Next Issue
Volume 7, February
Previous Issue
Volume 6, December
 
 

Brain Sci., Volume 7, Issue 1 (January 2017) – 13 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
1182 KiB  
Article
The Anterior Prefrontal Cortex and the Hippocampus Are Negatively Correlated during False Memories
by Brittany M. Jeye, Jessica M. Karanian and Scott D. Slotnick
Brain Sci. 2017, 7(1), 13; https://doi.org/10.3390/brainsci7010013 - 23 Jan 2017
Cited by 7 | Viewed by 6774
Abstract
False memories commonly activate the anterior/dorsolateral prefrontal cortex (A/DLPFC) and the hippocampus. These regions are assumed to work in concert during false memories, which would predict a positive correlation between the magnitudes of activity in these regions across participants. However, the A/DLPFC may [...] Read more.
False memories commonly activate the anterior/dorsolateral prefrontal cortex (A/DLPFC) and the hippocampus. These regions are assumed to work in concert during false memories, which would predict a positive correlation between the magnitudes of activity in these regions across participants. However, the A/DLPFC may also inhibit the hippocampus, which would predict a negative correlation between the magnitudes of activity in these regions. In the present functional magnetic resonance imaging (fMRI) study, during encoding, participants viewed abstract shapes in the left or right visual field. During retrieval, participants classified each old shape as previously in the “left” or “right” visual field followed by an “unsure”–“sure”–“very sure” confidence rating. The contrast of left-hits and left-misses produced two activations in the hippocampus and three activations in the left A/DLPFC. For each participant, activity associated with false memories (right–“left”–“very sure” responses) from the two hippocampal regions was plotted as a function of activity in each A/DLPFC region. Across participants, for one region in the left anterior prefrontal cortex, there was a negative correlation between the magnitudes of activity in this region and the hippocampus. This suggests that the anterior prefrontal cortex might inhibit the hippocampus during false memories and that participants engage either the anterior prefrontal cortex or the hippocampus during false memories. Full article
Show Figures

Figure 1

2733 KiB  
Article
A Genetic-Based Feature Selection Approach in the Identification of Left/Right Hand Motor Imagery for a Brain-Computer Interface
by Charles Yaacoub, Georges Mhanna and Sandy Rihana
Brain Sci. 2017, 7(1), 12; https://doi.org/10.3390/brainsci7010012 - 23 Jan 2017
Cited by 19 | Viewed by 6075
Abstract
Electroencephalography is a non-invasive measure of the brain electrical activity generated by millions of neurons. Feature extraction in electroencephalography analysis is a core issue that may lead to accurate brain mental state classification. This paper presents a new feature selection method that improves [...] Read more.
Electroencephalography is a non-invasive measure of the brain electrical activity generated by millions of neurons. Feature extraction in electroencephalography analysis is a core issue that may lead to accurate brain mental state classification. This paper presents a new feature selection method that improves left/right hand movement identification of a motor imagery brain-computer interface, based on genetic algorithms and artificial neural networks used as classifiers. Raw electroencephalography signals are first preprocessed using appropriate filtering. Feature extraction is carried out afterwards, based on spectral and temporal signal components, and thus a feature vector is constructed. As various features might be inaccurate and mislead the classifier, thus degrading the overall system performance, the proposed approach identifies a subset of features from a large feature space, such that the classifier error rate is reduced. Experimental results show that the proposed method is able to reduce the number of features to as low as 0.5% (i.e., the number of ignored features can reach 99.5%) while improving the accuracy, sensitivity, specificity, and precision of the classifier. Full article
(This article belongs to the Special Issue Brain-Computer Interfaces: Current Trends and Novel Applications)
Show Figures

