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Abstract: Early-stage Alzheimer’s disease (AD) and frontotemporal dementia (FTD) share similar
symptoms, complicating their diagnosis and the development of specific treatment strategies. Our
study evaluated multiple feature extraction techniques for identifying AD and FTD biomarkers from
electroencephalographic (EEG) signals. We developed an optimised machine learning architecture
that integrates sliding windowing, feature extraction, and supervised learning to distinguish between
AD and FTD patients, as well as from healthy controls (HCs). Our model, with a 90% overlap for slid-
ing windowing, SVD entropy for feature extraction, and K-Nearest Neighbors (KNN) for supervised
learning, achieved a mean F1-score and accuracy of 93% and 91%, 92.5% and 93%, and 91.5% and 91%
for discriminating AD and HC, FTD and HC, and AD and FTD, respectively. The feature importance
array, an explainable AI feature, highlighted the brain lobes that contributed to identifying and
distinguishing AD and FTD biomarkers. This research introduces a novel framework for detecting
and discriminating AD and FTD using EEG signals, addressing the need for accurate early-stage di-
agnostics. Furthermore, a comparative evaluation of sliding windowing, multiple feature extraction,
and machine learning methods on AD/FTD detection and discrimination is documented.

Keywords: electroencephalography; neural signal processing; feature extraction techniques;
supervised learning

1. Introduction

Alzheimer’s disease (AD) systematically destroys brain neurons over time [1]. This
neurodegenerative disorder progressively leads to cognitive decline, notably in brain re-
gions associated with memory. AD arises from various factors, including environmental
influences, vascular diseases, head injuries, genetic predispositions, and, particularly, age-
ing. More than 50 million people are diagnosed with AD around the globe [2], with this
type of disorder significantly contributing to elderly disability and dependency and defin-
ing the seventh most crucial cause of death. Similarly, frontotemporal dementia (FTD) is a
neurodegenerative disorder that leads to issues associated with communication challenges
and behavioural changes. Diagnosing these disorders progresses through several stages: an
asymptomatic early pre-clinical phase, a period of mild cognitive impairment, and finally,
dementia [3]. As a consequence, diagnoses at an early stage are crucial. A diagnosis can be
achieved by utilising physical exams, cerebrospinal fluid tests, cognitive and language tests,
and urine and blood tests. Brain scans can also be adopted, such as Computed or Positron
Emission Tomographies (CT/PET) and Magnetic Resonance Imaging (MRI) techniques [3].
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While brain scans offer detailed spatial resolution, they lack the temporal precision to
capture dementia’s evolving symptoms. Electroencephalography (EEG), with its superior
temporal resolution, can detect subtle brain activities essential for understanding the dy-
namic neural interactions in dementia. Moreover, EEG’s cost-effectiveness, accessibility,
and ability to provide real-time brain activity monitoring make it suitable for broad screen-
ing and diagnostics. However, the volume of recorded EEG data and its inherent artefacts
often pose difficulty in identifying critical biomarkers and, thus, accurately diagnosing neu-
rodegenerative disorders. Different research approaches have appeared over the years to
mitigate these technical issues. Moreover, there is an abundance of EEG denoising pipelines
present in the literature, as previous studies have applied various techniques for extracting
high-level features from EEG data, such as wavelet transforms [4], fractal dimensions [5],
entropy-based features [6], and the Hurst exponent [7]. Similar techniques have been
used for extracting features for detecting and diagnosing Parkinson’s [8] epilepsy [9,10],
schizophrenia [11], and other neurological disorders. However, there is limited research on
comparing and assessing the utility of such feature extraction techniques for discriminating
between Alzheimer’s and frontotemporal patients, as well as from healthy controls (HCs).

This study’s objectives are as follows:

1. To evaluate the effectiveness of sliding windowing, feature extraction techniques,
machine learning models, and their pipelines to detect and discriminate AD, FTD,
and HC biomarkers.

2. To identify brain regions affected by AD and FTD and verify if these regions align
with standard medical tests.

Our Research Question (RQ):

RQ: How does the choice of sliding windowing, feature extraction measures, and machine
learning models affect the detection and differentiation of AD and FTD biomarkers in
EEG data?

