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Abstract: Reverse Phase Protein Arrays (RPPA) represent a very promising sensitive and 

precise high-throughput technology for the quantitative measurement of hundreds of 

signaling proteins in biological and clinical samples. This array format allows 

quantification of one protein or phosphoprotein in multiple samples under the same 

experimental conditions at the same time. Moreover, it is suited for signal transduction 

profiling of small numbers of cultured cells or cells isolated from human biopsies, 

including formalin fixed and paraffin embedded (FFPE) tissues. Owing to the much easier 

sample preparation, as compared to mass spectrometry based technologies, and the 

extraordinary sensitivity for the detection of low-abundance signaling proteins over a large 

linear range, RPPA have the potential for characterization of deregulated interconnecting 

protein pathways and networks in limited amounts of sample material in clinical routine 

settings. Current aspects of RPPA technology, including dilution curves, spotting, controls, 

signal detection, antibody validation, and calculation of protein levels are addressed. 
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1. Introduction 

The aim of future medicine is personalized treatment which is often characterized as providing the 

right patient with the right drug at the right dose at the right time. An increasing number of targeted 

adjuvant cancer therapies, i.e., any treatment given after primary therapy (e.g., surgery), is already 

available. An example for the success of such novel treatment strategies is the monoclonal antibody 

trastuzumab against the receptor tyrosine kinase HER2 [1]. Breast cancer and gastric cancer patients 

who will most likely respond to this therapy are identified before treatment by molecular tests, such as 

immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH). In the case of a 

neoadjuvant setting, i.e., a treatment prior to surgery, patients who most likely will benefit from a 

treatment have to be identified using limited amounts of tissues, most often small biopsies with 

varying percentages of tumor cells. A tumor-specific treatment before surgery can increase the chance 

of tumor-free resection and therefore increase the overall survival [2]. As tiny biopsies are the most 

common available tumor samples in the neoadjuvant settings and on the other hand the number of 

predictive biomarkers for treatment decisions is increasing, highly multiplex methods for quantitative 

tumor analysis with low sample consumption are needed.  

While human cancers evolve from benign to malignant lesions by acquiring a series of gene 

mutations over time [3], the results of gene mutations translate to dysregulation or dysfunction of 

proteins, including kinases, which are attractive drug targets [4]. Currently, many cancer therapeutics 

are designed to target the malfunction of intracellular signaling pathways that rely on de- or phosphorylated 

proteins. Thus, to apply personalized medicine more efficiently it is necessary to analyze tumors at the 

protein level in addition to determining gene mutations or gene expression patterns.  

There are several methods available for protein analysis. Each of them has advantages and 

disadvantages that are listed in Table 1. For example, Western Blot and Enzyme Linked Immunosorbent 

Assay (ELISA) require high amounts of protein lysates. Therefore, we think that despite their 

advantages (e.g., protein separation according to molecular weight and easy quantification, respectively) 

the use of Western Blot and ELISA is not reasonable in clinical routine for detection of deregulated 

signaling pathways when only biopsies are available for the analysis. Currently, for protein analysis of 

tumor tissues IHC is mainly used which gives a spatial resolution of the epitopes analyzed down to a 

single cell. Using IHC and the tissue microarray (TMA) technology, it is now possible to assay 

hundreds of patient tissues arrayed on a single microscope slide [5]. However, IHC can hardly provide 

information about the activation status of proteins as the detection limit of the method is often not 

sufficient for analyzing phosphorylated proteins. The importance of detecting phosphoproteins in 

tumor samples is illustrated by a recent study that revealed that patients with HER2 negative breast 

cancers (IHC/FISH) express a phosphorylated form of HER2 [6]. Thus, these phospho-HER2 positive 

patients may benefit from anti-HER2 treatments in addition to patients showing HER2 gene 

amplification. Mass spectrometry (MS)-based technologies have rapidly advanced in recent years. 

Beside other advantages mentioned in Table 1, MS-based methods enable the identification of new 

biomarker candidates by comparing protein signals obtained from cancer and healthy tissues 

(de novo discovery platform) [7–10]. However, in our opinion, MS-based technologies are not 

suitable for the use in clinical routine at the moment. First, due to the complex sample preparation 

and secondly due to the insufficient profiling of low-abundance signaling proteins. 
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Table 1. Advantages and disadvantages of commonly used protein analysis platforms for 

tissue samples. 