Figure 1

273 KiB  
Review
Overview of Traumatic Brain Injury: An Immunological Context
by Damir Nizamutdinov and Lee A. Shapiro
Brain Sci. 2017, 7(1), 11; https://doi.org/10.3390/brainsci7010011 - 23 Jan 2017
Cited by 75 | Viewed by 8707
Abstract
Traumatic brain injury (TBI) afflicts people of all ages and genders, and the severity of injury ranges from concussion/mild TBI to severe TBI. Across all spectrums, TBI has wide-ranging, and variable symptomology and outcomes. Treatment options are lacking for the early neuropathology associated [...] Read more.
Traumatic brain injury (TBI) afflicts people of all ages and genders, and the severity of injury ranges from concussion/mild TBI to severe TBI. Across all spectrums, TBI has wide-ranging, and variable symptomology and outcomes. Treatment options are lacking for the early neuropathology associated with TBIs and for the chronic neuropathological and neurobehavioral deficits. Inflammation and neuroinflammation appear to be major mediators of TBI outcomes. These systems are being intensively studies using animal models and human translational studies, in the hopes of understanding the mechanisms of TBI, and developing therapeutic strategies to improve the outcomes of the millions of people impacted by TBIs each year. This manuscript provides an overview of the epidemiology and outcomes of TBI, and presents data obtained from animal and human studies focusing on an inflammatory and immunological context. Such a context is timely, as recent studies blur the traditional understanding of an “immune-privileged” central nervous system. In presenting the evidence for specific, adaptive immune response after TBI, it is hoped that future studies will be interpreted using a broader perspective that includes the contributions of the peripheral immune system, to central nervous system disorders, notably TBI and post-traumatic syndromes. Full article
(This article belongs to the Special Issue Advances in Neuroimmunology)
1595 KiB  
Review
Contributions of Letter-Speech Sound Learning and Visual Print Tuning to Reading Improvement: Evidence from Brain Potential and Dyslexia Training Studies
by Gorka Fraga González, Gojko Žarić, Jurgen Tijms, Milene Bonte and Maurits W. Van der Molen
Brain Sci. 2017, 7(1), 10; https://doi.org/10.3390/brainsci7010010 - 18 Jan 2017
Cited by 21 | Viewed by 10468
Abstract
We use a neurocognitive perspective to discuss the contribution of learning letter-speech sound (L-SS) associations and visual specialization in the initial phases of reading in dyslexic children. We review findings from associative learning studies on related cognitive skills important for establishing and consolidating [...] Read more.
We use a neurocognitive perspective to discuss the contribution of learning letter-speech sound (L-SS) associations and visual specialization in the initial phases of reading in dyslexic children. We review findings from associative learning studies on related cognitive skills important for establishing and consolidating L-SS associations. Then we review brain potential studies, including our own, that yielded two markers associated with reading fluency. Here we show that the marker related to visual specialization (N170) predicts word and pseudoword reading fluency in children who received additional practice in the processing of morphological word structure. Conversely, L-SS integration (indexed by mismatch negativity (MMN)) may only remain important when direct orthography to semantic conversion is not possible, such as in pseudoword reading. In addition, the correlation between these two markers supports the notion that multisensory integration facilitates visual specialization. Finally, we review the role of implicit learning and executive functions in audiovisual learning in dyslexia. Implications for remedial research are discussed and suggestions for future studies are presented. Full article
(This article belongs to the Special Issue Audiovisual Integration in Early Language Development)
Show Figures

Figure 1

642 KiB  
Review
Single Electrode Deep Brain Stimulation with Dual Targeting at Dual Frequency for the Treatment of Chronic Pain: A Case Series and Review of the Literature
by Milo Hollingworth, Hugh P. Sims-Williams, Anthony E. Pickering, Neil Barua and Nikunj K. Patel
Brain Sci. 2017, 7(1), 9; https://doi.org/10.3390/brainsci7010009 - 13 Jan 2017
Cited by 17 | Viewed by 7816
Abstract
Deep Brain Stimulation (DBS) has been used to target many deep brain structures for the treatment of chronic pain. The periaqueductal grey and periventricular grey (PAG/PVG) is an effective target but results are variable, sometimes short-lived or subject to tolerance. The centromedian intra-laminar [...] Read more.
Deep Brain Stimulation (DBS) has been used to target many deep brain structures for the treatment of chronic pain. The periaqueductal grey and periventricular grey (PAG/PVG) is an effective target but results are variable, sometimes short-lived or subject to tolerance. The centromedian intra-laminar parafascicular complex (CMPf) modulates medial pain pathways and CMPf DBS may address the affective aspects of pain perception. Stimulation of multiple deep brain targets may offer a strategy to optimize management of patients with complex pain symptomatology. However, previous attempts to stimulate multiple targets requires multiple trajectories and considerable expense. Using a single electrode to stimulate multiple targets would help overcome these challenges. A pre-requisite of such a technique is the ability to use different stimulation parameters at different contacts simultaneously on the same electrode. We describe a novel technique in 3 patients with chronic pain syndromes for whom conventional medical and/or neuromodulation therapy had failed using a single electrode technique to stimulate PVG/PAG and CMPf at dual frequencies. Full article
(This article belongs to the Special Issue Deep Brain Stimulation (DBS) Applications)
Show Figures