We examined 50% and 90% overlaps for sliding windowing, multiple feature ex-
traction techniques—Higuchi Fractal Dimension, Singular Value Decomposition (SVD)
Entropy, Zero Crossing Rate, Detrended Fluctuation Analysis, and Hjorth parameters—to
extract salient high-level features from EEG signals and supervised machine learning
techniques—K-Nearest Neighbors (KNN), Random Forest (RF), XGBoost, and Extra Trees
(ET)—to discriminate frontotemporal dementia, Alzheimer’s disease, and control groups.

The remainder of this paper includes a description of related work for AD and FTD
detection (Section 2), and the introduction of a comparative design study for feature
extraction from EEG data employing machine learning classification techniques (Section 3).
Findings are subsequently presented and critically discussed in Section 4. The contribution
to the body of knowledge is explicated in Section 5 by synthesising this research and
delineating future avenues of work.

2. Related Work

Several investigations have been conducted for diagnosing Alzheimer’s disorder from
biomarkers extracted from electroencephalographic data. Few researchers have employed
Hjorth parameters, which are specific statistical properties of EEG data [12]. Others have
employed entropy-based features [13], standard measures adopted within biomedicine
that represent the degree of disorder of an EEG signal. Various research studies have been
based upon the computation of EEG source localisations and the extraction of connectivity
features of the cortical region [14] for identifying AD-induced brain network disruptions.
Various feature extraction techniques from EEG data exist, and the resulting high-level
features are often aggregated and analysed using machine learning. A recent study focused
on classifying EEG data from a large dataset of 890 subjects across three categories: healthy
controls, mild cognitive impairment subjects, and patients with Alzheimer’s [15]. Another
study scrutinised standard EEG pre-processing techniques using exploratory analysis and
highlighted their importance in identifying early AD indicators [16]. Further research
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has also emphasised meticulous pre-processing and feature extraction techniques, em-
ploying methods like Kolmogorov Complexity [17], Discrete Wavelet Transform [18], and
Spectral Entropy.

Parallel efforts in FTD diagnosis are also noteworthy. A study presented an automatic
FTD detection technique by employing Independent Component Analysis (ICA) in the
pre-processing phase of the EEG data and a Light Gradient Boosting (LGB) for classification,
achieving an 80.67% accuracy [19]. Another study emphasised the discovery of crucial
biomarkers in differentiating FTD from other neurodegenerative diseases, focusing on
serum and cerebrospinal fluid markers [20]. Similarly, various other forms of dementia,
such as the vascular one and mild cognitive impairment, were contrasted using EEG
data [21]. This approach combined Wavelet Transform in the EEG pre-processing phase
jointly with Independent Component Analysis (ICA). Feature extraction techniques, includ-
ing Spectral, Permutation, and Tsallis Entropy, were used to augment original EEG data.
The study employed machine learning to train supervised models using Support Vector
Machines and the K-Nearest Neighbours learning algorithms, coupled with neighbourhood-
preserving QR-decomposition for dimensionality reduction based on fuzzy logic. Similarly,
researchers performed feature selection via the improved binary gravitation search ap-
proach, leading to a higher classification accuracy of patient groups [22].

Machine and deep learning-based applications have been widely adopted for solving
supervised AD detection with EEG data analysis [18,23–25]. For example, Convolutional
Neural Networks (CNNs) have been trained on functional brain connectivity features to
detect AD and other neurological disorders automatically [26]. Similarly, a feed-forward
neural network was trained on DNA methylation and gene expressions after employing
dimensionality reduction techniques. Another study used convolutional auto-encoders
to classify AD, mild cognitive impairment, and healthy control subjects utilising time–
frequency high-level features generated from the application of Continuous Wavelet Trans-
form [27].

Although deep learning has demonstrated a superior capacity to develop models for
automatically learning and integrating salient features from EEG data for an improved
classification accuracy [28], they are often considered difficult to interpret and explain.
Studies employing more straightforward learning methods, such as logistic regression, have
shown that optimally pre-processed data can still lead to a higher model’s performance,
and complex learning strategies are not often helpful [29]. This suggests that external
but transparent and interpretable techniques can often help extract salient features from
EEG data better than automated deep learning methods to classify neurodegenerative
disorders. Along with the use of more transparent methods, a novel study focused on
multimodal EEG and cerebrospinal fluid-related data to distinguish early-onset Alzheimer
from FTD subjects by adopting microstates theory and spectral analyses [30]. In detail, EEG
microstates are short time intervals of stable scalp potential fields. This study demonstrates
how abnormalities associated with early-onset AD subjects could be detected by analysing
the variation in EEG microstate duration and global field power peaks correlating with
clinical severity and cerebrospinal fluid biomarkers. Another study extracted statistical
features from EEG frequency bands trained with Decision Trees and Random Forests to
discriminate Alzheimer’s and frontotemporal dementia subjects. These algorithms are not
only more straightforward and interpretable than deep learning algorithms, but they lead
to the development of models with remarkable accuracy [31].