Protein analysis platform Advantages Disadvantages 

Western Blot 
Separation of proteins according to 

molecular weight 

Work-intensive, high amounts of protein 

lysate required, low- or medium-throughput 

ELISA Quantitative, very sensitive High amounts of protein lysate required 

IHC 
Cellular localization of protein of 

interest 

Semi-quantitative, sensitivity often not 

sufficient to detect phosphorylated proteins 

Mass spectrometry-based 

technologies 

De novo discovery platform, highly 

multiplex, protein isoforms can be 

distinguished, analysis of thousands 

of proteins, no protein binding 

reagent required 

Complex sample preparation, poor 

analytical sensitivity compared to 

immunoassays, low-throughput 

Forward Phase Protein 

Arrays 

Many analytes can be measured in 

parallel in a single sample, 

quantitative 

Two highly specific antibodies are needed 

for every assay, high amounts of protein 

lysate required 

Reverse Phase Protein 

Arrays 

Robust quantification, low amount 

consumption, high-throughput, 

highly sensitive, detection of 

phosphoproteins possible 

One highly specific antibody is needed for 

every assay, special devices needed 

Abbreviations: IHC: Immunohistochemistry, ELISA: Enzyme Linked Immunosorbent Assay.  

 

Different kinds of very sensitive protein arrays have been developed to quantitatively measure 

protein levels in high-throughput and multiplex formats. Most of them either function on the basis of 

forward phase protein arrays or reverse phase protein arrays [11]. In the case of forward phase protein 

arrays numerous capture antibodies are printed on a solid phase and are exposed to a single protein 

lysate (Figure 1), allowing detection of multiple proteins in a single sample. The disadvantage is, 

however, that two highly specific antibodies are needed for protein detection and considerable amounts 

of starting material are required. 

 

Figure 1. Schematic presentation of forward phase protein array (A) and reverse phase 

protein array (B). Protein A: Protein of interest. B–G: Proteins of the lysate that are not 

recognized by the primary antibody. HRP: Horse radish peroxidase. 
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The technology of Reverse Phase Protein Arrays (RPPA), a miniaturized dot blot, was first 

described in 2001 and is based on the simultaneous measurement of a single protein in multiple 

samples (Figure 1) [12]. RPPA has proven to be useful for efficient tissue protein quantification  

and for analysis of signaling cascades even on the basis of very low amounts of tumor  

sample (biopsy), enabling quantification of biomarkers in tumors in neoadjuvant settings and at early 

time points [13–15]. Using RPPA even phosphoproteins can be detected. Thus, RPPA represents a 

very powerful tool to identify patients that most likely will benefit from future targeted therapies, aiming 

to inhibit deregulated kinases. The power of RPPA is reflected by an increasing number of groups 

worldwide that study protein levels in various sample material including human and animal tissues and 

cell lines [16–21].  

We will now highlight the clinical use of RPPA and then discuss in detail recent developments for 

optimizing the RPPA procedure. 

2. Clinical Applications of RPPA 

RPPA is increasingly being used to determine deregulated signaling networks in cancer tissues. For 

example, RPPA was one of the methods to determine if multi-omic molecular profiling based 

treatment improves the clinical course of patients with metastatic breast cancer measured by growth of 

modulation index (GMI). GMI was calculated as the ratio of length of time between treatment and 

further growth of the primary tumor or metastases. Multi-omic molecular profiling-based therapy 

differed in all 25 patients from the treatment selected by the treatment selection committee. It could be 

shown that the molecular profiling-rationalized treatment recommendation can improve the 

progression free time period, indicating RPPA as a suitable tool to select an appropriate anti-cancer 

therapy [22]. Besides profiling signaling pathways or entire networks in human cancer tissues, one of 

the three most common methods to validate mass spectrometry discovered biomarkers is RPPA [23]. If 

a validated antibody is available for a potential new biomarker, RPPA can be used to validate 

independent patient-derived sample sets, separate from those initially used for discovery [24]. 

RPPA analyses have not only focused on protein detection for biomarker discovery and quantification 

but also to analyze protein expression profile changes during the pre-analytical phase. In several 

publications, it has been shown that tissue is still alive after resection and gene expression as well as 

protein levels (especially amounts of phosphoproteins) can change during cold ischemia [25–27], 

i.e., the time period from resection until sample stabilization. One of the more recent publications 

investigated multiple tissue samples from the same specimen in different patients using targeted and 

non-targeted technologies [28]. Besides mass spectrometry, RPPA was used to determine potential 

fluctuations of protein levels. The data allowed the classification of protein and phosphoprotein levels 

during the pre-analytical phase in three groups: (1) predictable stable; (2) predictable unstable; 

(3) unpredictable. As most phosphoproteins belonged to the latter group, the authors recommend tissue 

fixation or stabilization after specimen collection without delay. Thus, tissue procurement guidelines 

should be aligned [29].  