Figure 1

651 KiB  
Article
Sex Differences in Neuromuscular Fatigability of the Knee Extensors Post-Stroke
by Meghan Kirking, Reivian Berrios Barillas, Philip Andrew Nelson, Sandra Kay Hunter and Allison Hyngstrom
Brain Sci. 2017, 7(1), 8; https://doi.org/10.3390/brainsci7010008 - 12 Jan 2017
Cited by 3 | Viewed by 6031
Abstract
Background and Purpose: Despite the implications of optimizing strength training post-stroke, little is known about the differences in fatigability between men and women with chronic stroke. The purpose of this study was to determine the sex differences in knee extensor muscle fatigability and [...] Read more.
Background and Purpose: Despite the implications of optimizing strength training post-stroke, little is known about the differences in fatigability between men and women with chronic stroke. The purpose of this study was to determine the sex differences in knee extensor muscle fatigability and potential mechanisms in individuals with stroke. Methods: Eighteen participants (10 men, eight women) with chronic stroke (≥6 months) and 23 (12 men, 11 women) nonstroke controls participated in the study. Participants performed an intermittent isometric contraction task (6 s contraction, 3 s rest) at 30% of maximal voluntary contraction (MVC) torque until failure to maintain the target torque. Electromyography was used to determine muscle activation and contractile properties were assessed with electrical stimulation of the quadriceps muscles. Results: Individuals with stroke had a briefer task duration (greater fatigability) than nonstroke individuals (24.1 ± 17 min vs. 34.9 ± 16 min). Men were more fatigable than women for both nonstroke controls and individuals with stroke (17.9 ± 9 min vs. 41.6 ± 15 min). Individuals with stroke had less fatigue-related changes in muscle contractile properties and women with stroke differed in their muscle activation strategy during the fatiguing contractions. Conclusions: Men and women fatigue differently post-stroke and this may be due to the way they neurally activate muscle groups. Full article
(This article belongs to the Special Issue Functional Recovery after Stroke)
Show Figures