Besides the transparency offered by simpler machine learning algorithms or the ca-
pacity of deep learning to deliver highly accurate predictive models, there is the technical
problem of extracting salient features from large datasets with a reasonable computational
complexity in computer memory and time [28,32,33]. Consequently, external techniques
for extracting meaningful high-level features from EEG data are not only helpful for trans-
parency and interpretability but are often required for dimensionality reduction and, thus,
for a significant decrement in the computational resources required to train predictive
models. In this direction, often, Fast Fourier Transforms [34], and Discrete Wavelet Trans-
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forms [35] have proven helpful in extracting features from EEG data before training models
with machine learning algorithms. Similarly, Multiway Array Decomposition [36], Princi-
pal Dynamic Mode (PDM) analysis [37], Singular Value Decomposition [9], and Principal
Component Analysis [38] have all demonstrated utility in such endeavour.

In summary, the body of research on identifying Alzheimer’s disorders and frontotem-
poral dementia using electroencephalographic data is extensive, along with the adoption of
machine and deep learning to develop improved predictive models. However, the prob-
lem of evaluating the utility of various ad hoc interpretable techniques to learn salient
features and biomarkers from EEG signals associated with Alzheimer’s disorders and
frontotemporal dementia, often used as inputs to the aforementioned learning techniques,
is elusive.

3. Materials and Methods

This section introduces an empirical work that compares various feature extraction
techniques from EEG data for discriminating subjects with Alzheimer’s disorder and
frontotemporal dementia from healthy adults. Figure 1 shows a synthesis of such a novel
pipeline that is divided into five phases: (A) a pre-processing pipeline to denoise EEG data
and to segment it with a sliding window technique; (B) a phase where various feature
extraction techniques for EEG data are contrasted, along with straightforward supervised
learning algorithms for classifying frontotemporal dementia subjects from those having
Alzheimer’s disorder; (C) a training phase for automatically aggregating the extracted
features from the previous step towards predictive models; (D) an evaluation of such
models with unseen testing data across various evaluation metrics; (E) an analytical phase
for establishing the importance of EEG channels in the discrimination of Alzheimer’s and
frontotemporal dementia subjects.

Figure 1. A pipeline for the discrimination of subjects having frontotemporal dementia and
Alzheimer’s disorder.
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3.1. Dataset

A dataset published in the OpenNeuro repository (ds004504) [39] was selected. It
includes EEG recordings from 88 subjects, of which 23 have frontotemporal dementia (FTD),
36 have Alzheimer’s disease (AD), and 29 are healthy control (HC) subjects. Participants
were seated with eyes closed during the recordings (resting state) and were provided with
the Mini-Mental State Examination test for cognitive and neurophysical assessment. Record-
ings were acquired at AHEPA University Hospital in Thessaloniki, Greece. The EEG2100
equipment from the Nihon Kohden Group was used. Nineteen scalp electrodes were used
in line with the 10–20 international standard (Fp1, F7, F3, T3, C3, T5, P3, O1, Fz, Cz, Pz, Fp2,
F4, F8, C4, T4, P4, T6, O2), with A1 and A2 used as references.

Recordings were sampled at 500 Hz, and the amplifier’s settings were tuned to
10 µV/mm, with a time constant of 0.3 s and a high-frequency filter of 70 Hz. Recording
lengths varied between 13.5 min for the Alzheimer’s subjects and 12 min for the frontotem-
poral subjects, with 13.8 min for the healthy controls. Overall, the dataset had 485.5, 276.5,
and 402 min of recordings, respectively, for AD, FTD, and healthy controls.

