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Abstract: Current routine cell culture techniques are only poorly suited to capture the 

physiological complexity of tumor microenvironments, wherein tumor cell function is 

affected by intricate three-dimensional (3D), integrin-dependent cell-cell and cell-extracellular 

matrix (ECM) interactions. 3D cell cultures allow the investigation of cancer-associated 

proteases like kallikreins as they degrade ECM proteins and alter integrin signaling, 

promoting malignant cell behaviors. Here, we employed a hydrogel microwell array 

platform to probe using a high-throughput mode how ovarian cancer cell aggregates of 

defined size form and survive in response to the expression of kallikreins and treatment 

with paclitaxel, by performing microscopic, quantitative image, gene and protein analyses 

dependent on the varying microwell and aggregate sizes. Paclitaxel treatment increased 

aggregate formation and survival of kallikrein-expressing cancer cells and levels of 

integrins and integrin-related factors. Cancer cell aggregate formation was improved with 

increasing aggregate size, thereby reducing cell death and enhancing integrin expression 

upon paclitaxel treatment. Therefore, hydrogel microwell arrays are a powerful tool to 
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screen the viability of cancer cell aggregates upon modulation of protease expression, 

integrin engagement and anti-cancer treatment providing a micro-scaled yet high-throughput 

technique to assess malignant progression and drug-resistance. 

Keywords: microwell arrays; cell aggregates; bioengineered microenvironments; ovarian 

cancer; kallikreins; integrins; paclitaxel 

 

1. Introduction 

Three-dimensional (3D) in vitro culture approaches mimic more closely the physiological cell-cell 

and cell-extracellular matrix (ECM) interactions seen in vivo [1–7]. We have demonstrated that 

biomimetic hydrogels can be used as 3D cell culture platform to investigate the interplay of ovarian 

cancer cells with the ECM [8]. Within these synthetic microenvironments ovarian cancer cells form 

multi-cellular spheroids, an integral step leading to metastatic outgrowth and ultimately malignant 

progression in vivo. That is, after shedding from the primary tumor, these cells aggregate in order to 

survive within the abdominal cavity and to escape anti-cancer therapies [9,10]. Little is known about 

the events promoting ovarian cancer progression and how therapy-resistance occurs [11,12]. 

Cancer-associated proteases play a crucial role during disease progression [13]. Kallikrein-related 

(KLK) peptidases are known to contribute to metastatic outgrowth by modification of the tumor 

microenvironment via degradation of (non-)ECM proteins leading to altered cell-cell and cell-ECM 

interactions, cell proliferation and survival [14–20]. Elevated expression of KLK4, KLK5, KLK6,  

and KLK7 are linked to multi-cellular aggregation of ovarian cancer cells and non-responsiveness of 

patients to paclitaxel [21–27]. We have reported that combined expression of KLK4, KLK5, KLK6, 

and KLK7 in OV-MZ-6 ovarian cancer cells regulates integrin expression, cell adhesion, and promotes 

a malignant phenotype [28,29]. Of interest to this study is that integrins and integrin-related factors 

regulate tumor-ECM interactions leading to multi-cellular aggregation and drug-resistance [30–32]. 

Different integrins, in particular β1 integrins, are up-regulated in the advanced stages of the disease 

and mediate aggregation of ovarian cancer cells and therapy-resistance in patients [33–35]. Hence,  

a concomitant KLK4, KLK5, KLK6, and KLK7 expression might facilitate disease progression  

and lack of therapy response given that KLKs degrade ECM proteins, and therefore, influence the  

ECM-integrin binding dynamics. 

Bioengineered microenvironments have proven to be effective in screening the responsiveness of 

ovarian cancer cells to paclitaxel, thereby revealing increased survival rates after paclitaxel 

administration in 3D compared to flat cell cultures [8]. However, 3D systems which allow cell growth 

upon encapsulation of single cells within a hydrogel material lead often to the formation of different 

sized spheroids [8]. Hence, the purpose of this study was to allow OV-MZ-6 ovarian cancer cell 

aggregation of a defined size layered on top of polyethylene glycol-based hydrogel microwell arrays 

and to assess the efficacy of paclitaxel treatment dependent on aggregate size. Furthermore, we sought 

to determine the contribution of combined KLK4, KLK5, KLK6, and KLK7 expression and integrins 

to in OV-MZ-6 cell aggregation and survival upon paclitaxel treatment employing hydrogel microwell 

arrays as high-throughput microarray platforms [36,37] by performing time-lapse and confocal laser 
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scanning microscopy as well as quantitative image, gene and protein analyses dependent on varying 

microwell and aggregate size. 

2. Experimental Section 

Fabrication of Hydrogel Microwell Arrays. The fabrication of hydrogel microwell arrays was a 

multistep soft lithography process as reported previously [36]. Briefly, a topographically structured 

silicon wafer was fabricated, and then polydimethylsiloxane (PDMS; Dow Corning Corporation, 

Midland, MI, USA) was cast onto this structure, and finally, hydrogel films were patterned in a stamping 

step using the PDMS template. A 4-inch silicon wafer was designed using the layout editor of CleWin 

(PhoeniX, Enschede, The Netherlands). A pattern was selected consisting of eight squares; each square 

matched the dimensions of a standard 96-well plate, comprising 33 × 33 = 1,000 microwells, with a 

diameter of 100 µm and a depth of 50 µm per microwell. Additionally, new silicon wavers were 

designed to produce microwells of varying sizes of 50 × 50, 100 × 100, 150 × 150, 200 × 200 µm. 