Figure 1

642 KiB  
Editorial
Acknowledgement to Reviewers of Brain Sciences in 2016
by Brain Sciences Editorial Office
Brain Sci. 2017, 7(1), 7; https://doi.org/10.3390/brainsci7010007 - 11 Jan 2017
Viewed by 3025
Abstract
The editors of Brain Sciences would like to express their sincere gratitude to the following reviewers for assessing manuscripts in 2016.[...] Full article
242 KiB  
Article
Relationships between GAT1 and PTSD, Depression, and Substance Use Disorder
by Kaitlin E. Bountress, Wei Wei, Christina Sheerin, Dongjun Chung, Ananda B. Amstadter, Howard Mandel and Zhewu Wang
Brain Sci. 2017, 7(1), 6; https://doi.org/10.3390/brainsci7010006 - 05 Jan 2017
Cited by 7 | Viewed by 5473
Abstract
Post-traumatic stress disorder (PTSD), Major Depressive Disorder (MDD), and Substance Use Disorder (SUD) have large public health impacts. Therefore, researchers have attempted to identify those at greatest risk for these phenotypes. PTSD, MDD, and SUD are in part genetically influenced. Additionally, genes in [...] Read more.
Post-traumatic stress disorder (PTSD), Major Depressive Disorder (MDD), and Substance Use Disorder (SUD) have large public health impacts. Therefore, researchers have attempted to identify those at greatest risk for these phenotypes. PTSD, MDD, and SUD are in part genetically influenced. Additionally, genes in the glutamate and gamma-aminobutyric acid (GABA) system are implicated in the encoding of emotional and fear memories, and thus may impact these phenotypes. The current study examined the associations of single nucleotide polymorphisms in GAT1 individually, and at the gene level, using a principal components (PC) approach, with PTSD, PTSD comorbid with MDD, and PTSD comorbid with SUD in 486 combat-exposed veterans. Findings indicate that several GAT1 SNPs, as well as one of the GAT1 PCs, was associated with PTSD, with and without MDD and SUD comorbidity. The present study findings provide initial insights into one pathway by which shared genetic risk influences PTSD-MDD and PTSD-SUD comorbidities, and thus identify a high-risk group (based on genotype) on whom prevention and intervention efforts should be focused. Full article
(This article belongs to the Special Issue The Pathogenesis of Post Traumatic Stress Disorder (PTSD))
3807 KiB  
Review
Enduring, Sexually Dimorphic Impact of In Utero Exposure to Elevated Levels of Glucocorticoids on Midbrain Dopaminergic Populations
by Glenda E. Gillies, Kanwar Virdee, Ilse Pienaar, Felwah Al-Zaid and Jeffrey W. Dalley
Brain Sci. 2017, 7(1), 5; https://doi.org/10.3390/brainsci7010005 - 30 Dec 2016
Cited by 10 | Viewed by 6467
Abstract
Glucocorticoid hormones (GCs) released from the fetal/maternal glands during late gestation are required for normal development of mammalian organs and tissues. Accordingly, synthetic glucocorticoids have proven to be invaluable in perinatal medicine where they are widely used to accelerate fetal lung maturation when [...] Read more.
Glucocorticoid hormones (GCs) released from the fetal/maternal glands during late gestation are required for normal development of mammalian organs and tissues. Accordingly, synthetic glucocorticoids have proven to be invaluable in perinatal medicine where they are widely used to accelerate fetal lung maturation when there is risk of pre-term birth and to promote infant survival. However, clinical and pre-clinical studies have demonstrated that inappropriate exposure of the developing brain to elevated levels of GCs, either as a result of clinical over-use or after stress-induced activation of the fetal/maternal adrenal cortex, is linked with significant effects on brain structure, neurological function and behaviour in later life. In order to understand the underlying neural processes, particular interest has focused on the midbrain dopaminergic systems, which are critical regulators of normal adaptive behaviours, cognitive and sensorimotor functions. Specifically, using a rodent model of GC exposure in late gestation (approximating human brain development at late second/early third trimester), we demonstrated enduring effects on the shape and volume of the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) (origins of the mesocorticolimbic and nigrostriatal dopaminergic pathways) on the topographical organisation and size of the dopaminergic neuronal populations and astrocytes within these nuclei and on target innervation density and neurochemical markers of dopaminergic transmission (receptors, transporters, basal and amphetamine-stimulated dopamine release at striatal and prefrontal cortical sites) that impact on the adult brain. The effects of antenatal GC treatment (AGT) were both profound and sexually-dimorphic, not only in terms of quantitative change but also qualitatively, with several parameters affected in the opposite direction in males and females. Although such substantial neurobiological changes might presage marked behavioural effects, in utero GC exposure had only a modest or no effect, depending on sex, on a range of conditioned and unconditioned behaviours known to depend on midbrain dopaminergic transmission. Collectively, these findings suggest that apparent behavioural normality in certain tests, but not others, arises from AGT-induced adaptations or compensatory mechanisms within the midbrain dopaminergic systems, which preserve some, but not all functions. Furthermore, the capacities for molecular adaptations to early environmental challenge are different, even opponent, in males and females, which may account for their differential resilience or failure to perform adequately in behavioural tests. Behavioural “normality” is thus achieved by the midbrain dopaminergic network operating outside its normal limits (in a state of allostasis), rendering it at greater risk to malfunction when challenged in later life. Sex-specific neurobiological programming of midbrain dopaminergic systems may, therefore, have psychopathological relevance for the sex bias commonly found in brain disorders associated with these systems, and which have a neurodevelopmental component, including schizophrenia, ADHD (attention/deficit hyperactivity disorders), autism, depression and substance abuse. Full article
(This article belongs to the Special Issue Sex Differences in Brain Development)
Show Figures