RPPA has also been used to analyze heterogeneity of protein levels within a tumor and in primary 

tumor and lymph node metastases of the same patient [30–33]. All of these studies revealed a 

significant heterogeneity of a subset of proteins within a tumor and between primary tumor and 
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metastases, suggesting that for molecular diagnosis the use of multiple tumor samples from distinct 

locations rather than the analysis of one single sample should be envisaged. 

3. Reverse Phase Protein Array-Procedure 

For application in clinical routine RPPA needs to be reproducible and easy to handle to allow 

high-throughput testing. Key steps in the establishment of a reliable protein microarray-based 

procedure are (i) sample preparation, (ii) antibody validation, (iii) spotting, (iv) signal detection, and 

(v) data analysis (Figure 2).  

 

Figure 2. Workflow of Reverse Phase Protein Array (RPPA) studies. 

3.1. Sample Preparation 

Tissue samples that are suitable for RPPA can be fresh, frozen, or fixed. So far it is a world-wide 

standard to use formalin-fixation and paraffin-embedded (FFPE) tissue samples for histopathological 

diagnosis. Huge archives of patient samples are available in the Institutes of Pathology. The advantage 

of FFPE-tissues compared to frozen tissue samples are multiple: (i) routine method of all Institutes of 

Pathology worldwide, (ii) broadly available, (iii) linkage of molecular data with clinical information, 

(iv) tissues of rare diseases are available, (v) cheap and (vi) easy storage of tissue blocks for many 

years or even decades at room temperature [34]. The problem of formalin-fixed tissues is that 

extensive cross-linking of macromolecules hinders the easy extraction of proteins. With the 

introduction of antigen retrieval techniques in the early 1990s in the pathology laboratories [35], IHC 

has become manifest as the only routinely used technique to analyze proteins in FFPE-tissue. This may 

change in the future due to the development of protocols allowing the extraction of full-length proteins 

from FFPE-tissues. Thus, extraction-based protein analysis is likely to complement IHC data. 

Histologic evaluation of the samples by a pathologist before protein extraction is needed to estimate 

the cellular composition. Often it is desired to analyze a specific subpopulation of cells in a tissue 

section, e.g., tumor cells. Tissue microdissection for cell enrichment can be performed either 

laser-assisted or manually. The purification of pure tumor cell populations by laser-capture microdissection 

(LCM) has been efficiently coupled to RPPA for studying tumor biopsies and detection of clinically 

relevant information on the molecular characteristics of tumor cells [36]. The so-called “guided protein 

extraction” using manual tissue microdissection is an alternative technology [37]. So far, several 

groups have reported different protocols for extractions of proteins from FFPE-tissues [34,38–43]. We 

recommend deparaffinization (e.g., with xylol) and rehydration with a graded series of alcohol (see 

also [38]). For protein extraction a heating step is crucial in all mentioned protocols. Additionally, 

Chu et al. propose an optional implementation of microwave or ultrasound to improve the reversal of 
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protein-crosslinking and the penetration of buffer into the tissue [39]. Chung et al. use a combination 

of heat and pressure to obtain optimal protein extraction [40]. Most buffers used for protein extraction 

usually include detergents (e.g., 1%–2% SDS) for optimal solubilization of hydrophobic proteins. In our 

lab, we use Qproteome FFPE-Tissue Kit-Buffer (Qiagen, Hilden, Germany), because it is compatible 

with our antibodies and allows high quality protein extraction [34]. Furthermore, it does not interfere 

with Sypro Ruby staining which is necessary for measuring the amount of total protein printed on 

nitrocellulose-coated glass slides. It should be emphasized that different applications may require 

different extraction conditions and that samples or buffers with high viscosity are not suitable for 

certain printing platforms. With our protein extraction method, it could be shown that the HER2 score 

of breast cancer samples obtained by RPPA is of good concordance with the HER2 score obtained 

with IHC [44]. Beyond that, it could be demonstrated that data obtained from RPPA of cryo-frozen 

samples were in agreement with data of RPPA analyzed FFPE samples, indicating that FFPE-tissues 

are a valuable source for protein level analysis by RPPA [45]. Although most investigators accept that 

proteins extracted from FFPE tissue are suitable for downstream proteomic analysis, including RPPA [46], 

the workflows for collecting specimens are not standardized between hospitals, or even within single 

institutions. Thus, the pre-analytical phase must be improved in order to develop more reliable 

biomarkers and more effective treatments. There are major efforts to meet the needs as the European 

