identifies the PRDX6 function in anxiety behavior and memory
performance upon acute stress. We found that peroxiredoxin 6 (PRDX6) expression was
downregulated in response to glucocorticoid (GC) treatment and upon acute immobi-
lization stress (AIS). In addition, lack of the Prdx6 gene leads to increased H2O2 levels
in the hippocampus, amygdala, and medial prefrontal cortex, which can be reduced by
AIS. We also demonstrated that Prdx6−/− mice exhibited anxiety behavior and attenuated
contextual fear memory responding to AIS.

Both AIS and TFC can activate the hypothalamus–pituitary–adrenal (HPA) axis and
the release of GC to the bloodstream to elicit emotional responses [37–39]. Excessive GC
treatment has been found to activate ROS production in cells [40,41] and in the brains
of animals and humans [42,43], while suppressing various antioxidant enzymes [43]. A
decreased PRDX6 expression level within a short time may be involved in posttranslational
modification of the protein. A previous study revealed that sumoylation of PRDX6 at its
lysine 122 and 142 amplifies its enzymatic activity and stability [44], which may explain how
PRDX6 level was decreased after GC treatment and contextual tests. Further investigations
of how acute stress affects sumoylation and regulates expression levels of stress response
proteins are needed. Several studies reported that PRDX6 expression level is regulated
by nuclear factor erythroid 2-related factor 2 (NRF2) [45–47], in which its transactivation
on targeting genes can be suppressed by activation of GC receptors [48]. The change of
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expression level of PRDX6 in vitro after GC treatment and in vivo after AIS and TFC may
be through negative regulation of nuclear factor erythroid 2-related factor 2 (NRF2) by GC.
Further study is necessary to verify whether NRF2 activity is related to GC and PRDX6
levels after AIS and TFC.

PRDX6 is expressed in the mice’s hippocampus, amygdala, and prefrontal cortex [21],
suggesting its role in protecting oxidative stress occurred within these brain regions under
stress conditions. Here, we detected elevated hydrogen peroxide (H2O2) levels in the
hippocampus, amygdala, and medial prefrontal cortex of Prdx6−/− mice at basal condition,
supporting the role of PRDX6 in oxidative defense mechanism [46,49,50]. We recorded that
H2O2 levels after AIS were reduced in the hippocampus, amygdala, and medial prefrontal
cortex of Prdx6−/− mice. It is known that optimal levels of GC can inhibit the production of
ROS [41,51]. Therefore, the release of GC after experiencing 30 min of AIS may help lower
H2O2 levels in the three brain regions of Prdx6−/− mice.

When exposed to stressful stimuli, fear and anxiety can become debilitating. Addition-
ally, these maladaptive responses are related to the hippocampus, amygdala, and medial
prefrontal cortex [52–55]. The brain consumes a large amount of oxygen and produces a
high level of free radicals which make it sensitive to oxidative damage [56]. Increased ROS
is correlated with brain disorders, including cognitive impairment and anxiety [57–59].
In adult rats, oxidative stress in the hippocampus and prefrontal cortex induces anxiety
behavior and decreased locomotor activity [59,60]. Several antioxidant enzymes such as
superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidases (GPx) have
been reported to be responsible for the elimination of excessive ROS [61]. Additionally,
H2O2 can be reduced to water and oxygen either by catalase (CAT) or glutathione per-
oxidase (GPx) [62]. Since PRDX6 exerts GPx activity that can reduce H2O2 [63,64], it is
not surprising that PRDX6 depletion gives rise to the excessive level of H2O2 in the hip-
pocampus, basolateral amygdala and medial prefrontal cortex of Prdx6−/− mice. Subjecting
the mice to 30 min of AIS is insufficient to reduce H2O2 level in the prefrontal cortex to
wild-type level. A study in rats demonstrated that the prefrontal cortex is more sensitive
to oxidative stress than the hippocampus following chronic isolation stress [65]. Thus,
the AIS-induced anxiety response of Prdx6−/− mice may be due to H2O2 overload in the
medial prefrontal cortex.

Contextual fear memory formation requires interactions between the hippocampus,
amygdala, and prefrontal cortex [52]. During fear memory retrieval, the amygdala receives
fear-related contextual information from the hippocampus [52]. This updated information
is then relayed to the prefrontal cortex for further evolution before expressing a fear
response. At the same time, the inhibitory signal sent from the ventral part of the prefrontal
cortex to the central amygdala tightly regulates fear response. Functional change of either
of these brain regions thus leads to dysregulation of fear memory retrieval [21]. We recently
reported that the Prdx6−/− mice displayed excessive contextual fear memory accompanied
by hyperphosphorylation of ERK1/2 in the hippocampus during the retrieval process [21].
The present study confirms that PRDX6 participates in the regulation of fear memory
retrieval. Acute stress has either negative or positive effects on fear memory processes,
depending on the intensity of the stressor and timing [2,66]. Both AIS and excessive ROS
level can induce memory retrieval deficit [67–69]. The missing antioxidant effect of PRDX6
caused an imbalance of oxidant/antioxidant ratio may be responsible for attenuated fear
memory retrieval to context after AIS.

5. Conclusions

The present study is the first to report the role of PRDX6 in mediating anxiety behavior
and memory performance in response to AIS, and in controlling H2O2 levels in the brain.
Furthermore, enhanced stress susceptibility of the Prdx6−/− mice suggests that PRDX6 can
be a therapeutic target for treating stress-related disorders such as PTSD.
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