Figure 1

929 KiB  
Review
The Interplay of Hippocampus and Ventromedial Prefrontal Cortex in Memory-Based Decision Making
by Regina A. Weilbächer and Sebastian Gluth
Brain Sci. 2017, 7(1), 4; https://doi.org/10.3390/brainsci7010004 - 29 Dec 2016
Cited by 50 | Viewed by 13219
Abstract
Episodic memory and value-based decision making are two central and intensively studied research domains in cognitive neuroscience, but we are just beginning to understand how they interact to enable memory-based decisions. The two brain regions that have been associated with episodic memory and [...] Read more.
Episodic memory and value-based decision making are two central and intensively studied research domains in cognitive neuroscience, but we are just beginning to understand how they interact to enable memory-based decisions. The two brain regions that have been associated with episodic memory and value-based decision making are the hippocampus and the ventromedial prefrontal cortex, respectively. In this review article, we first give an overview of these brain–behavior associations and then focus on the mechanisms of potential interactions between the hippocampus and ventromedial prefrontal cortex that have been proposed and tested in recent neuroimaging studies. Based on those possible interactions, we discuss several directions for future research on the neural and cognitive foundations of memory-based decision making. Full article
Show Figures

Figure 1

3706 KiB  
Case Report
An Unusual Case of Post-Traumatic Headache Complicated by Intracranial Hypotension
by Sara Siavoshi, Carrie Dougherty, Jessica Ailani, Kaustubh Yadwadkar and Frank Berkowitz
Brain Sci. 2017, 7(1), 3; https://doi.org/10.3390/brainsci7010003 - 29 Dec 2016
Cited by 7 | Viewed by 6719
Abstract
We present a case of post-traumatic headache complicated by intracranial hypotension resulting in an acquired Chiari malformation and myelopathy with syringomyelia. This constellation of findings suggest a possible series of events that started with a traumatic cerebral spinal fluid (CSF) leak, followed by [...] Read more.
We present a case of post-traumatic headache complicated by intracranial hypotension resulting in an acquired Chiari malformation and myelopathy with syringomyelia. This constellation of findings suggest a possible series of events that started with a traumatic cerebral spinal fluid (CSF) leak, followed by descent of the cerebellar tonsils and disruption of CSF circulation that caused spinal cord swelling and syrinx. This unusual presentation of post-traumatic headache highlights the varying presentations and the potential sequelae of intracranial hypotension. In addition, the delayed onset of upper motor neuron symptoms along with initially normal head computerized tomography scan (CT) findings, beg the question of whether or not a post-traumatic headache warrants earlier magnetic resonance imaging (MRI). Full article
(This article belongs to the Special Issue The Pathogenesis and Treatment of Headache Disorders)
Show Figures