Microwell arrays were formed from polyethylene glycol (PEG) hydrogel precursors by cross-linking 

two multi-arm PEG macromers (NOF Corporation, Tokyo, Japan), end-functionalized with either thiol 

(SH) or vinylsulfone (VS) groups [36]. The 8arm-PEG-VS was dissolved in 0.3 M triethanolamine 

(Sigma-Aldrich, Buchs, Switzerland), and the 4arm-PEG-SH was dissolved in bi-distilled water to 

obtain 100 µm thin hydrogel films (5% (w/v)) coated onto 8-well chamber µ-slides (ibidi GmbH, 

Munich, Germany) for a microwell size of 50 × 100 µm or onto 48-well tissue culture plates (Thermo 

Fisher Scientific Inc., Lausanne, Switzerland) for a microwell size of 50–200 × 50–200 µm. Optional, 

hydrogel microwell arrays were coated with laminin (0.1 mg/mL; BD Biosciences, Allschwil, Switzerland) 

or type I collagen (0.1 mg/mL; Sigma-Aldrich), both modified with an N-hydroxylsuccinimide (NHS)-

PEG-maleimide linker (JenKem Technology, Allen, TX, USA) as described previously [38]. 

Cell Aggregate Cultures. The human epithelial ovarian carcinoma cell line OV-MZ-6 was established 

from malignant tumor fluid (ascites) [39], and stable transfectants, with human KLK4, KLK5, KLK6, 

and KLK7 full-length cDNA (―OV-KLK‖) derived from ovarian cancer tissue and an empty vector 

plasmid (―OV-Vector‖), provided by Viktor Magdolen (Technical University of Munich, Munich, 

Germany), were cultured as reported previously [29]. At a confluency of 60–80%, cells were harvested 

with EDTA (0.48 mmol/L; Invitrogen, Lucerne, Switzerland). For cell aggregate cultures, cells  

(5 × 10
4
 cells/mL) were seeded on top of each square, centrifuged at 800 rpm for 5 min and grown over 

120 h in 0.25 mL media (Figure 1(A)). Cell density was adapted accordingly to microwells of varying 

sizes (100 × 50 µm: 5 × 10
4
 cells/mL, 50 × 50 µm: 5 × 10

4
 cells/mL, 100 × 100 µm: 10 × 10

4
 cells/mL,  

150 × 150 µm: 15 × 10
4
 cells/mL, 200 × 200 µm: 20 × 10

4
 cells/mL). For exposure to paclitaxel,  

a microtubule-stabilizing agent that mediates cell cycle arrest and apoptosis [40], cell aggregates were 

treated with media containing paclitaxel (0, 1, 10, 100 nM; Invitrogen). Integrin inhibition was  

achieved using media supplemented with a functional blocking β1 integrin antibody (10 µg/mL; 

Chemicon/Millipore AG, Zug, Switzerland). 

Time-Lapse Microscopy. Time-lapse microscopy of hydrogel microwell arrays of varying size was 

performed to live image cell aggregation and survival as reported previously [36]. Samples were 

imaged 24 h after seeding using an inverted microscope (Zeiss Axio Observer.Z1 and Zeiss Axiovert) 
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equipped with a motorized scanning stage under sterile humidified atmosphere at 37 °C/5% (v/v) CO2 

over 96 h, with images taken every 6 h using a 10× air objective (Figure 1(B); Supplementary file). 

The resulting phase contrast images were then automatically compiled into a stack using Metamorph 

(Molecular Devices, Sunnyvale, CA, USA). To identify dead cells, propidium iodide (PI; 1:1,000; 

Invitrogen) was added to the media and fluorescently imaged at the end of each experiment. Cell 

aggregates were grown within different sized microwells and visualized at up to 20 different positions 

per condition. 

Figure 1. Schematic illustration and image analyses of hydrogel microwell arrays.  

(A) Cancer cell aggregates within microwells and their collection for subsequent 

expression analyses using a microinjector depicted by bright field microscopy (top panel). 

Confocal microscopy of four cell aggregates grown over 96 h within microwells  

(100 × 50 µm) ± paclitaxel treatment (100 nM); nuclei stained blue with DAPI; dead cells 

stained red with PI (bottom panel). Scale bars, 30 µm. (B) Time-lapse microscopy of cell 

aggregation ± paclitaxel treatment was performed over 96 h within microwells. Scale bars, 

100 µm. (C) Confocal microscopy of cell aggregates grown over 96 h within microwells ± 

paclitaxel treatment and 3D reconstructions using Imaris; F-actin filaments stained green 

with Alexa488-conjugated phalloidin; nuclei stained blue with DAPI. Scale bars, 10 µm. 

(D) Confocal microscopy of the morphological marker N-cadherin in cell aggregates ± 

paclitaxel treatment; N-cadherin stained red using a respective primary and secondary 

Alexa555-conjugated IgG; nuclei stained blue with DAPI. Scale bars, 10 µm. 
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Calculation of Cell Aggregate Area and Number. For cell aggregate number and area calculations, 

the integrated morphometry analysis tool in Metamorph or ImageJ ([41]) was applied to trace the 

aggregation number and area using either stacked bright field images or fluorescently labelled 

aggregates. Maximal projections using separate channels of bright field or fluorescent images were 

arithmetic processed, set to auto-threshold and gray levels binarized. An integrated morphometry 

analysis was performed to graphically identify the aggregate area. The aggregate number per 

microwell indicates the ratio of the number of aggregates per microwell to the number of microwells 

(seeding efficacy of 75–82%) counted per condition. Averages and standard errors were calculated 

using Excel (Microsoft, Redmond, WA, USA). For each experiment, 20 different positions per condition 

containing 60–960 aggregates were analyzed. For calculation of cell aggregation after paclitaxel 

treatment, only intact, non-lyzed cells (without the appearance of apoptotic bodies) were taken into 

account. Data are expressed as ―relative aggregation (%)‖, describing the ratio of the number of 

aggregates to the number of microwells analyzed per condition, and ―relative cell death (%)‖, referring 

to the ratio of the number of aggregates containing death cells (as indicated by PI staining) to the 

number of viable aggregates (no PI staining). 