Committee for Standardization (CEN) will publish Technical Specifications in 2015, aiming to reduce 

errors in the pre-analytical phase [47]. There are indications that these European Standards will 

proceed to global Standards on the ISO (International Organization for Standardization) level. In 

addition to fresh, frozen or FFPE-tissue samples, types of samples that have already been used for 

RPPA analysis include cellular lysates obtained by laser capture microdissection [36], serum [48,49], 

body fluids [50], cell culture lysates [17,51], low molecular weight serum protein fractions [52], 

peptides [53] and fine needle aspirates [54,55], which reflects the sample diversity for which RPPA 

can be used. 

3.2. Antibody Validation 

Reliability of RPPA results largely depends on the quality of the antibodies as signals cannot be 

differentiated in “specific” and “unspecific” like for conventional immunoblotting techniques. 

Unfortunately, commercial available antibodies often do not meet the demand necessary for RPPA. For 

antibody validation Schuster et al. propose a step-by-step procedure combining immunohistochemistry and 

immunoblot analysis from FFPE-tissues using the same antibody. This kind of tandem validation 

identifies antibodies that bind specific to the respective antigen at the right molecular weight (Western 

Blot) and allows identification of antibodies that can localize the protein of interest in tissue sections 

(IHC). By combining Western Blot and IHC antibody validation could be improved [56]. 

Alternatively, protein extracts of several different cell lines (ten or more) can be a starting point for 

validation. The first criterion for a specific antibody is a single band at the correct molecular weight for 

protein extracts of cell lines obtained by Western Blot (Figure 3). The antibody may also be considered 

specific, if several protein bands appear that correspond to isoforms, cleavage products, dimer 

formation or mutations (i.e., “explainable bands” as for example for ERK1/2 or p95 and p185 in the 

case of HER2). Often, antibodies are tested against stimulated and unstimulated cell lines in order to 
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detect phosphorylated proteins [57–59]. After analysis of cell lysates, the next step for antibody 

validation is Western Blot analysis using protein lysates of the material which will be used for RPPA 

later on, e.g., frozen or FFPE-tissue. This step is crucial because antigen detection in cell lines might 

deviate from results obtained in tissues samples [56]. In a further test, quantification results obtained 

by RPPA are compared with those of Western Blot. If the results are comparable, e.g., stronger 

staining in IHC and higher protein amounts in the same cases by RPPA analysis, the antibody is 

suitable for RPPA studies. Figure 4 summarizes the steps for antibody validation. 

 

Figure 3. Antibody validation by Western Blot using different cell lines. The left panel 

shows an antibody that is suitable for RPPA analysis as it detects one single protein band at 

the expected molecular weight. The antibody used for the right panel should not be used 

for RPPA studies as there are numerous bands besides the proposed “specific” band. 1–4: 

lysates from breast cancer FFPE-tissue; 5–8: lysates from different cell lines; arrows 

indicate the expected molecular weight. 

To facilitate antibody validation the RPPA community is making an international effort to create an 

upcoming website with detailed information of antibody validation protocols and already validated 

antibodies [10]. Already available antibodies cover a broad range of pathways, including proliferation, 

apoptosis, angiogenesis, and epithelial-mesenchymal-transition. An antibody list for RPPA studies can 

be found for example at the MD Anderson RPPA website [60]. The number of specific and high 

affinity antibodies targeting the epitope of interest is still limited. Especially the number of 

phosphor-specific and other post-translational modification specific antibodies is low [4].  
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Figure 4. Basic steps for antibody validation. For detailed explanations of the different 

steps see text. WB, Western Blot. 