Figure 1

1224 KiB  
Article
Impact of Spinal Manipulation on Cortical Drive to Upper and Lower Limb Muscles
by Heidi Haavik, Imran Khan Niazi, Mads Jochumsen, Diane Sherwin, Stanley Flavel and Kemal S. Türker
Brain Sci. 2017, 7(1), 2; https://doi.org/10.3390/brainsci7010002 - 23 Dec 2016
Cited by 35 | Viewed by 11600
Abstract
This study investigates whether spinal manipulation leads to changes in motor control by measuring the recruitment pattern of motor units in both an upper and lower limb muscle and to see whether such changes may at least in part occur at the cortical [...] Read more.
This study investigates whether spinal manipulation leads to changes in motor control by measuring the recruitment pattern of motor units in both an upper and lower limb muscle and to see whether such changes may at least in part occur at the cortical level by recording movement related cortical potential (MRCP) amplitudes. In experiment one, transcranial magnetic stimulation input–output (TMS I/O) curves for an upper limb muscle (abductor pollicus brevis; APB) were recorded, along with F waves before and after either spinal manipulation or a control intervention for the same subjects on two different days. During two separate days, lower limb TMS I/O curves and MRCPs were recorded from tibialis anterior muscle (TA) pre and post spinal manipulation. Dependent measures were compared with repeated measures analysis of variance, with p set at 0.05. Spinal manipulation resulted in a 54.5% ± 93.1% increase in maximum motor evoked potential (MEPmax) for APB and a 44.6% ± 69.6% increase in MEPmax for TA. For the MRCP data following spinal manipulation there were significant difference for amplitude of early bereitschafts-potential (EBP), late bereitschafts potential (LBP) and also for peak negativity (PN). The results of this study show that spinal manipulation leads to changes in cortical excitability, as measured by significantly larger MEPmax for TMS induced input–output curves for both an upper and lower limb muscle, and with larger amplitudes of MRCP component post manipulation. No changes in spinal measures (i.e., F wave amplitudes or persistence) were observed, and no changes were shown following the control condition. These results are consistent with previous findings that have suggested increases in strength following spinal manipulation were due to descending cortical drive and could not be explained by changes at the level of the spinal cord. Spinal manipulation may therefore be indicated for the patients who have lost tonus of their muscle and/or are recovering from muscle degrading dysfunctions such as stroke or orthopaedic operations and/or may also be of interest to sports performers. These findings should be followed up in the relevant populations. Full article
(This article belongs to the Special Issue Motor Control and Brain Plasticity)
Show Figures

Figure 1

327 KiB  
Article
Group vs. Individual Treatment for Acute Insomnia: A Pilot Study Evaluating a “One-Shot” Treatment Strategy
by Pam Boullin, Christina Ellwood and Jason G. Ellis
Brain Sci. 2017, 7(1), 1; https://doi.org/10.3390/brainsci7010001 - 23 Dec 2016
Cited by 27 | Viewed by 5814
Abstract
Background: Despite undeniable evidence for the efficacy and effectiveness of Cognitive Behaviour Therapy for Insomnia (CBT-I), the potential for its widespread dissemination and implementation has yet to be realised. A suggested reason for this is that traditional CBT-I is considered too burdensome for [...] Read more.
Background: Despite undeniable evidence for the efficacy and effectiveness of Cognitive Behaviour Therapy for Insomnia (CBT-I), the potential for its widespread dissemination and implementation has yet to be realised. A suggested reason for this is that traditional CBT-I is considered too burdensome for deployment, in its current form, within the context of where it would be most beneficial—Primary Care. One strategy, aimed to address this, has been to develop briefer versions of CBT-I, whilst another has been to deliver CBT-I in a group format. An alternative has been to attempt to address insomnia during its acute phase with a view to circumventing its progression to chronic insomnia. The aim of the present study was to compare a brief version of CBT-I (one-shot) when delivered individually or in groups to those with acute insomnia. Method: Twenty-eight individuals with acute insomnia (i.e., meeting full DSM-5 criteria for insomnia disorder for less than three months) self-assigned to either a group or individual treatment arm. Treatment consisted of a single one-hour session accompanied by a self-help pamphlet. Subjects completed measures of insomnia severity, anxiety and depression pre-treatment and at one-month post-treatment. Additionally, daily sleep diaries were compared between pre-treatment and at the one-month follow up. Results: There were no significant between group differences in treatment outcome on any sleep or mood measures although those in the group treatment arm were less adherent than those who received individual treatment. Furthermore, the combined (group and individual treatment arms) pre-post test effect size on insomnia symptoms, using the Insomnia Severity Index, was large (d = 2.27). Discussion: It appears that group treatment is as efficacious as individual treatment within the context of a “one shot” intervention for individuals with acute insomnia. The results are discussed with a view to integrating one-shot CBT-I in Primary Care. Full article
(This article belongs to the Special Issue New Research in Insomnia)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop