
antioxidants

Editorial

Pharmacological and Clinical Significance of Heme Oxygenase-1

David E. Stec 1,* and Nader G. Abraham 2,3,4,*

����������
�������

Citation: Stec, D.E.; Abraham, N.G.

Pharmacological and Clinical

Significance of Heme Oxygenase-1.

Antioxidants 2021, 10, 854. https://

doi.org/10.3390/antiox10060854

Received: 18 May 2021

Accepted: 25 May 2021

Published: 27 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, University
of Mississippi Medical Center, Jackson, MS 39216, USA

2 Department of Medicine, New York Medical College, Valhalla, NY 10595, USA
3 Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
4 Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
* Correspondence: dstec@umc.edu (D.E.S.); nader_abraham@nymc.edu (N.G.A.); Tel.: +1-914-594-3121 (N.G.A.)

This Special Issue collates and updates the current knowledge of the pharmacology
and clinical applications concerning the enzyme heme oxygenase (HO). Heme oxygenases
comprising of HO-1 (inducible isoform) and HO-2 (constitutive isoform) break down
heme to equimolar amounts of the bile pigment biliverdin, carbon monoxide (CO), and
iron (Figure 1). Heme oxygenases catalyze heme degradation using electrons supplied
by NADPH–cytochrome P450 oxidoreductase (CPR). HO-1 is induced as an intracellular
defense system that affords cytoprotection against numerous pathological conditions.
HO-2 is the constitutive isoform that is critical to cellular and vascular homeostasis.
Biliverdin is then reduced to bilirubin by the ubiquitous enzyme biliverdin reductase.
Bilirubin is one of the most potent antioxidants in the body, and also has anti-inflammatory
properties (Figure 1). CO is also an important anti-inflammatory agent through its sup-
pression of cytokines. It can also stimulate guanylate cyclase, increasing cyclic guanosine
monophosphate (cGMP) levels and promoting vasodilation of the vasculature (Figure 1).
The breakdown of heme by HO enzymes is vital to maintain normal cellular function. Free
heme stimulates increases in cellular reactive oxygen species generation and inflammation
(Figure 1). The HO-1 pathway is crucial in cellular defense for numerous diseases, including
diabetes, hypertension, heart diseases, inflammation, transplantation, neurodegeneration,
aging, cancer, and COVID-19 [1–5].

This volume covers the background and essential role of HO in normal physiology
and disease. In the past 10–15 years, an emphasis on the genetic manipulation and devel-
opment of novel specific HO inducers and inhibitors to alter HO activity and the levels of
its metabolites, CO, and bilirubin has increased the knowledge of the HO pathway in phys-
iological and pathological conditions. Classically, HO-1 is observed as a 32 kDa protein,
found abundantly in the microsomal fraction due to its association with the Endoplasmic
Reticulum (ER) [6]. However, it localizes to the cytoplasm as a ~14 kDa fragment and a
~28 kDa protein in the nucleus and mitochondria, respectively [7]. Several pathological
conditions such as Alzheimer’s, preeclampsia, and kidney injury exhibit increased plasma
and urinary levels of HO-1, and increased tissue levels of HO-1 could be a biomarker for
these diseases [8–10]. Several conditions such as diabetes, hypertension, and obesity are
associated with deficiencies or reductions in HO-1 [6]; however, increased HO-1 levels can
also be detrimental, especially in cancer [11].

The therapeutic potential of the HO pathway is evident from the many different ways it
is being manipulated to treat a wide variety of diseases. Therapeutic strategies ranging from
genetic approaches to increase HO-1 protein to chemical or natural product HO-1 inducers,
have found promise for cardiovascular, metabolic, and inflammatory diseases [12,13]. At
the same time, blockades of HO-1 activity through the use of genetic approaches or specific
HO inhibitors have increased our knowledge of the physiological role of this system, and
provided novel therapeutics for diseases such as neonatal jaundice [14].
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Figure 1. Pleiotropic effects of heme oxygenase-1 (HO-1). HO-1 has both stimulatory and inhibitory effects on cancer. It 
inhibits vascular disease, inflammation, COVID-19, and cardiovascular disease. It can be upregulated by a wide variety 
of dietary supplements. Enhancement of HO-1 activity increases carbon monoxide, which is a potent anti-inflammatory 
molecule, and increases the levels of bilirubin which are also augmented by exercise. Arrows indicate increased activity, 
lines with bars indicate inhibitory actions, and dashed lines indicate unknown function. Figure created with Bioren-
der.com. 
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The expertise of the Editors of this Special Issue is in the biochemistry, pharmacol-
ogy, and physiology of HO-1, and its products in cardiovascular and metabolic diseases.
Dr. Abraham’s group has developed novel methods of overexpression of HO-1 using lentivi-
ral vectors to determine the role of HO-1 in hypertension, diabetes, and obesity [15,16].
Dr. Stec’s group has utilized novel mouse models of HO-1 and biliverdin reductase-A
(BVRA) to determine the role of HO-1 and bilirubin in kidney function, obesity, diabetes,
and non-alcoholic fatty liver disease (NAFLD) [17–19]. The vast scope of the HO system in
a wide variety of pathological conditions is evident from the manuscripts comprising this
Special Issue. From well-established diseases such as cancer, hypertension, diabetes, and
Alzheimer’s disease, to newly emerging pandemics such as COVID-19, elevated levels of
HO-1, and heme degradation, products play an important role in these diseases’ underlying
physiology and offer new potential therapeutic approaches for their treatment. Prominent
scientists listed in this volume have made immense contributions to clarify the role of the
HO-1 pathway in several areas. They have also expanded the translation of this knowledge
to clinical research. We believe that this Special Issue reflects the diverse roles that the HO
system plays in many different diseases, and highlights the most innovative research. We
want to extend our most profound appreciation to all of the authors who contributed their
work to this Special Issue.
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