3.3. Spotting 

The nitrocellulose-coated slides we are using have a size of 7 cm × 2 cm. For RPPA studies only 

minimal amounts of protein lysates (1 nL of a 2 ng/nL solution) are needed. The samples in our setting 

are spotted in 3.75 grids (Figure 5). Each complete grid (grids #1–3 in Figure 5) is comprised of 16 

subgrids. The smaller grid (grid #4 in Figure 5) is comprised of 12 subgrids. One subgrid consists of 

three samples in duplicates, most commonly spotted in a five spot two-fold dilution series in 

duplicates. The dilution series is either performed manually or using an automated liquid handling 

system (e.g., epMotion from Eppendorf, Hamburg, Germany) in 384-well plates before the spotting 

process. The dilution series also contains a negative control consisting of protein extraction buffer. On 

one slide 180 samples can be spotted, including positive and negative controls. For each sample 12 

spots (5 fold dilution series, negative control, all in duplicates) are generated. Thus, in total, 2160 spots 

(12 × 180) are spotted on each slide. Usually proteins are immobilized on nitrocellulose-coated glass 
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using solid pin-based contact printing, although other printing technologies (piezoelectric or and inkjet 

spotting) and substrates (e.g., macroporous silicon) have been described [10,61]. Beyond that, the 

Zeptosens RPPA platform that is based on Planar Wave Guide (PWG) technology permits highly 

sensitive quantitative protein profiling. Automated systems that are commonly used for RPPA spotting 

are ArrayIt SpotBot Extreme Microarray Spotter [62] (Arrayit, Sunnyvale, CA, USA), Aushon BioSystems 

2470 Microarrayer [19] (Billerica, MA, USA), or SpotArray Microarray printing system [63] (Perkin 

Elmer, Waltham, MA, USA). Additionally, control samples should also be included in at least 

duplicates to allow optimal readout and quality control. The spotting devise and other factors, such as 

temperature and humidity, can affect the spot size. Therefore temperature and humidity should be 

controlled during the whole spotting process. In our setting a humidity of 60%–65% and a temperature 

of 14–15 °C to avoid precipitation of SDS, limiting sample evaporation, and optimal sample zone 

diameter works very well. Other spotting devices or extraction buffer compositions may require 

different conditions.  

 

Figure 5. RPPA-spotting pattern detected by chemiluminescent detection. Subgrids 

comprise 6 samples, each in a five-spot serial dilution plus protein extraction buffer as 

negative control (36 spots). Grids comprise 16 subgrids and 576 spots (Grid 1–3)/12 

subgrids and 432 spots (Grid 4). In total, 180 samples can be spotted per slide (2160 spots). 

Numbers (1–3) indicate three samples spotted in duplicates. * Smaller grid (3/4 size of 

Grids 1–3). 

3.4. Signal Detection 

The immobilized proteins are detected with antibodies whose specificity for the antigen of interest 

has been validated as described above. The presence of antigen-antibody binding can be detected via 



Microarrays 2015, 4 107 

 

 

near-infrared dyes, chromogenic reporter, chemiluminscence, or planar waveguide technologies [10]. 

The generated signal is proportional to the primary and, indirectly, to the secondary antibody bound to 

the spotted proteins, and may be quantified to estimate relative protein concentration. Near-infrared 

fluorescence dyes are often used [64]. Advantage of fluorescence detection is its large dynamic range; 

however, photo bleaching and quenching might cause false decreases in the total signal. Chromogenic 

detection is possible with a multitude of colorless chemical substrates that form a colored product 

when substrate and enzyme are interacting [65]. This signal detection method is compatible with the 

use of automated staining stations often used for immunohistochemistry, such as the DAKO 

autostainer or similar devices, allowing high-throughput staining of RPPA slides. Protein detection by 

horseradish peroxidase (HRP) that produced light when acting on chemiluminescent substrates 

(e.g., ECL solution) is shown in Figure 5. In the case of Zeptosens RPPA platform specific analysis 

software is needed, which is provided by the supplier. For the mentioned RPPA detection methods, it 

could be shown that it is possible to detect proteins in the fg/mL range with linearity in the pg/mL 

range [66]. In our hands, chemiluminescent signal detection was the most sensitive and flexible 

method, allowing even the detection of very low abundant proteins, i.e., transcription factors. 

However, the following points need to be kept in mind when using chemiluminescence: Although 

signal detection is very flexible, it is time dependent and, therefore, the comparison of signal 

intensities from different studies can be a challenge. Bridging samples are one solution to solve this 

problem. Furthermore, the resolution of the images may be suboptimal which may compromise the 

quality of the results. 