3.2. Pre-Processing Phase

The pre-processing phase associated with the EEG signals was initially executed by
the researchers who recorded the data [39]. This included the execution of the Butterworth
band-pass filter (0.5–45Hz), the re-referencing of channels to the A1 and A2 electrodes,
and artefact elimination using ICA. The EEG data were cleaned from noise using Artefact
Subspace Reconstruction, a method present in the EEGLab’s Matlab software. The RunICA
algorithm was run to transform the nineteen EEG channels into independent components.
Those containing ocular noise or jaw artefacts, via visual inspection, were zeroed, and inverse
Independent Component Analysis (ICA) was executed. We extended preprocessing by
using a sliding window technique to segment EEG data into overlapping 1-second windows,
applying two strategies of 50% and 90% overlap, consistent with methods used in similar
studies [40–43]. The rationale for contrasting two distinct overlapping window strategies
was to evaluate the capability to extract time-domain biomarkers from limited EEG data
and, thus, the feature extraction’s efficacy in discerning AD and FTD’s key attributes. Note
that a 50% overlap strategy is faster than a 90% overlap strategy. Each window containing
500 data points (because of the 500 Hz sampling rate) led to the separate execution of the
various selected feature extraction techniques and their different outputs. Each technique
yielded 19 columns, the EEG channels, and N rows, the segmented overlapped EEG
windows, for each subject. Subsequently, a concatenation of these individual tables was
performed, leading to a final data shape of N (total windows) × window length (in seconds)
× sampling rate (500 Hz) × 36 (number of subjects) columns and 19 rows (number of
channels). The dataset was unbalanced across the target feature (class of subjects, AD/FTD,
HC); thus, the Synthetic Minority Oversampling Technique (SMOTE) was applied. In detail,
oversampling was performed for the 23 subjects with frontotemporal dementia (FTD)
and the 29 healthy controls (HC) to match the 36 subjects with Alzheimer’s disease (AD).

3.3. Feature Extraction Techniques

As mentioned above, several techniques for feature extraction from EEG data were
considered. These include the Singular Value Decomposition (SVD) Entropy, the Higuchi
Dimension (HFD) based on fractal geometry, the Zero-Crossing Rate statistical indicator,
the Detrended Fluctuation Analysis (DFA), and the Hjorth indicator. The PyEEG and
Antropy Python libraries were used, and each individual technique is concisely detailed in
the following parts of the text.

The Singular Value Decomposition (SVD) Entropy indicator is based on time series
complexity. It evaluates the necessary number of orthogonal vectors for accurate data
representation [44–46]. Mathematically,
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HSVD = −
M

∑
i=1

σi log2 (σi) (1)

SVD Entropy correlates with the complexity of the underlying data, where σi is the embed-
ded matrix’s normalised singular values.

The Higuchi Fractal Dimension (HFD) technique focuses on the non-parametric time
series analysis based on generating new synthetic signals by a systematic procedure that
sub-samples from the original data [47]. Mathematically,

Xmk = X(m), X(m+k), X(m+2k), . . . . . . , X
(

m+
⌊

N−m
k

⌋
k
)

(2)

where k is the interval length, and m is the initial point. The time series is subsequently
utilised to calculate the average curve length Lm(k),

Lm(k) =
∑
⌊ N−m

k ⌋
i=1 | X(m + ik) − X(m + (i−1)k) | y

k
(3)

where term y is normalised and denoted as

y =
(N − 1)
⌊N−m

k ⌋k
(4)

Lm(k) adheres to a power law, defining the Fractal Dimension D. HFD’s applicability to
non-stationary series differentiates it from methods like Spectral and Hurst Exponents [48].

The Zero-Crossing Rate (ZCR) represents the rate of the change in the sign of a
signal, essentially counting how many transitions of the zero amplitude exist within a time
frame [49,50]. Mathematically,

Z =
∑T−1

t=1 1R<0(stst−1)

T − 1
(5)

where

• Z represents the Zero Crossing Rate.
• T is the total number of samples in the signal (or in a specified window/frame of the

signal for localised analysis).
• st and st−1 are consecutive samples in the signal at times t and t − 1, respectively.
• 1R<0(stst−1) is an indicator function that evaluates to 1 if the product of st and st−1 is

less than 0 (indicating a zero crossing, where the sign of the signal changes between
two consecutive samples), and 0 otherwise.

• The denominator (T − 1) normalises the sum to account for the number of intervals
between samples, providing a rate per sample interval.