Confocal Laser Scanning Microscopy (CLSM). Cell aggregate cultures were processed as described 

earlier [8]. Briefly, after 4% (w/v) paraformaldehyde (PFA)/PBS containing 0.1% (v/v) triton-X100 for 

30 min, F-actin filaments were stained with Alexa488-conjugated phalloidin (0.1 U/mL; Invitrogen) or 

rhodamine415-conjugated phalloidin (0.3 U/mL; Invitrogen) and nuclei with a far-red DNA stain 

(DRAQ5; 5 µM; Alexis Biochemicals/Enzo Life Sciences, Lausen, Switzerland) or 4′6-diamidino-2-

phenylindole (DAPI; 2.5 µg/mL; Invitrogen) in 1% (w/v) bovine serum albumin (BSA; Sigma-Aldrich)/ 

PBS for 1 h each at room temperature (Figure 1(C)). For cell marker staining, primary (N-cadherin 

(1:100; R&D Systems, Minneapolis, MN, USA)) and secondary (Alexa555-conjugated sheep IgG 

(1:500; Invitrogen)) antibodies 1% (w/v) BSA/PBS were incubated for 1 h each at room temperature 

(Figure 1(D)). Immunofluorescence was visualized and imaged using a confocal microscope (Leica 

TCS SP2) with a 20/40× immersion oil objective at three to five different positions per sample 

covering one to four aggregates. Z-stacks were acquired with constant thickness of 2 µm reconstructing  

a cross-section profile of 100–150 equidistant XY-scans using the Leica Microsystems LAS AF 

software to generate maximal projections. 3D reconstructions were built using Imaris ([42]). 

Real-Time Reverse Transcription Quantitative PCR (RT-qPCR). Equal amounts (1 µg) of total 

RNA from cell aggregate cultures (extracted using an RNeasy micro kit; Qiagen, Magden, Switzerland) 

were used for cDNA synthesis. RT-qPCR was performed in triplicate with SYBR
®

 Green chemistry 

(AB Applied Biosystems/Life Technologies, Compark Circuit, VIC, Australia) on an ABI7300 thermal 

cycler (AB Applied Biosystems). Reaction setup, using an annealing temperature of 60 °C and  

40 cycles, and normalization applying the standard curve method (R
2
 = 0.96–0.99) were conducted as 

reported previously [8]. Gene specific primers: ITGA5—forward 5′-CATTTCCGAGTCTGGGCCAA-3′, 

reverse 5′-TGGAGGCTTGAGCTGAGCTT-3′; ITGB1—forward 5′-AGGTGGTTTCGATGCCATC 

AT-3′, reverse 5′-AAGTGAAACCCGGCATCTGTG-3′; PTK2/FAK—forward 5'-GCGCTGGCTGG 

AAAAAGAGGAA-3', reverse 5'-TCGGTGGGTGCTGGCTGGTAGG-3′; 18S—forward 5′-GATC 

CATTGGAGGGCAAGTCT-3′, reverse 5′-CCAAGATCCAACTACGAGCTTTTT-3′. 
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Western Blotting. Lysates from cell aggregate cultures were collected in lysis buffer (according to 

RNeasy micro kit, Qiagen) as described earlier [8]. Protein concentrations were determined using 

protein detection reagents (bicinchoninic acid; Sigma-Aldrich) and 40 μg electrophoresed on 10% 

SDS-PAGE, transferred onto nitrocellulose membranes and treated with Odyssey
®

 blocking buffer 

(LI-COR Biosciences, Lincoln, NE, USA). Membranes were incubated with primary (α5 integrin 

(1:1,000; Chemicon); β1 integrin (1:1,000; Chemicon); caspase8 (1:2,000; BD Biosciences);  

MT1-MMP (1:500; Chemicon); GAPDH (1:10,000; Abcam, Waterloo, NSW, Australia)) and 

secondary (IRDye 680/800-conjugated rabbit/mouse IgG (1:5,000; LI-COR Biosciences)) antibodies 

overnight at 4 °C and 1 h at room temperature, respectively. Images were obtained using the Odyssey
®

 

system (LI-COR Biosciences) and densitometrically evaluated. 

Statistics. Statistical analyses were carried out using ANOVA and Student’s t-test with ―R‖;  

results with p-values less than 0.05 were considered to be statistically significant (
*
/
#
—P < 0.05;  

**
/
##

—P < 0.01; 
***

/
##

—P < 0.001). 

3. Results and Discussion 

3.1. Hydrogel Microwell Arrays Allow the Aggregation of Ovarian Cancer Cells 

We sought to apply high-throughput assays—to our knowledge for the first time—to allow defined 

aggregation of ovarian cancer cells and monitored this cellular process by confocal laser scanning 

microscopy (Figure 1(A,C,D)) and live cell microscopy over 96 h (Figure 1(B)) to establish their 

suitability as a drug screening tool using the clinically applied anti-cancer drug paclitaxel. 

Cancer cells cultured as single cell suspension (1 × 10
4
 cells/mL) did not form aggregates on top of 

3D cultures within microwells, and underwent only one cell division within the first 36 h after seeding 

(data not shown). Microwells coated with laminin or type I collagen did not increase the cell survival 

rates of single cell suspensions over 96 h (data not shown). As ovarian cancer cells aggregate in the 

tumor fluid (ascites) accumulated within the abdominal cavity of patients with advanced disease [10], 

we increased the number from single cancer cells per microwell (100 × 50 µm) to 5 × 10
4
 cells/mL. 