3.5. Data Analysis 

So far, MicroVigene array software (version 5.6, VigeneTech Inc., Carlisle, MA, USA) is the only 

software—at least to our knowledge—that was initially designed for RPPA data analysis that includes 

automatic spot finding and background subtraction. However, beside MicroVigene other programs are 

also appropriate for RPPA data analysis. These include Array Pro (version 6.3, Media Cybernetics, 

Rockville, MD, USA), GenePix Pro (version 7.2.29, Molecular Devices, Sunnyvale, CA, USA), and 

Mapix (version 7.3.1, Innopsys, Carbonne, France) [10]. The spotting of dilution series allows 

quantification of the protein levels of each sample. To obtain the exact protein concentration, values 

representing the dilution series should be in a linear range. Positive and negative controls are 

recommended for use in certification of the measured spot signal. Problems that might occur during 

data analysis are variations of the background intensities, emerging due to non-specific binding of the 

secondary antibody or uneven exposure of different parts of a RPPA slide to the reagents used in 

protein detection (e.g., ECL solution). A recently published study addresses this problem of spatial 

heterogeneity by the use of positive controls in duplicates. Depending on their spot intensity spatial 

variation could be corrected for each slide [67]. In addition, Neeley et al. propose a normalization step 

which mainly removes inter-array variability [68]. Another possibility is the spotting of a cell line 

panel on each slide to be able to calculate spot sizes of the protein of interest normalized to the average 

spot intensity of the cell lines. In a next step, the calculated data have to be normalized in order to 

correct potential sources of variability that do not reflect biological differences in protein levels 

between the investigated samples, such as variations of total amount of protein extracts that were 
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spotted. The usual practice of normalization to a housekeeping (endogenous reference) protein can be 

problematic due to the limitations of “true” housekeeping proteins. A common method to normalize 

RPPA data are dye binding methods, i.e., measurements of total protein on one slide per print run with 

dyes like Fast Green FCF, Sypro Ruby, or colloidal Gold. The signals obtained reflect the total amount 

of protein per spot immobilized on the solid phase [69,70]. An alternative approach has been shown in 

a study where an antibody against single-stranded DNA (ssDNA) can be used as a suitable RPPA 

normalization parameter [71].  

4. Conclusions  

RPPA is a high-throughput method due to the simultaneous analysis of different biomarkers in one 

sample. One great advantage is that RPPA works with very small amounts of proteins. For this reason, 

even biopsies are sufficient for RPPA analysis. The implementation of RPPA into clinical practice 

would help to provide optimal tumor analysis prior and during treatment, enabling to apply the best 

(i.e., individualized) therapy for each patient, even in the neoadjuvant setting. Due to automated 

systems that print the proteins of tumor samples on nitrocellulose-coated glass slides, RPPA analysis is 

simple and rapid. In our opinion, even if the method is limited to high-specific validated antibodies 

(like for all antibody-based methods), we think that patients, e.g., tumor patients, would benefit from 

robust tumor marker analysis by RPPA in clinical routine. However, inter-assay reproducibility has to 

be ensured and clinically validated cut-off levels need to be determined for each tumor marker. 

Therefore, clinical trials and RPPA-based treatment decisions performed with input material of the 

highest possible quality will be necessary in the next years. 

5. Outlook  

RPPA has been developed for quantitative protein measurements of protein levels and to identify 

post-translationally modified forms in signaling pathways suitable for large scale multiplexed studies. 

Recent and ongoing research highlights the potential of RPPA for personalized medicine. The 

information provided by RPPA is already being used in clinical studies to characterize tumors and to 

select the optimal treatment for each patient. For routine clinical use in the future there are at least two 

major challenges: (i) The limitation of available, validated and highly specific antibodies [24] and 

(ii) the poor quality of starting material that can affect the results of the molecular assay [16]. 

Furthermore, selection of a tumor sample for RPPA and other molecular analysis shall be performed 

by a pathologist to avoid non-tumorous areas or areas with necrosis. As tumor samples may be 

heterogeneous and composed of different cell types besides tumor cells (e.g., stromal or inflammatory 

cells) estimation of the tumor cell content by a pathologist is important. For continued exchange of 

information with regard to RPPA, an annual Global RPPA Workshop is held which started in 2011. To 

move RPPA forward to the clinic the “RPPA society” was founded in 2014 during the 4th Global 

RPPA Workshop held in Paris with the idea of proceeding in sharing information about RPPA 

guidelines, principles, and improving RPPA technologies. To solve the problem of antibody limitation 

an antibodypedia-website was already set up which is an open-access resource where already  

evaluated antibodies are listed that can be used to detect proteins of the human proteome 

(http://www.antibodypedia.com). However, still, highly specific antibodies against most proteins are 
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missing. Consequently, although new protein biomarkers are continuously identified, their quantitative 

analysis remains a challenge.  
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