The calculation starts by initialising a sum that will accumulate the total number of
zero crossings. For each pair of consecutive samples (st and st−1), starting from the second
sample up to the last one, the product of these two samples is checked. The indicator
function 1R<0(stst−1) checks if the product of st and st−1 is negative. This is a mathematical
way of determining if the sign of the signal changes between these two samples:

• If st and st−1 have different signs, their product will be negative, indicating a zero
crossing. The indicator function then contributes 1 to the sum.

• If st and st−1 have the same sign, their product will be positive (or zero if either
sample is zero, depending on how zero values are treated), and the indicator function
contributes 0 to the sum.

The sum of all instances where the indicator function equals 1 gives the total number
of zero crossings. This sum is then normalised by dividing by (T − 1), which is the total
number of intervals between consecutive samples in the signal or the window under
consideration. The result of this division is the Zero Crossing Rate, Z, which gives a
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normalised measure of how frequently the signal crosses zero, thus providing insight into
the signal’s properties, especially its frequency content and texture.

The Detrended Fluctuation Analysis (DFA) focuses on non-stationary time series
for persistent patterns and correlations. It involves integrating the series, segmenting,
detrending each segment, and calculating the fluctuation magnitude by contrasting the
gradients of log(F(n)) and log(n).

F(n) =

√√√√√∑N
k=1

[
y(k) − yn(k)

]2

n
(6)

where the detrending step is y(k)− yn(k).
The Hjorth parameters can be used to gauge insights into the characteristics of a signal,

such as its regularity and frequency [46]. Three main parameters exist, namely, Activity,
Mobility, and Complexity. Mathematically:

Activity = var(y(t)) (7)

Mobility =

√√√√√var
(

dy(t)
dt

)
var(y(t))

(8)

Complexity =

Mobility
(

dy(t)
dt

)
Mobility(y(t))

(9)

Activity measures signal variance, mobility indicates signal frequency, and complexity
assesses frequency variation. This research employs the average values of complexity and
mobility derived from EEG signals.

3.4. Classification

The aforementioned techniques lead to features that are the input of various machine
learning algorithms. A preliminary investigation of many learning algorithms was per-
formed with the features extracted using the SVD Entropy technique and a 50% overlapping
strategy among EEG windows. A 15-fold cross-validation strategy was employed, given
the limited number of participants in the selected datasets. This preliminary training aimed
to deliver an initial understanding of the capacity of each learning algorithm to fit the
target feature (AD, FTD, HC) and minimise the computational power and time required
for developing many models. The performance measures included the accuracy, precision,
recall, F1-score averages, and area under the ROC curve (AUC) averages of the 15 surrogate
models (Table 1).

We selected the four top-performing learning techniques based on their preliminary
results (Table 1) to conduct a more focused comparative analysis, integrating sliding
window techniques and feature extraction measures. This selection aimed to enhance
the efficiency and depth of our model evaluation process by concentrating on the most
promising algorithms. The four models are described in detail as follows:

1. K-Nearest Neighbors (KNN)—This technique can be used for supervised classification
and regression, assuming that similar instances of a dataset cluster together. It is
non-parametric and uses proximity to make classifications about the clustering of a
new data point.

2. Random Forest (RF)—This technique constructs numerous decision trees during
training. On the one hand, a supervised classification determines the most frequent
class predicted by the single individual trees. On the other hand, for regression
problems, it computes the average of such predictions. It incorporates randomness
and includes sampling data with a replacement step to prevent model overfitting
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for individual tree learning by focusing only on a sub-set of data at each iterative
tree’s split.

3. XGBoost—It is an enhanced and efficient form of Gradient Boosting that integrates
regularisation as a form of model complexity control to mitigate overfitting. It also
includes system-level enhancements to improve efficiency and flexibility, forming a
robust predictive ensemble learning technique.

4. Extra Trees (ET)—It is an ensemble of decision trees with additional randomness. It
not only bootstraps data but also chooses random split points for features. This extra
randomness may reduce variance and improve the generalisation of new data.

Table 1. Average performance scores associated with the models trained with a 15-fold cross-
validation, with a 50% overlap strategy among EEG windows, using the SVD Entropy feature
extraction technique.