Time-lapse and confocal laser scanning microscopy revealed compact aggregate formation after 96 h 

of 3D culture with negligible cell death as indicated by minor propidium iodide (PI) staining. Upon 

paclitaxel treatment (100 nM), cell aggregation was dramatically reduced and scattered and cell death 

increased as indicated by a positive PI staining (Figure 1(A,B)). 3D reconstructions and immunostaining 

of the morphological marker N-cadherin confirmed compact aggregation without treatment and scattered 

aggregation upon paclitaxel treatment with the appearance of apoptotic nuclei (Figure 1(C,D)).  

These results suggest that hydrogel microwell arrays allow cancer cell aggregation. 

The multi-cellular aggregate population in human ovarian tumor fluid (ascites) is thought to be a 

critical source for intra-abdominal metastases, and thereby, represents a key target for anti-metastatic 

interventions. Currently, most chemotherapies are ineffective in preventing aggregate dissemination, 

and the biological mechanisms leading to their formation remain poorly understood [9,10,43].  

To improve our understanding of ovarian cancer biology, controlled in vitro models are needed to 

accurately mimic the in vivo conditions seen in patients [44]. Ill-advisedly, the terms aggregate and 

spheroid are inconsistently used throughout the literature, and yet, this definition is critical to the 
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rationale of experimental 3D model approaches. The term aggregate is primarily but not always used 

to describe and eventually to discriminate loose packages of cells from compact spherical cultures. 

Aggregates with a size smaller than 150 µm may exhibit cell-cell and cell-matrix interactions. 

Spheroids comprise a defined cell mass of uniform geometry and physiological gradients at diameters 

ranging from 200–500 µm that can be manipulated and suited for large scale approaches in preclinical 

drug testing routines [45]. Both aggregate and spheroid cultures are well suited for developing  

high-throughput screening technologies [38,45], and their gene expression profiles are more truly 

indicative of clinical expression profiles than those detected in flat cell cultures [38,45,46]. Flat cell 

cultures fail to reproduce crucial aspects of carcinogenesis, such as 3D growth and architecture,  

cell-cell associations and cellular heterogeneity of in vivo samples. In this study, we have provided 

proof that bioengineered arrays represent a high-throughput platform reflecting 3D growth conditions 

of ovarian cancer cells and validated their responses by applying a clinically used therapeutic  

concept in vitro. Ovarian cancer cells grew as anchorage-independent as multi-cellular aggregates. 

Immunostaining of structural components indicated cell-cell interactions within aggregates promoting 

cell survival. This microarray platform has also been used to re-create biophysical and biochemical 

microenvironmental cues that control stem cell fate [38], further underlining the suitability of this  

in vitro assay as a powerful 3D culture model. 

3.2. KLK-Expressing Cells Increase Aggregation and Viability upon Paclitaxel Treatment 

As cancer-associated proteases like kallikrein-related (KLK) peptidases have been attributed to 

chemoresistance—in particular to taxane-based drugs—in ovarian cancer [23,26,27], we further sought 

to investigate the effect of paclitaxel using gradually increasing doses (0–100 nM) on cell aggregation. 

Confocal micrographs represented the aggregate morphology with and without paclitaxel treatment 

(100 nM): large and compact aggregates were formed in non-treated conditions, whereas paclitaxel 

exposure caused smaller and scattered aggregates and the presence of apoptotic bodies. Paclitaxel 

treatment was correlated with a positive PI staining, indicating an increased cell death (Figure 2(A)). 

Both OV-Vector/OV-KLK cells formed significantly fewer aggregates at higher paclitaxel concentrations 

(10 nM: OV-Vector 47 ± 8%/OV-KLK 54 ± 11%; 100 nM: OV-Vector 44 ± 8%/OV-KLK 60 ± 6%) 

compared to a lower dose (1 nM; OV-Vector 56 ± 14%/OV-KLK 56 ± 7%) and non-treated controls  

(0 nM: OV-Vector 57 ± 10%/OV-KLK 61 ± 8%). Strikingly, OV-KLK cells grew significantly more 

aggregates at higher paclitaxel concentrations (10, 100 nM) than OV-Vector cells (Figure 2(B),  

top panel). Cell death in both OV-Vector/OV-KLK cell aggregates was significantly increased at 

higher paclitaxel concentrations (10 nM: OV-Vector 35 ± 1%/OV-KLK 23 ± 7%; 100 nM: OV-Vector 

53 ± 3%/OV-KLK 38 ± 4%) compared to a lower dose (1 nM: OV-Vector 10 ± 1%/OV-KLK 9 ± 3%) 

and non-treated controls (0 nM: OV-Vector 6 ± 1%/OV-KLK 4 ± 2%). Interestingly, OV-KLK cell 

aggregates showed significantly less cell death at higher paclitaxel concentrations (10, 100 nM) than 

OV-Vector cells, indicating an increased cell survival (Figure 2(B), bottom panel). Over the monitored 

time frame of 96 h no release of trapped cells and uniform aggregation of the trapped cells ± paclitaxel 

treatment were evident as indicated by time-lapse microscopy (Supplementary file). As integrins are 

associated with cell survival and chemoresistance [30,31,47], we analyzed the expression levels of  

β1 integrin (ITGB1) and focal adhesion kinase (FAK), an integrin-related factor, after paclitaxel 
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administration. In both OV-Vector/OV-KLK cell aggregates, ITGB1 and FAK levels were increased 

upon paclitaxel treatment, with a further upregulation in OV-KLK cell aggregates (Figure 2(C)).  

