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Abstract: Information theory explains how systems encode and transmit information. This arti-
cle examines the neuronal system, which processes information via neurons that react to stimuli
and transmit electrical signals. Specifically, we focus on transfer entropy to measure the flow of
information between sequences and explore its use in determining effective neuronal connectiv-
ity. We analyze the causal relationships between two discrete time series, X := {Xt : t ∈ Z} and
Y := {Yt : t ∈ Z}, which take values in binary alphabets. When the bivariate process (X, Y) is a
jointly stationary ergodic variable-length Markov chain with memory no larger than k, we demon-
strate that the null hypothesis of the test—no causal influence—requires a zero transfer entropy rate.
The plug-in estimator for this function is identified with the test statistic of the log-likelihood ratios.
Since under the null hypothesis, this estimator follows an asymptotic chi-squared distribution, it
facilitates the calculation of p-values when applied to empirical data. The efficacy of the hypothesis
test is illustrated with data simulated from a neuronal network model, characterized by stochastic
neurons with variable-length memory. The test results identify biologically relevant information,
validating the underlying theory and highlighting the applicability of the method in understanding
effective connectivity between neurons.

Keywords: effective connectivity; transfer entropy; conditional independence; causality; hypothesis
testing; interacting variable-length Markov chains

1. Introduction

Estimating the effective connectivity between neurons in the brain is not an easy
task [1–5]. There are many ways to unveil causal relationships in their multiple scales, such
as from neurons to brain regions. Experiments with external stimuli are commonly used
for this inference process, where the spikes and the activity of a neuron are related to a
second neuron that is connected to the first one if the perturbation allows us to see that [6].
These procedures focus on an improvement in the prediction of the future activity of the
second neuron (the receiver) by incorporating information produced by the past activity
of the first neuron (the sender of the perturbation), which is seen as a causal interaction
between these neurons [7].

Admittedly, connectivity estimation is not straightforward due to the noisy nature of
neuronal signals. Recordings of electrophysiological patterns in vitro and in vivo reveal that
the neuronal activity is highly irregular and difficult to predict [8–10]. Intrinsic variability
is apparent in the response of neurons, even to frozen stimulation [11,12]. Experimental
data suggest that neurons, synapses, and the network system operate in an inherently
stochastic framework [13–15]. Accordingly, the mathematical description of neuronal
phenomena can be treated in probabilistic terms, i.e., describing the process of spiking as a
stochastic process.

Brain Sci. 2024, 14, 442. https://doi.org/10.3390/brainsci14050442 https://www.mdpi.com/journal/brainsci

https://doi.org/10.3390/brainsci14050442
https://doi.org/10.3390/brainsci14050442
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com
https://orcid.org/0000-0002-4522-1793
https://orcid.org/0000-0001-5555-0526
https://orcid.org/0000-0002-2037-9746
https://doi.org/10.3390/brainsci14050442
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com/article/10.3390/brainsci14050442?type=check_update&version=2


Brain Sci. 2024, 14, 442 2 of 17

Determining which stochastic process is more suitable is a matter of debate. It is,
however, reasonable to consider that the probability of a neuron spiking is conditioned
by the knowledge of its past temporal response. Hence, this probability is greater the
further in the past the last spike of the neuron in question is. This implies that the stochastic
process that models the activity of this neuron is not Markovian with full memory, as
shown by some works in the literature [16–18]. The activity of a neuron could, therefore,
be reasonably modeled by a stochastic process whose dependence on the past is variable
in scope.

The class of Markov chains with variable-length memory became popular in the
statistical and probabilistic community with the work by [19]. The processes in this class
are still Markovian of fixed order but with transition probabilities that do not depend on
a fixed number of past states, taking into account, on the other hand, the dependency
structure present in the data. These relevant sequences of past states are called contexts,
and the set of contexts can be represented as a rooted tree, namely a context tree. When
considering a variable-length memory, we have more informative models that are flexible
and parsimonious compared to Markov chains with full memory.

Given a trajectory of the Markov chain with a variable-length memory, we can esti-
mate transition probabilities using, for example, a plug-in estimator. A way of estimating
connectivity and disambiguate spurious correlations from actual connections is by inferring
the information that flows from one neuronal spike train to another. For this, we can use
information-theoretical measures [20–22], which are functions of these transition proba-
bilities. Thus, the estimation of the transition probabilities is essential. In this work, we
consider the modeling of the neuronal spike trains by way of Markov chains with variable-
length memory and use transfer entropy to understand the transmission of information
between neurons over a finite time interval.

Transfer entropy (TE), an information-theoretic measure for quantifying time-directed
information transfer between joint processes, was proposed by [20] and independently
by [23] as an effective measure of causality. A closely related concept that measures informa-
tion transport is the transfer entropy rate (TER). These measures can quantify the strength
and direction of coupling between simultaneously observed systems [24,25]. Consequently,
TE and TER are widely used in neuroscience today to assess connectivity from neuronal
datasets [3,26–33]. In this sense, these measures allow us to study both linear and nonlinear
causality relations between neuronal spike trains, described as discrete random processes.
In this article, we are interested in the application of these measures to the detection of
effective neuronal connectivity between neurons with variable-length memory. In other
words, we aim to test for the absence of causal influence between neurons. Under fair
conditions, the null hypothesis, which corresponds to the absence of causal influence, is
equivalent to the requirement that the transfer entropy rate is equal to zero [34].

To test the statistical significance of a connectivity value and determine whether
connectivity is detected, we use the plug-in estimator for the transfer entropy rate, which is
identified with the log-likelihood ratio test statistic for the desired test. According to [34,35],
this statistic is asymptotically χ2 distributed under the null hypothesis, facilitating the
computation of p-values when used on simulated data. In this work, the test is employed
in the analysis of spike trains simulated from a space-time framework inspired by the
Galves and Löcherbach model [36], which is built on the simple and biologically plausible
assumption that the membrane potential of each neuron is reset every time it spikes. The
authors construct a stationary version of the process using probabilistic tools and obtain
an explicit upper bound for the correlation between successive inter-spike intervals. This
enables the application of the proposed statistical test to samples generated from this
model. The effectiveness of the resulting hypothesis test is illustrated in these simulated
data, which identifies interesting and biologically relevant information.

The problem of testing effective connectivity between neurons based on transfer
entropy has been considered in the literature using surrogate data [3,37]. In general, gener-
ating surrogate data with the same properties as the original data but without dependencies
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between signals is difficult. In this sense, feasibility emerges when collecting sufficiently
large samples, and when the test statistic has a known asymptotic distribution, the use
of parametric tests is a good alternative. Recently, parametric tests have been used to
detect connectivity between neurons using a test statistic based on the plug-in estimator
of directed information, assuming that the bivariate process is Markovian with full mem-
ory [38,39]. To the best of our knowledge, this is the first time that testing for causality using
a transfer entropy has been performed in the more general scenario of Markov chains with
variable-length memory, based on a transfer entropy rate plug-in estimator. Thus, this work
complements existing studies on transfer entropy estimation and effective connectivity
detection between neurons.

The remainder of this article is organized as follows. In the next section, we establish
our notations and review preliminary definitions and concepts, particularly those con-
cerning the neuronal network model, transfer entropy, and the estimation of the transfer
entropy rate. Section 3 introduces the hypothesis test we use to detect causal influence
between stochastic neurons. In Section 4, we apply transfer entropy to the identification of
effective connectivity between a pair of stochastic neurons using synthetic data generated
from the random network model described in Section 2. Lastly, we end this article with our
conclusions in Section 5.

2. Notations, Definitions, and Preliminary Notions

In this paper, we denote random variables in uppercase letters, stochastic chains
in uppercase bold letters, and the specific values assumed by them in lowercase letters.
Calligraphic letters denote the alphabets where random variables take values. Subscripts
denote the outcome’s position in a sequence, for example, Xt generally indicates the tth

outcome of the process X. For any integers j and k such that j ≤ k, we use the notation xk
j

for finite sequences
(

xj, . . . , xk
)
, xk
−∞ for left-infinite sequences (. . . , xk−1, xk), and x+∞

k for
right-infinite sequences (xk, xk+1, . . .). We use the convention that if j > k, xk

j is the empty
sequence. We use analogous notations for sequences of random variables.

2.1. Neuronal Spike Trains as Stochastic Processes

Throughout this paper, we assume that we record the neuronal activity over a finite
time horizon. The sequence of times at which an individual neuron in the nervous system
generates an action potential is termed a spike train. It is useful to consider the times of
spike occurrence with a certain degree of accuracy, which is called the bin size [40]. In this
sense, the bin size refers to the duration of time over which neural activity is aggregated or
binned for analysis. For a small enough bin size (10 ms is a typical choice), the spike train
may be represented as a binary sequence xn

1 ∈ {0, 1}n, where

xt =

{
1, if the neuron spikes at the tth bin,
0, otherwise,

for every t = 1, 2, . . . , n. The appropriate bin size to use depends on the specific experi-
mental design and the characteristics of the data being analyzed. In general, the bin size is
chosen to strike a balance between capturing relevant details of the neuronal activity and
having sufficient statistical power. This typically involves selecting a bin size that is small
enough to capture important features of the data but not so small that the resulting spike
counts are noisy or unreliable.

Recordings of neuronal activity reveal irregular spontaneous activity of neurons
and variability in their response to the same stimulus [41–45]. Thus, the experimental
data suggest that spike trains should be modeled from a probabilistic point of view. In
this context, and to give a probability measure to describe the process of spiking as a
sequential process, we assume that the activity of a neuron is described by a discrete-time
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homogeneous stochastic chain X := {Xt : t ∈ Z} defined on a suitable probability space
(Ω,F , P), where

Xt =

{
1, if the neuron spikes at the tth bin,
0, otherwise,

for every t ∈ Z.
In this paper, we assume that the sample spike train is generated by a stochastic source.

This means that at each bin, conditional on the whole past, there is a fixed probability of
obtaining a spike. Neurons exhibiting this characteristic are arranged in such a way that
they share similar biophysical properties and are collectively referred to as stochastic neurons.

The randomness introduced by stochastic neurons can be useful in training neural
network models because it can help prevent overfitting and improve the network’s ability to
generalize to new data. In this work, we are interested in detecting the effective connectivity
between a pair of stochastic neurons using synthetic data generated from such random
network models.

2.2. Neuronal Network Model

Let I be a finite set of neurons, and assume that the bins are indexed by the set Z. In
this context, the network of neurons is described by a discrete-time homogeneous stochastic
chain X :=

{
X(i)

t : i ∈ I, t ∈ Z
}

. For each neuron i ∈ I at each bin t ∈ Z,

X(i)
t =

{
1, if neuron i spikes at the tth bin,
0, otherwise.

Moreover, whenever we say time t ∈ Z, it should be interpreted as time bin t. For no-
tational convenience, we write the configuration of X at time t ∈ Z by X t :=

{
X(i)

t : i ∈ I
}

and the path of X associated with neuron i ∈ I as X(i) :=
{

X(i)
t : t ∈ Z

}
. We use analogous

notation for the observed configuration of X at time t ∈ Z and the observed path of X
associated with a neuron i ∈ I.

In what follows, P denotes the law of the neuronal network X. In this network, the
stochastic chain X has the following dynamic. At each time step, conditional on the whole
past, neurons update independently from each other, i.e., for any t ∈ Z and any choice
x(i)t ∈ {0, 1}, i ∈ I, we have

P

(⋂
i∈I

{
X(i)

t = x(i)t

}∣∣∣∣∣X t−1
−∞ = xt−1

−∞

)
= ∏

i∈I
P
(

X(i)
t = x(i)t

∣∣∣X t−1
−∞ = xt−1

−∞

)
, (1)

where xt−1
−∞ is a left-infinite configuration of X.

Moreover, the probability that neuron i ∈ I spikes at bin t ∈ Z, conditional on the
whole past, is an increasing function of its membrane potential. In other words, for each
neuron i ∈ I at any t ∈ Z,

P
(

X(i)
t = 1

∣∣∣X t−1
−∞ = xt−1

−∞

)
= ϕ

(
v(i)t−1

)
, (2)

where v(i)t ∈ R denotes the membrane potential of neuron i ∈ I at time t ∈ Z and
ϕ : R→ [0, 1] is an increasing function called the spiking rate function.

The membrane potential of a given neuron i ∈ I is affected by the actions of all
other neurons interacting with it. More precisely, the membrane potential of a given
neuron i ∈ I depends on the influence received from its presynaptic neurons since its last
spiking time. In this sense, the probability of neuron i ∈ I spiking increases monotonically
with its membrane potential. Whenever neuron i ∈ I fires, its membrane potential is
reset to a resting value, and at the same time, postsynaptic current pulses are generated,
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modifying the membrane potential of all its postsynaptic neurons. When a presynaptic
neuron j ∈ I − {i} fires, the membrane potential of neuron i ∈ I changes. The contribution
of neuron j ∈ I to the membrane potential of neuron i ∈ I is either excitatory or inhibitory,
depending on the sign of the synaptic weight of neuron j on neuron i. Moreover, the
membrane potential of each neuron in the network is affected by the presence of leakage
channels in its membrane, which tends to push its membrane potential toward the resting
potential. This spontaneous activity of neurons is observed in biological neuronal networks.

Assuming the above description, we may consider stochastic neurons with several
kinds of short-term memory. In this article, we explore a stochastic neuron model inspired
by the GL model [36], where neuronal spike trains are prescribed by interacting chains with
variable-length memory.

For each neuron i ∈ I at any bin t ∈ Z, we can write

v(i)t−1 =


0, if x(i)t−1 = 1,

βi + ∑j∈I ωj→i ∑t−1
s=L(i)

t +1

x(j)
s

2t−L(i)
t −1

, otherwise,

where ωj→i ∈ R is the synaptic weight of neuron j on neuron i, βi ∈ R is the spontaneous

activity of neuron i, and L(i)
t is the last spike time of neuron i ∈ I before time t ∈ Z, i.e.,

L(i)
t := sup

{
s < t : x(i)s = 1

}
, ∀i ∈ I.

Therefore, for each neuron i ∈ I at any t ∈ Z, we may rewrite (2) in the following way

P
(

X(i)
t = 1

∣∣∣X t−1
−∞ = xt−1

−∞

)
= ϕ

(1− x(i)t−1

)βi + ∑
j∈I

ωj→i

t−1

∑
s=L(i)

t +1

x(j)
s

2t−L(i)
t −1


. (3)

Observe that the spiking probability of a given neuron depends on the accumulated
activity of the system after its last spike time. Here, we adopt the convention that L(i)

t ≥
t − K, where K is a positive integer number that represents the largest memory length
of all stochastic neurons considered in the network. This implies that the time evolution
of each single neuron looks like a Markov chain with variable-length memory. This
structure of variable-length memory is more appropriate from the estimation point of view
because it implies that some transition probabilities of the Markov chain with order K are
lumped together.

One can show the existence and uniqueness of a stationary stochastic chain X
satisfying (1) whose dynamics are given by (3). We refer the interested reader to [36]
for a rigorous proof of this result in the GL neuron model.

2.3. Transfer Entropy

In this work, we use transfer entropy to assess connectivity from neuronal datasets.
This measure allows us to study causality relations between neuronal spike trains described
as discrete random processes. Transfer entropy is a statistical tool used to quantify the
directed flow of information between different neurons. Specifically, it measures how much
information from one signal helps predict the future of another signal, after accounting for
the past of both signals.

Let (X, Y) := {(Xt, Yt) : t ∈ Z} be a discrete-time jointly homogeneous stochastic
chain taking values on the alphabet {0, 1}2 with distribution P ∈ M, where M is the
set of Borelian probability measures defined on the usual sigma-algebra generated by
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cylinders of {0, 1}Z × {0, 1}Z. For any positive integer k, the k-block transfer entropy from
X := {Xt : t ∈ Z} to Y := {Yt : t ∈ Z} is defined as

T
(

Xk
1 → Yk

1

)
:= H

(
Yk|Yk−1

1

)
− H

(
Yk|Xk−1

1 , Yk−1
1

)
,

where H(Yk|Yk−1
1 ) is the conditional k-block entropy of Y , which is given by

H(Yk|Yk−1
1 ) := −∑

bk
1

P
(

Yk
1 = bk

1

)
log P

(
Yk = bk

∣∣∣Yk−1
1 = bk−1

1

)

and H
(

Yk|Xk−1
1 , Yk−1

1

)
is the causally conditional k-block entropy of X on Y , defined as

H
(

Yk|Xk−1
1 , Yk−1

1

)
:= −∑

bk
1

∑
ak−1

1

P
(

Xk
1 = ak−1

1 , Yk
1 = bk

1

)
log

P
(

Xk−1
1 = ak−1

1 , Yk
1 = bk

1

)
P
(

Xk−1
1 = ak−1

1 , Yk−1
1 = bk−1

1

)
= −∑

bk
1

∑
ak−1

1

P
(

Xk
1 = ak−1

1 , Yk
1 = bk

1

)
× log P

(
Yk = bk

∣∣∣Xk−1
1 = ak−1

1 , Yk−1
1 = bk−1

1

)
.

Throughout this paper, “log” denotes the natural logarithm, and, by convention, we
take T(X1 → Y1) := H(Y1)− H(Y1) = 0.

Unlike mutual information, transfer entropy is, in general, asymmetric, i.e., T(Xk
1 →

Yk
1 ) ̸= T(Yk

1 → Xk
1). The asymmetry of transfer entropy is characterized by the causally

conditional entropy, which quantifies the entropy of Y conditioned on the causal part of
X in addition to the history of Y . We say that X has no causal influence on Y when the
causally conditional entropy is equal to the conditional entropy of Y . In this case, the
transfer entropy is zero. Therefore, with this measure, we can quantify the strength and
direction of the information flow between simultaneously observed systems.

Although transfer entropy is a measure widely used in neuroscience to quantify the
amount of information that flows from one spike train to another, it only considers a finite
block of states. In this sense, transfer entropy estimation is sensitive to faulty observations,
which may lead to the identification of false causality. For a more comprehensive under-
standing of the system’s behavior, we may consider the estimation of an information flow
rate. This idea leads to the following definition of the transfer entropy rate.

Since (X, Y) is a jointly stationary ergodic finite-alphabet process, we can define the
transfer entropy rate from X to Y as

T(X → Y) = lim
k→∞

T(Xk
1 → Yk

1 ).

The existence of the limit can be checked as follows:

T(X → Y) = lim
k→∞

T(Xk
1 → Yk

1 )

= lim
k→∞

(
H(Yk|Yk−1

1 )− H(Yk|Xk−1
1 , Yk−1

1 )
)

= lim
k→∞

H(Yk|Yk−1
1 )− lim

k→∞
H(Y1|Xk−1

1 , Yk−1
1 )

= H(Y0|Y−1
−∞)− H(Y0|X−1

−∞, Y−1
−∞),

where H(Y0|Y−1
−∞) is the entropy rate H(Y) of the process Y and H(Y0|X−1

−∞, Y−1
−∞) is the

causally conditional entropy rate H(Y |X). Thus,

T(X → Y) = H(Y)− H(Y |X).
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The following proposition shows that, under appropriate conditions, the transfer
entropy rate can be expressed in a simpler form.

Proposition 1. Suppose (X, Y) is a jointly stationary ergodic finite-alphabet variable-length
Markov chain with memory no larger than k and with an arbitrary initial distribution. If, in
addition, Y is also a variable-length Markov chain with memory no larger than k, then the transfer
entropy rate T(X → Y) exists and it equals

T(X → Y) = I
(

Y0, X−1
−k

∣∣∣Y−1
−k

)
:= H

(
Y0

∣∣∣Y−1
−k

)
− H

(
Y0

∣∣∣X−1
−k , Y−1

−k

)
.

Proof. Since (X, Y) is a jointly stationary ergodic finite-alphabet process, we have the
existence of T(X → Y) guaranteed. If (X, Y) is a variable-length Markov chain with
memory no larger than k and with all positive transitions, then

H
(

Y0

∣∣∣X−1
−∞, Y−1

−∞

)
= ∑

a−1
−∞

∑
b0
−∞

P
(

X−1
−∞ = a−1

−∞, Y0
−∞ = b0

−∞

)
× log P

(
Y0 = b0

∣∣∣X−1
−∞ = a−1

−∞, Y−1
−∞ = b−1

−∞

)
= ∑

a−1
−k

∑
b−1
−k

P
(

X−1
−k = a−1

−k , Y0
−k = b0

−k

)
× log P

(
Y0 = b0

∣∣∣X−1
−k = a−1

−k , Y−1
−k = b−1

−k

)
= H

(
Y0

∣∣∣X−1
−k , Y−1

−k

)
.

If, in addition, the process Y is itself a variable-length Markov chain with memory no
larger than k, then, in a very similar way, we can show that the entropy rate H(Y) is simply
H
(

Y0

∣∣∣Y−1
−k

)
. Therefore,

T(X → Y) = H
(

Y0

∣∣∣Y−1
−k

)
− H

(
Y0

∣∣∣X−1
−k , Y−1

−k

)
= I
(

Y0, X−1
−k

∣∣∣Y−1
−k

)
.

Note that T(X → Y) = 0 if and only if each Yi, given its past Yi−1
−∞ , is conditionally

independent of Xi−1
−∞. In other words, the transfer entropy rate is only zero in the absence

of causal influence.

2.4. Transfer Entropy Rate Estimation

Since we generally do not have access to the probability distributions of the stationary
processes whose possible causality relations are investigated, there are many methods to
estimate the transfer entropy rate. This is particularly the case when recording neuronal
and network signals, without or with equal external stimulation to the neurons, so that
their activity is stationary, and inferring causal relationships, especially when dealing with
different data formats. For a thorough review, we refer the reader to [20,46,47]. Thus, in
this paper, we consider a plug-in estimator for the transfer entropy rate T(X → Y) between
the jointly stationary ergodic chains X and Y (see Section 2.2).

Consider the positive integers k and n such that k ≤ n, and a given finite sample
(xn
−k+1, yn

−k+1) ∈ {0, 1}n+k × {0, 1}n+k from the jointly stationary ergodic chain (X, Y)
with joint distribution P ∈ M. In this context, for any sequences ak

0 ∈ {0, 1}k+1 and
bk

0 ∈ {0, 1}k+1, we define the plug-in estimate of P as

P̂(k)
n

(
ak

0, bk
0

)
:=

1
n

n

∑
i=1

I
{

x̃i
i−k = ak

0, ỹi
i−k = bk

0

}
,
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where I denotes the indicator function.
Note that P̂(k)

n defines a probability measure on {0, 1}k+1 × {0, 1}k+1 induced by the
sample (Xn

−k+1, Yn
−k+1) from (X, Y). In this context, if (X̂0

−k, Ŷ0
−k) ∼ P̂(k)

n , we may define
the plug-in estimate for the transfer entropy rate T(X → Y) as

T̂(k)
n (X → Y) := T

(
X̂0
−k → Ŷ0

−k

)
.

Since (X, Y) is a jointly stationary ergodic chain with distribution P ∈ M, we have,
by the ergodic theorem,

lim
n→∞

P̂(k)
n

(
ak

0, bk
0

)
= P

(
X0
−k = ak

0, Y0
−k = bk

0

)
, P− a.s.,

for every positive integer k and (ak
0, bk

0) ∈ {0, 1}k+1 × {0, 1}k+1. Thus, P-almost surely,

lim
k→∞

lim
n→∞

T̂(k)
n (X → Y) = lim

k→∞
lim

n→∞
T(X̂0

−k → Ŷ0
−k) = lim

k→∞
T(X0

−k → Y0
−k) = T(X → Y).

As discussed in Section III.2 in [48], p.174, we can take a single limit considering k as

a function of n. If k(n) → +∞ whenever n → +∞ and k(n) ≤ log n
2

, then the sequence

{k(n) : n ≥ 1} is admissible to (X, Y) in the sense that

lim
n→∞

P̂(k(n))
n

(
ak(n)

0 , bk(n)
0

)
= P

(
X0
−k(n) = ak(n)

0 , Y0
−k(n) = bk(n)

0

)
, P− a.s..

Therefore, P-almost surely,

lim
n→∞

T̂(k(n))
n (X → Y) = lim

n→∞
T
(

X̂0
−k(n) → Ŷ0

k(n)

)
= lim

n→∞
T
(

X0
−k(n) → Y0

−k(n)

)
= T(X → Y).

The asymptotic behavior of T̂(k)
n (X → Y) can also be described in terms of its probabil-

ity distribution. According to [34], if X does not have a causal influence on Y , equivalently,
if T(X → Y) = 0, then 2nT̂n(X → Y) has an asymptotic χ2(d) distribution, where the
number of degrees of freedom d is equal to 2k

(
2k − 1

)
.

3. Hypothesis Test

Consider the problem of testing whether the binary time series generated by the
process X has a causal influence on Y . In the present context, this corresponds to testing the
null hypothesis that each random variable Yi is conditionally independent of Xi−1

i−k given
Yi−1

i−k , within the larger hypothesis that the joint stationary and ergodic process (X, Y) is a
variable-length Markov chain with order no larger than k and with all positive transitions.

Formally, each positive transition matrix Q = Qθ for the process (X, Y) can be indexed
by a parameter vector θ taking values in a 3× 2k+1-dimensional open set Θ. The null
hypothesis corresponding to each Yi being conditionally independent of Xi−1

i−k given Yi−1
i−k is

described by transition matrices Qθ that can be expressed as

Qθ

(
a0, b0

∣∣∣a−1
−k , b−1

−k

)
= Qx

θ

(
a0

∣∣∣a−1
−k , b0

−k

)
Qy

θ

(
b0

∣∣∣b−k
−1

)
,
(

a0
−k, b0

−k

)
∈ {0, 1}k+1 × {0, 1}k+1. (4)

This collection of transition matrices can be indexed by parameters in a lower-dimensional
parameter set Φ, which is an open subset of R2k(2k+1+1) and can be naturally embedded
within Θ via a map h : Φ→ Θ, with the property that all induced transition matrices Qh(ϕ)

satisfy the conditional independence property in (4).
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To test the null hypothesis Φ within the general model Θ, we employ a likelihood test.
The log-likelihood function Ln

(
θ
∣∣∣xn
−k+1, yn

−k+1

)
of θ given a sample

(
xn
−k+1, yn

−k+1

)
from

the joint process (X, Y) can be expressed as

Ln
(
θ
∣∣xn
−k+1, yn

−k+1
)
= log Pθ

(
Xn

1 = xn
1 , Yn

1 = yn
1

∣∣∣X0
−k+1 = x0

k+1, Y0
−k+1 = y0

−k+1

)
= log

(
n

∏
i=1

Qθ

(
xi, yi

∣∣∣xi−1
i−k , yi−1

i−k

))

where Pθ denotes the law of (X, Y) with transition matrix Qθ. Then, the likelihood ratio
test statistic is the difference

∆n = 2
{

max
θ∈Θ

Ln
(
θ
∣∣xn
−k+1, yn

−k+1
)
−max

ϕ∈Φ
Ln
(
h(ϕ)

∣∣xn
−k+1, yn

−k+1
)}

.

For our purposes, a key observation is that the statistic ∆n is exactly equal to 2n times
the plug-in estimator T̂(k)

n (X → Y).

Proposition 2. If (X, Y) is a variable-length Markov chain of memory no larger than k with all
positive transition matrices Q on the finite alphabet {0, 1} × {0, 1} and with an arbitrary initial
distribution, then

∆n = 2nT̂(k)
n (X → Y).

Proof. The first maximum in the definition of ∆n can be expressed as

max
θ∈Θ

Ln
(
θ
∣∣xn
−k+1, yn

−k+1
)
= max

θ∈Θ
log

(
n

∏
i=1

Qθ

(
xi, yi

∣∣∣xi−1
i−k , yi−1

i−k

))

= max
Q

n

∑
i=1

log Q
(

xi, yi

∣∣∣xi−1
i−k , yi−1

i−k

)
where the last maximization is over all transition matrices Q with all positive entries. Thus,

max
θ∈Θ

Ln
(
θ
∣∣xn
−k+1, yn

−k+1
)
= max

Q
∑
ak

0

∑
bk

0

nP̂(k)
n (ak

0, bk
0) log Q(a0, b0|a−1

−k , b−1
−k)

= −n min

∑
ak

0

∑
bk

0

P̂(k)
n (ak

0, bk
0) log

P̂(k)
n

(
ak, bk

∣∣∣ak−1
0 , bk−1

0

)
Q
(

akbk

∣∣∣ak−1
0 , bk−1

0

)
−∑

ak
0

∑
bk

0

P̂(k)
n (ak

0, bk
0) log P̂(k)

n

(
ak, bk

∣∣∣ak−1
0 , bk−1

0

).

The above minimum is achieved by making

∑
ak

0

∑
bk

0

P̂(k)
n (ak

0, bk
0) log

P̂(k)
n

(
ak, bk

∣∣∣ak−1
0 , bk−1

0

)
Q
(

akbk

∣∣∣ak−1
0 , bk−1

0

) = 0.

Namely, when

P̂(k)
n

(
ak, bk

∣∣∣ak−1
0 , bk−1

0

)
= Q

(
ak, bk

∣∣∣ak−1
0 , bk−1

0

)
.

Therefore,

max
θ∈Θ

Ln
(
θ
∣∣xn
−k+1, yn

−k+1
)
= n

[
H
(

X̂−1
−k , Ŷ−1

−k

)
− H

(
X̂0
−k, Ŷ0

−k

)]
,
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where
(

X̂0
−k, Ŷ0

−k

)
∼ P̂(k)

n .
The computation for the second maximum in the definition of ∆n reduces to two

different maximizations. Under the null hypothesis, Q admits the decomposition in (4),
so that

max
ϕ∈Φ

Ln
(
h(ϕ)

∣∣xn
−k+1, yn

−k+1
)
= max

Qx
max

Qy

n

∑
i=1

log
(

Qx
(

xi

∣∣∣xi−1
i−k , yi

i−k

)
Qy
(

yi

∣∣∣yi−1
i−k

))
= max

Qx

n

∑
i=1

log Qx
(

xi

∣∣∣xi−1
i−k , yi

i−k

)
+ max

Qy

n

∑
i=1

log Qy
(

yi

∣∣∣yi−1
i−k

)
= max

Qx ∑
ak

0

∑
bk

0

P̂(k)
n (ak

0, bk
0) log Qx

(
ak

∣∣∣ak−1
0 , bk

0

)
+ max

Qy ∑
bk

0

P̂(k)
n (bk

0) log Qy
(

bk

∣∣∣bk−1
0

)
= n

[
−H

(
X̂0
−k, Ŷ0

−k

)
+ H

(
X̂−1
−k , Ŷ0

−k

)
− H

(
Ŷ0
−k

)
+ H

(
Ŷ−1
−k

)]
.

Therefore, by the chain rule,

∆n = 2n
[

H
(

Ŷ0

∣∣∣Ŷ−1
−k

)
− H

(
Ŷ0

∣∣∣X̂−1
−k , Ŷ−1

−k

)]
which, recalling the definition of T̂(k)

n (X → Y), is precisely the claimed result.

As noted before, under the null hypothesis, that is, when T(X → Y) = 0, the distribu-
tion of 2nT̂(k)

n (X → Y) is approximately χ2 with 2k(2k − 1) degrees of freedom. Therefore,
by Proposition 2, the likelihood ratio test statistic ∆n is approximately χ2 distributed with
2k(2k − 1) degrees of freedom. Note that this limiting distribution does not depend on
the distribution of the underlying process (X, Y), except through the memory length k.
Therefore, we can decide whether the data offer strong enough evidence to reject the null
hypothesis by examining the value of ∆n. Given a threshold α ∈ (0, 1), if δn is the observed
value of ∆n and P(∆n > δn) ≤ α, then the causality hypothesis can be rejected at the
significance level α. The algorithm for conducting this hypothesis test is described below
in Algorithm 1.

Algorithm 1 Causal influence test.

Input: Data (xn
−k+1, yn

−k+1) ∈ {0, 1}n+k × {0, 1}n+k;
Significance level α ∈ (0, 1);
Test statistic ∆n.

Output: Decision: Reject or not reject the causality hypothesis H0.
δn ← ∆n(xn

−k+1, yn
−k+1).

p← P(Q > δn), where Q ∼ χ2
2k(2k−1).

if p ≤ α then
Reject H0;

else if p > α then
Not reject H0.

end if

Example 1. Consider a sample (xn
−k+1, yn

−k+1) ∈ {0, 1}n−k × {0, 1}n−k of length n = 40,000
generated from a microcircuit composed of two neurons whose activities are modeled as in the
neuronal network model described in Section 2. In this case, we consider the jointly stationary
ergodic variable-length Markov chain (X, Y) with memory no larger than k = 3. In this microcircuit,
there is a strong excitatory connection from neuron X to neuron Y but no connection from neuron
Y to neuron X, i.e., ωx→y = 10 and ωy→x = 0. In Figure 1, we illustrate the signals from the
neurons generated by the neural model for this parameter specification.
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We conduct two hypothesis tests. In the first one, we are interested in testing the following
hypotheses: H0 : ωx→y = 0 vs. H1 : ωx→y ̸= 0. In this case, the observed value of the test statistic
is δn = 5881.70. Therefore, by setting a significance level of α = 5%, we obtain p ≈ 0. Hence,
since p < α, we reject the null hypothesis. On the other hand, in the second test, the hypotheses are
as follows: H0 : ωy→x = 0 vs. H1 : ωy→x ̸= 0. In this case, the observed value of the test statistic
is δn = 51.08. Thus, by setting a significance level of α = 5%, we obtain p = 0.6612. Therefore,
since p > α, we do not reject the null hypothesis.

A more comprehensive simulation study is given in the next section.

Figure 1. First five hundred observations of the time series X and Y generated from the neuronal
network model described in Section 2, with memory no larger than k = 3 and synaptic weights
ωx→y = 10 and ωy→x = 0.

4. Results on Simulated Data

A natural interest of this work is the application of transfer entropy in the study of
effective connectivity between a pair of stochastic neurons. For this, we use synthetic data
generated from the neuronal network model described in Section 2. To test the statistical
significance of a connectivity value, we use the hypothesis test described in Section 3.

For the experiment conducted in this section, we consider two stochastic neurons with
variable-length memory whose dynamics are given by the model introduced in Section 2.
In this case, the neuronal network is a microcircuit composed of two neurons whose
activities are modeled by the jointly stationary ergodic variable-length Markov chain (X, Y)
with memory no larger than k = 3. We select scenarios where the synaptic weights are
either strong or weak. Based on different choices of these synaptic weights, we define the
following four distinct cases:

• Scenario 1: There is a strong excitatory connection from neuron X to neuron Y but
no connection from neuron Y to neuron X, i.e., ωx→y = 10 and ωy→x = 0. In this
case, when Y is the postsynaptic neuron, we observe, on average, a firing proportion
of 80%.

• Scenario 2: There is a weak excitatory connection from neuron X to neuron Y but
no connection from neuron Y to neuron X, i.e., ωx→y = 0.375 and ωy→x = 0. In this
case, when Y is the postsynaptic neuron, we observe, on average, a firing proportion
of 52%.

• Scenario 3: There is a weak inhibitory connection from neuron X to neuron Y but no
connection from neuron Y to neuron X, i.e., ωx→y = −0.375 and ωy→x = 0. In this
case, when Y is the postsynaptic neuron, we observe, on average, a firing proportion
of 48%.

• Scenario 4: There is a strong inhibitory connection from neuron X to neuron Y but
no connection from neuron Y to neuron X, i.e., ωx→y = −10 and ωy→x = 0. In this
case, when Y is the postsynaptic neuron, we observe, on average, a firing proportion
of 30%.

In all scenarios, when X is the postsynaptic neuron, we observe, on average, a firing
proportion of 50%. In addition, for each scenario, we consider four different sample sizes:
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n = 5000; n = 10,000; n = 20,000; and n = 40,000, representing n bins of 10 ms. These are
typical recording times in electrophysiological experiments. Note that with these choices
of sample sizes, we have k <

log n
2 , for all n, which ensures the convergence results of the

transfer entropy rate estimator discussed in Section 2.4. For each scenario and sample size,
100 replicates are generated, and the test is conducted on each of them.

Using 100 repetitions for the test on samples of length n = 40,000, the empirical
distribution of the statistic ∆n is estimated, as shown in Figure 2, to be in close agreement
with the theoretically predicted χ2(56) limiting distribution in all scenarios.

Figure 2. Histogram approximation of the distribution of statistics ∆n, based on 100 repetitions of the
test on samples of length n = 400,000. The red curve shows the density of the theoretically predicted
limiting χ2(56) distribution.

In Table 1, we show the fraction of times, out of 100 simulations of the neuronal
network model, that the test rejects the null hypothesis of the absence of causal influence
for four different significance levels: α = 0.1%, α = 1%, α = 5%, and α = 10%. We
can observe that, as expected (and desired), in scenarios 1 and 2, where there is a strong
connection from neuron X to neuron Y (excitatory with ωx→y = 10 and inhibitory with
ωx→y = −10, respectively), the test detects the connection in 100% of the cases regardless
of the sample size and significance level. However, in scenarios 2 and 3, where there is
a weak connection (excitatory with ωx→y = 0.375 and inhibitory with ωx→y = −0.375,
respectively), the test struggles to detect the connection with small sample sizes and low
significance levels, and its performance improves as we increase the sample size and the
significance level. Furthermore, in all scenarios, the test does not reject the null conditional
independence hypothesis when Y is the presynaptic neuron and X is the postsynaptic
neuron. In fact, there is no connection from neuron Y to neuron X (ωy→x = 0). Therefore,
the results are in agreement with the nature of the data.

In Figure 3, we display the distributions of the estimated transfer entropy rates for
each of the 100 samples of length n = 40,000 generated by the neuronal model using box
plots. We can observe that in scenarios 1 and 4, where there is a strong connection from
neuron X to neuron Y , the estimated values are similar and greater than those estimated in
scenarios 2 and 3, where there is a weak connection from neuron X to neuron Y . On the
other hand, in all scenarios, there is no connection from neuron Y to neuron X, and the
estimated values tend to be lower than those obtained in the aforementioned situations.
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Table 1. Fraction of times, out of 100 simulations of the neuronal network model, that the test
rejects the null hypothesis of the absence of causal influence for four different significance levels and
sample sizes.

H0 : T(X → Y) = 0 vs. H1 : T(X → Y) > 0 H0 : T(Y → X) = 0 vs. H1 : T(Y → X) > 0

SCENARIO 1 ωx→y = 10 SCENARIO 1 ωy→x = 0
α = 0.1% α = 1% α = 5% α = 10% α = 0.1% α = 1% α = 5% α = 10%

n = 5000 100 100 100 100 n = 5000 0 0 1 4
n = 10,000 100 100 100 100 n = 10,000 0 0 0 2
n = 20,000 100 100 100 100 n = 20,000 0 1 3 4
n = 40,000 100 100 100 100 n = 40,000 0 1 1 3

SCENARIO 2 ωx→y = 0.375 SCENARIO 2 ωy→x = 0
α = 0.1% α = 1% α = 5% α = 10% α = 0.1% α = 1% α = 5% α = 10%

n = 5000 5 19 36 45 n = 5000 0 0 4 8
n = 10,000 18 44 66 76 n = 10,000 0 1 4 10
n = 20,000 71 88 95 99 n = 20,000 0 0 2 8
n = 40,000 100 100 100 100 n = 40,000 0 1 8 10

SCENARIO 3 ωx→y = −0.375 SCENARIO 3 ωy→x = 0
α = 0.1% α = 1% α = 5% α = 10% α = 0.1% α = 1% α = 5% α = 10%

n = 5000 2 12 23 42 n = 5000 0 1 3 6
n = 10,000 13 27 58 72 n = 10,000 0 1 9 13
n = 20,000 65 85 95 95 n = 20,000 0 1 5 8
n = 40,000 100 100 100 100 n = 40,000 0 1 7 10

SCENARIO 4 ωx→y = −10 SCENARIO 4 ωy→x = 0
α = 0.1% α = 1% α = 5% α = 10% α = 0.1% α = 1% α = 5% α = 10%

n = 5000 100 100 100 100 n = 5000 0 1 4 10
n = 10,000 100 100 100 100 n = 10,000 0 1 3 4
n = 20,000 100 100 100 100 n = 20,000 0 0 5 10
n = 40,000 100 100 100 100 n = 40,000 0 0 4 8

Figure 3. Box plots of the estimated transfer entropy rates for each of the 100 samples of length
n = 40,000 generated by the neuronal network model.
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5. Conclusions

In this work, we studied the effective connectivity between neurons through a hypoth-
esis test whose test statistic is based on the plug-in estimator of the transfer entropy rate.
Effective connectivity refers to the causal interactions among distinct neural units, whereas
anatomical connectivity and functional connectivity refer to anatomical links or loosely
defined statistical dependencies between units, respectively [49]. Our work demonstrates
how to properly use transfer entropy to measure the flow of information between sequences
and explore its use in determining effective neuronal connectivity.

Understanding effective connectivity has long been a central challenge in
neuroscience [1,50–52]. The identification of connectivity has garnered significant interest
in recent years, primarily due to advancements enabling the simultaneous recording of
a vast number of neurons [53–56]. Essentially, we now exploit the understanding that
synaptic connections induce voltage fluctuations capable of triggering postsynaptic action
potentials. These subtle effects modulate spike timing within a spike train, discernible
under specific conditions. By iteratively applying inference techniques to extensive datasets,
crucial connectivity maps for understanding the brain are generated. A successful recent
example is the inference of the small central pattern-generating circuit in the stomatogastric
ganglion of the crab Cancer borealis [57]. This circuit is known and so it is amenable to this
type of analysis. Yet, it is a challenging circuit because pharmacological manipulations
alter the neuronal intrinsic dynamics and synaptic communication, as clearly shown by the
authors. However, for the majority of other living systems, challenges persist in this process,
including the stochastic nature of neurons originating from a highly random environment,
leading to confounding factors that are challenging to disambiguate, as well as the selection
of an appropriate and refined metric capable of addressing such issues.

Our analysis indicates that the hypothesis testing framework described in this paper
can be a useful exploratory tool for providing conclusive biologically relevant findings.
Here, we showed that this test reliably detected effective connectivity when two signals are
generated from a neuronal network model in which neurons are stochastic with variable-
length memory.

A second contribution of this work concerns the relationship between the synaptic
weight values set for the neuronal network model described in Section 2 and the estimates
of the transfer entropy rate (see Figure 3). We observed that synaptic weight values close to
zero lead to estimates that are also close to zero. On the other hand, the farther from zero
the synaptic weight values, the larger the estimates of the transfer entropy rate. Therefore,
empirical transfer entropy effectively translates the types of connections existing between
the neurons in the network.

One avenue for future research stemming from this work is the testing and valida-
tion of our studies with experimental data. Difficulties may arise, given that not many
circuits are completely known to act as ground-truth data, with some exceptions such
as Cancer borealis [57] or C. elegans [58]. An intermediate step would, therefore, involve
applying simulations with biophysically grounded neurons based on the Hodgkin–Huxley
model [59]. The inclusion of a stochastic background at different levels of the model (ion
channels, synapses, network) would highlight the advantages of our approach and allow
for further extensions.

The findings of this study suggest that the method is both robust and versatile, accu-
rately deducing effective connectivity among neurons possessing various synaptic charac-
teristics. We utilize synaptic values aligned with both strong and weak neuronal connec-
tions in the brain. Regarding its versatility, this implies that the technique can be enhanced
and extended to more intricate systems, considering the influence of confounding factors
such as stimuli or additional spike trains from third parties.
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