These results suggest that hydrogel microwell arrays increase cell aggregation and viability of  

KLK-expressing cells upon paclitaxel treatment. 

Figure 2. Cell aggregation, survival and gene expression upon KLK expression and 

paclitaxel treatment. (A) Confocal microscopy of four cell aggregates grown over 96 h 

within microwells (100 × 50 µm) ± paclitaxel treatment (100 nM); nuclei stained blue with 

DAPI; dead cells stained red with PI (top panel); overlaid with Alexa488-conjugated 

phalloidin to stain F-actin filaments, with dead cells appearing yellow (bottom panel). 

Scale bars, 30 µm. (B) OV-Vector and OV-KLK cell aggregates were grown over 96 h 

within microwells and treated with increasing concentrations of paclitaxel (0, 1, 10, 100 nM). 

Both OV-Vector/OV-KLK cells grew less aggregates at higher paclitaxel concentrations 

(10, 100 nM) compared to a lower paclitaxel dose (1 nM) and non-treated controls (top 

panel). Cell death was increased at higher paclitaxel concentrations (10, 100 nM) compared 

to a lower paclitaxel dose (1 nM) and non-treated controls (bottom panel; n = 3; SEM;  

* P < 0.05; ** P < 0.01; *** P < 0.001). OV-KLK cells formed more aggregates and 

showed less cell death at higher paclitaxel concentrations (10, 100 nM) than OV-Vector 

cells (n = 3; SEM; 
#
: P < 0.05; 

##
: P < 0.01). (C) Administration of paclitaxel (100 nM) was 

reflected in increased ITGB1 and FAK levels in both OV-Vector/OV-KLK cell aggregates, 

with an upregulation upon KLK expression. 
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These findings are in line with our previously reported data, showing that KLK4 and KLK7 

promote paclitaxel-induced resistance of ovarian cancer cell aggregates that were formed in a tumor 

fluid (ascites) mimicking microenvironment [25,26]. It was shown that multi-cellular aggregates, 

harboring a 3D architecture, are more resistant compared to flat cell cultures [48], and compact 

aggregates are less responsive to different therapeutic regimes, such as chemotherapies, than scattered 

aggregates [49]. We have also reported that combined expression of KLK4, KLK5, KLK6, and KLK7 

in ovarian cancer cells (OV-KLK) mediates resistance to paclitaxel at higher doses (10, 100 nM) 

compared to control cells (OV-Vector) when grown as flat cell cultures [28]. When the same cells 

were grown as aggregates in this study, we observed a similar cell survival effect upon KLK expression 

and paclitaxel treatment. Interestingly, the expression of β1 integrin was decreased upon KLK 

expression [28], but upon paclitaxel treatment increased in both KLK-expressing and KLK-deficient 

aggregates, suggesting a critical function of this integrin in paclitaxel-related resistance, only partially 

induced by these four KLKs. 

Integrins and integrin-related factors are required for the responsiveness to anti-cancer drugs that 

bind to microtubules [50]. Although integrins lack kinase activity, by clustering they recruit and activate 

kinases, such as FAK. FAK is overexpressed in most ovarian cancers, associated with poor clinical 

outcome and plays a role in regulating invasion and metastasis [51,52]. Paclitaxel treatment stabilizes 

microtubule dynamics, thereby inhibiting mitosis [40], and FAK is required for integrin-dependent 

microtubules stabilization and paclitaxel responsiveness [53]. It was shown that FAK regulates the 

efficacy of taxane-based drugs in both treatment-sensitive and treatment-resistant cells [54]. We detected 

increased mRNA levels of FAK in aggregates after paclitaxel treatment, further indicating that FAK is 

an important cell survival factor in ovarian cancer cells. These findings imply the potential of 

combinatorial therapeutic approaches including the inhibition of KLKs, integrin and integrin-related 

factors with cytotoxic drugs for the treatment of ovarian cancer patients, especially those with high 

KLK levels in their tumors. 

3.3. Paclitaxel Treatment Alters Integrin Expression of Tailor-Made KLK-Expressing Cell Aggregates 

Ovarian cancer cell aggregates derived from the tumor fluid (ascites) of patients with late-stage stage 

disease range in number (from two to more than 20) and size (from 30–200 µm, even up to 750 µm in 

diameter) and contain up to 100 cells, suggesting a high patient to patient variability [35,55–57].  

This high variability in aggregate size is also reflected in in vitro aggregate cultures applying the liquid 

overlay technique [35,48,57,58] or hanging droplet method [46,59] using different ovarian cancer  

cell lines [34]. In order to control the cellular microenvironment of hydrogel microwell arrays, 

photolithography was used to fabricate microwells of varying sizes (50 × 50, 100 × 100, 150 × 150, 

200 × 200 µm) to generate aggregates of different sizes (Figure 3(A), top panel). Cell aggregation was 

confirmed by immunostaining of F-actin filaments and nuclei (Figure 3(A), bottom panel). 

  



Microarrays 2013, 2 217 

 

 

Figure 3. Effect of microwell size on cell aggregation and survival. (A) Schematic 

illustration of varying microwell sizes (50 × 50, 100 × 100, 150 × 150, 200 × 200 µm) 

generated using photolithography (top panel). Fluorescent staining of cell aggregates 

grown over 96 h within microwells of varying size ± paclitaxel (100 nM); F-actin filaments 

stained green with Alexa488-conjugated phalloidin; nuclei stained blue with DAPI (bottom 

panel; scale bars corresponding to respective microwell size). (B) Analyses of aggregation 

and death of both OV-Vector/OV-KLK cells depending on microwell size relative to total 

aggregate numbers. While in the larger microwells (100–200 × 100–200 µm) complete cell 

aggregation (98–100%) and no cell death (0–2%) was detected, the smallest microwells 

(50 × 50 µm) caused incomplete cell aggregration (73–92%) and cell death (8–27%). Upon 

paclitaxel treatment both OV-Vector/OV-KLK cells aggregated less (42–96%) in medium 

sized (100–150 × 100–150 µm) and smallest (50 × 50 µm) microwells and revealed higher 

cell death (4–58%) rates (n = 3; SEM; * P < 0.05; ** P < 0.01; *** P < 0.001).  

OV-KLK cells showed higher aggregation and less cell death rates in the smallest 

microwells (50 × 50 µm) without paclitaxel treatment and less evidence of cell death upon 

paclitaxel in the largest microwells (200 × 200 µm) compared to OV-Vector cells (n = 3; 

SEM; 
#
 P < 0.05; 

##
 P < 0.01). 

 

As paclitaxel is subject to multi-cellular-mediated resistance for ovarian cancer cells [48], we treated 

tailor-made aggregates with paclitaxel (100 nM), and analyzed the aggregation and death of both  

OV-Vector/OV-KLK cells relative to the total numbers (Figure 3(B)). While in the larger microwells 

(100–200 × 100–200 µm) complete cell aggregation (98–100%) and no cell death (0–2%) was 

detected, the smallest microwells (50 × 50 µm) caused incomplete cell aggregration (73–92%) and cell 

death (8–27%). Upon paclitaxel treatment both OV-Vector/OV-KLK cells aggregated less (42–96%) 

in the medium sized (100–150 × 100–150 µm) and smallest (50 × 50 µm) microwells and showed 

higher cell death (4–58%) rates (Figure 3(B)). Then, we analyzed the aggregate number and area in 

each microwell size performing time-lapse microscopy (Figure 4(A)). Both OV-Vector/OV-KLK cells 

formed one aggregate (1.27–1.34 × 10
3
 cm

2
)/well in the smallest (50 × 50 µm) microwells, whereas in 

the next larger (100 × 100 µm) microwells, two aggregates (4.33–5.34 × 10
3
 cm

2
)/well were formed.  

In the medium sized (150 × 150 µm) and largest (200 × 200 µm) microwells, three aggregates  
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(10.68–19.14 × 10
3
 cm

2
)/well were formed. Upon paclitaxel treatment both OV-Vector/OV-KLK cells 

formed one aggregate (0.72–0.80 × 10
3
 cm

2
)/well in the smallest (50 × 50 µm) microwells, while in 

the next larger (100 × 100 µm) microwells, two aggregates (2.31–3.78 × 10
3
 cm

2
)/well were detected. 

In the medium sized (150 × 150 µm) and largest (200 × 200 µm) microwells, three aggregates  

(6.98–9.68 × 10
3
 cm

2
)/well were formed. OV-KLK cells formed larger aggregates in the second smallest 

(100 × 100 µm) microwells after paclitaxel treatment compared to OV-Vector cells (Figure 4(B)). 

These results suggest that OV-KLK cells had a higher ability to aggregate and survive with and 

without paclitaxel in all microwell sizes compared to OV-Vector cells. The administration of paclitaxel 

reduced aggregate area but not numbers compared to non-treated conditions. 

Figure 4. Cell aggregation as a function of microwell size, KLK expression and paclitaxel 

treatment. (A) Bright field microscopy depicted both OV-Vector/OV-KLK cell aggregates 

at the end time point of time-lapse microscopy carried out over 96 h within microwells of 

varying sizes (50 × 50, 100 × 100, 150 × 150, 200 × 200 µm) ± paclitaxel treatment  

(100 nM); dead cells stained red with PI. The tailor-made microwell size corresponds to 

respective aggregate size. (B) Both OV-Vector/OV-KLK cells formed one aggregate  

(1.27–1.34 × 10
3
 cm

2
)/microwell in the smallest (50 × 50 µm) microwells, whereas in the 

next larger (100 × 100 µm) microwells two aggregates (4.33–5.34 × 10
3
 cm

2
)/microwell were 

formed. The medium sized (150 × 150 µm) and largest (200 × 200 µm) microwells caused 

three aggregates (10.68–19.14 × 10
3
 cm

2
)/well. Administration of paclitaxel reduced 

aggregate area compared to non-treated conditions (n = 3; SEM; * P < 0.05; ** P < 0.01). 

Upon paclitaxel treatment both OV-Vector/OV-KLK cells formed one aggregate  

(0.72–0.80 × 10
3
 cm

2
)/microwell in the smallest (50 × 50 µm) microwells, while in the 

next larger (100 × 100 µm) microwells two aggregates (2.31–3.78 × 10
3
 cm

2
)/microwell 

were detected. The medium sized (150 × 150 µm) and largest (200 × 200 µm) microwells 

caused three aggregates (6.98–9.68 ×10
3
 cm

2
)/microwell. OV-KLK cells formed larger 

aggregates in the second smallest (100 × 100 µm) microwells after paclitaxel treatment 

compared to OV-Vector cells (n = 3; SEM; 
# 

P < 0.05). 
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Within these bioengineered microwells, the formation of cell aggregates was achieved in sizes 

ranging from 50–200 µm. Similar aggregate sizes are described in experimental and clinical  

samples [35,55–57] showing a high cell viability in combination with KLK expression, and the results 

presented in this study are in line with our former reports [25,26]. Paclitaxel treatment revealed that  

the aggregate area but not aggregate number was reduced, further corroborating the existence of  

survival-promoting factors, such as integrins, and multi-cellular-mediated drug resistance mechanisms 

in ovarian cancer cells [48]. A similar bioengineered approach to the one described here has been used 

to control the size and shape of embryonic bodies employing microwells of varying diameters ranging 

from 40–150 µm and heights of 20–35 µm and has proven its potential to investigate differentiation of 

embryonic stem cells [60]. These findings indicate that hydrogel microwell arrays can be used to 

control cell aggregation, aggregate size and viability, to study factors involved in the responsiveness of 

different sized aggregates to anti-cancer drugs and the contribution of KLKs. 

Integrins are integral in mediating cell survival and chemoresistance, in particular α5/β1  

integrins [30,31,47]. Hence, we sought to determine α5/β1 integrin mRNA and protein levels in 

aggregates of varying size upon paclitaxel treatment (100 nM). While no difference in both OV-Vector/ 

OV-KLK cell aggregates without treatment was found, after paclitaxel treatment ITGA5 was increased 

in aggregates grown in the largest (150–200 × 150–200 µm) microwells, and ITGB1 was enhanced  

in aggregates, with highest expression levels in OV-KLK cell aggregates grown in the smallest  

(50–100 × 50–100 µm) microwells (Figure 5(A)). Western blot and densitometrical analyses showed 

that α5 and β1 integrins were enhanced after paclitaxel treatment in OV-KLK cell aggregates 

compared to OV-Vector cells, which only had increased α5 integrin in the smallest (50 × 50 µm) and 

medium sized (150 × 150 µm) microwells (Figure 5(B)). Interestingly, the biggest (200 × 200 µm) 

microwells resulted in multiple smaller aggregates per microwell (34%), which have the same integrin 

expression pattern as the aggregates formed in the smallest (50 × 50 µm) microwells. These results 

suggest that integrin expression is upregulated upon paclitaxel treatment depending on the aggregate 

size and partially on KLK expression, especially in smaller (50 µm) and larger (150–200 µm) aggregates. 

Caspases play an important role in apoptosis induced by anti-cancer drugs [61]. In both  

OV-Vector/OV-KLK cell aggregates, caspase8 expression followed β1 integrin levels in the smallest 

(50 × 50 µm) and largest (200 × 200 µm) microwells. OV-Vector cell aggregates showed a downregulation 

of capsase8 in medium sized (100–150 × 100–150 µm) microwells upon paclitaxel treatment  

(Figure S1). These results imply an involvement of integrins in paclitaxel-induced apoptosis. However, 

our findings suggest a bi-functional effect of drug treatment: (i) upregulation of integrins to promote 

cell aggregate survival, and (ii) upregulation of caspase-8 to mediate cell death, further underlining the 

fine-tuned balance between drug sensitivity and drug resistance. 

It was shown that the membrane type 1 matrix metalloproteinase (MT1-MMP) regulates ovarian 

cancer cell aggregation and disaggregation, and its expression level is increased in aggregates relative 

to flat cell cultures [43]. Ovarian cancer cell aggregates grown within microwells of varying sizes 

showed MT1-MMP expression in all aggregate sizes independent of KLK expression and paclitaxel 

treatment (Figure S1). MT1-MMP can be regulated by integrin clustering which was shown to be 

stimulated by a 3D collagen type I microenvironment [62]. In addition to MT1-MMP activity [43], 

other factors, such as contractile forces [59], promote cell aggregation. The simultaneous presence of 
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MT1-MMP and integrins in aggregates grown within hydrogel microwell arrays further indicates their 

interactive relationship within this microarray platform. 

Figure 5. Altered expression levels as a function of microwell size, KLK expression and 

paclitaxel treatment. (A) Levels of ITGA5 were a function of microwell size and KLK 

expression after paclitaxel treatment (100 nM), with highest expression in aggregates grown 

in the largest (150–200 × 150–200 µm) microwells. No difference in both OV-Vector/ 

OV-KLK cell aggregates without treatment was detected. Levels of ITGB1 were enhanced 

after paclitaxel administration in both OV-Vector/OV-KLK cell aggregates, with highest 

expression on OV-KLK cell aggregates in the smallest (50–100 × 50–100 µm) microwells. 

No difference in both OV-Vector/OV-KLK cell aggregates without treatment was detected. 

(B) Western blot and densitometrical analyses demonstrated that α5 and β1 integrin 

expression was enhanced after paclitaxel treatment in OV-KLK cell aggregates compared to 

OV-Vector cells which only showed an increase of α5 integrin in the smallest (50 × 50 µm) 

and medium sized (150 × 150 µm) microwells. 

 

3.4. Blocking of Integrin Function Does Not Affect Cell Aggregation 

It was shown that β1 integrin regulates the formation of ovarian cancer cell aggregates that were 

generated using the liquid overlay technique [35,55,56]. Hence, we sought to test whether the 

formation OV-Vector/OV-KLK cell aggregates produced in hydrogel microwell arrays is dependent on 

β1 integrin by using a functionally blocking antibody (10 µg/mL). Surprisingly, both OV-Vector/OV-KLK 

cell aggregate number and area was enhanced with increasing microwell size (150–200 × 150–200 µm) 
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upon integrin inhibition, with more (up to three aggregates/well) and larger (12.84–18.18 × 10
3
 cm

2
) 

aggregates being formed compared to non-treated conditions. With decreasing microwell size  

(50–100 × 50–100 µm), only one to two aggregates/well and smaller aggregates (1.30–5.35 × 10
3
 cm

2
) 

were formed. In the medium sized microwells (150 × 150 µm), OV-KLK cells formed significantly 

larger aggregates after integrin inhibition compared to non-treated conditions (Figure 6(A,B)). 

Figure 6. Cell aggregation in response to functional blocking of integrins. (A) Fluorescent 

staining of cell aggregates grown within microwells of varying sizes (50 × 50, 100 × 100, 

150 × 150, 200 × 200 µm) over 96 h at the end time point of time-lapse microscopy ± 

inhibition of β1 integrin using a functional blocking antibody (10 µg/mL); F-actin 

filaments stained red with rhodamine 415-conjugated phalloidin; nuclei stained blue  

with DAPI. (B) Analyses of both OV-Vector/OV-KLK cell aggregate number and area 

revealed that with increasing microwell size (150–200 × 150–200 µm) more (up to three 

aggregates/microwell) and larger (12.84–18.18 × 10
3
 cm

2
) aggregates were formed upon 

β1 integrin inhibition compared to decreasing microwell size (50–100 × 50–100 µm;  

1.30–5.35 × 10
3
 cm

2
), with only one to two aggregates/microwell. In the medium sized 

microwells (150 × 150 µm), OV-KLK cells formed significantly larger aggregates after β1 

integrin inhibition compared to non-treated conditions (n = 3; SEM; * P < 0.05). 

 

Different to the study by Casey et al. [35], which reported the inhibition of aggregation using the 

same blocking β1 integrin antibody after 8 h and 24 h in serum-free media, is that we documented the 

integrin inhibition over 96 h in serum-containing media. Casey et al. [35] showed that after 8 h 

aggregate formation was inhibited by the blocking β1 integrin antibody, resulting in none or small 

aggregates. At 24 h, β1 integrin inhibition continued to partially block aggregate formation, resulting 

in medium to large aggregates. The incomplete inhibition of the β1 integrin at the 24 h time point 

suggests that if this integrin is inactivated, ovarian cancer cells might possess a compensatory 

mechanism to facilitate aggregation. However, the antibody might have been internalized over 24 h 
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and 96 h, eventually enabling ovarian cancer cells to aggregate. Moreover, the presence of the  

serum-containing media allows the continuous proliferation of cells over a longer period of time.  

It was suggested that β1 integrin mediates the initial formation of cell aggregates and that multiple 

integrin-ECM interactions, such as αv integrin/vitronectin [57], are involved in this process. 

Contrary to Casey et al. [35] we hypothesized that aggregation time and technique are important 

parameters. Casey et al. [35] demonstrated that NIH:OVCAR5 cells formed stable aggregates within 

48 h using the liquid overlay method, whereas the OV-MZ-6 cells used in our study formed compact 

aggregates for up the 120 h within hydrogel microwell arrays. In our previously published work,  

we demonstrated that OV-MZ-6 cell spheroids proliferated for up to 28 days [8], underlining the 

robustness of this cell line when combined with a biomimetic hydrogel in a high-throughput system. 

Although the capacity to form compact aggregates differs between ovarian cancer cell lines [8,35,57], 

the aggregates formed in bioengineered microenvironment emerge to be similar to those present in the 

tumor fluid (ascites) of patients. 

4. Conclusions 

When entering the third dimension, investigators need to consider the design of microenvironments 

for supporting the cell architecture and the capability to conduct such a system in high-throughput.  

We provide evidence that hydrogel microwell arrays can be engineered to replicate intricate biological 

functions the tumor microenvironment by allowing aggregation of ovarian cancer cells, and thus, are 

well suited to decipher the function of cancer-associated proteases and integrins in disease progression 

and therapy-resistance. Tailor-made hydrogel microwells increase cell aggregation and insensitivity to 

paclitaxel treatment, in particular in KLK-expressing cancer cells, and thus, representing events seen in 

patients with metastatic outgrowth. KLK expression in cancer cell aggregates was accompanied with 

altered integrin levels and integrin-related factors upon paclitaxel treatment. However, blocking of 

integrin function did not affect cancer cell aggregation, suggesting that the involvement of other cell 

surface molecules and/or receptors play an important role. In conclusion, the technology platform 

presented in this study has the potential to provide an alternative screening tool for the efficacy of 

novel therapeutics specifically targeting multi-cellular aggregates for intra-abdominal intervention of 

late-stage disease. 
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Appendix 

Supplementary files. Time-lapse microscopy of aggregation dependent on paclitaxel treatment. 

Representative time-lapse experiments (avi-files) of aggregates grown under non-treated 

(2009.07.30_Overlay_s43_KLK) and treated (2009.07.30_Overlay_s53_KLK+Taxol.avi) conditions are 

shown using a widefield microscope over 96 h, with images taken every 6 h using a 10× air objective. 
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Figure S1. Altered caspase8 expression levels as a function of microwell size, KLK 

expression and paclitaxel treatment. Caspase8, indicative of apoptosis, was expressed in 

aggregates grown in the four different microwell sizes (50 × 50, 100 × 100, 150 × 150,  

200 × 200 µm) without paclitaxel treatment and upregulated in OV-KLK cell aggregates 

upon paclitaxel administration. OV-Vector cell aggregates showed a downregulation of 

capsase8 in medium sized (100–150 × 100–150 µm) microwells upon paclitaxel treatment. 

Caspase8 levels did not change in both OV-Vector/OV-KLK cell aggregates in the second 

largest (150 × 150 µm) and largest (200 × 200 µm) microwells respectively upon paclitaxel 

treatment. Altered MT1-MMP expression levels as a function of microwell size. MT1-MMP 

was expressed in all conditions (50 × 50, 100 × 100, 150 × 150, 200 × 200 µm) independent 

of KLK expression and paclitaxel treatment. 
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