Learning Tech. Accuracy Precision Sensitivity F1-Score AUC

KNN 84.70% 81.37% 85.90% 83.58% 91.82%

ET 82.72% 81.93% 79.43% 80.66% 91.06%

RF 82.22% 81.33% 78.94% 80.11% 90.42%

XGBoost 81.66% 78.87% 81.41% 80.12% 89.96%

LGBM 78.04% 75.08% 77.25% 76.15% 86.78%

GBC 73.38% 69.58% 73.42% 71.45% 81.09%

LDA 71.97% 68.99% 69.44% 69.21% 78.42%

Ridge 71.86% 68.81% 69.48% 69.14% 0.00%

DT 71.72% 68.41% 70.00% 69.20% 71.58%

LR 71.55% 68.23% 69.78% 69.00% 78.03%

SVM 69.81% 66.05% 69.90% 67.63% 0.00%

ADA 69.26% 65.40% 68.48% 66.90% 75.67%

QDA 66.79% 59.22% 86.10% 70.17% 79.84%

NB 57.12% 51.94% 73.67% 60.92% 64.33%

The above data-driven learning techniques were subsequently trained on the fea-
tures extracted using the aforementioned techniques (Table 1). In these circumstances,
the dataset was partitioned into two by forming training and test sets (80 and 20% of the
original data). To circumvent the risk of data leakage at the subject level, stringent actions
were taken to ensure that the training and testing sets were devoid of features extracted
from identical subjects. This was meticulously verified by maintaining subject-specific
annotations throughout the entirety of the feature extraction process. For instance, consider
a scenario where the training set includes subjects 1 to 4. This process ensured that the
EEG features associated with these subjects were not in the testing set. Any duplicated
features spotted in the testing set were iteratively moved into the training data. It aimed
to guarantee the absence of subject data overlap between the sets while maintaining the
80:20 data distribution. Given the limited subjects, the training set was stratified using
the 15-fold cross-validation. Through this approach, we divided the training data into
15 folds, using 14 for training and one for validation at each iteration. The top-performing
models were selected and further tested on the unbalanced test set (20% of the overall
data). Note that these test data were not augmented with SMOTE but left intact, which
means following their original nature. The above training mechanism was performed twice:
once with the 50% and once with the 90% overlapping strategy among the EEG segmented
windows. Three classification tasks were devised: one for discriminating AD patients from
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healthy controls, one for discriminating FTD patients from healthy controls, and one for
discriminating AD from FTD patients.

To further enhance the robustness of the designed multi-phase pipeline across the
three classification tasks (Figure 1), the best-performing configuration (feature extraction
technique/learning strategy) was repeated by employing five different seeds. This was
aimed at generating different training and testing data five times. The averaged met-
rics from these five runs shaped the final results. Following the classification phase, we
employed topographical brain mapping techniques to improve our predictive models’
interpretability. These maps were instrumental in pinpointing the cerebral regions most
crucial for distinguishing between Alzheimer’s disease (AD) patients, frontotemporal de-
mentia (FTD) patients, and healthy controls (HC). We selected the classification model with
the highest accuracy and computed a feature importance array for each feature extraction
technique, as detailed in Section 3.3. This array delineated the significance of features
derived from each EEG channel in accurately predicting AD and FTD. Subsequently, we
visualised these feature importance scores on topographic brain maps, illuminating the
brain areas with elevated significance in the classification process.

The primary objective of this analytical step was to derive deeper insights into the
specific brain regions that are most influential in the differentiation between AD patients,
FTD patients, and healthy controls, thereby enhancing our understanding of the neuro-
physiological underpinnings of these disorders. This approach not only aids in validating
the predictive models but also contributes to the broader field of neuroscientific research
by identifying potential biomarkers and neuroanatomical correlates of these neurodegener-
ative diseases.

3.5. Hyperparameter Tuning

Optimising model hyperparameters was systematically conducted utilising the Grid-
SearchCV module in Python. The aim was to identify the most effective parameter configu-
rations for each machine learning model examined. Summarised below are the optimal
settings discovered for each model:

1. K-Nearest Neighbors (KNN):

(a) leaf_size: 30, indicating the smallest number of points a node can hold.
(b) metric: Utilised euclidean to measure point distances.
(c) n_neighbors: Set to 6, denoting the count of neighbours involved in decision-

making.
(d) p: Configured as 2, corresponding to the Euclidean distance.
(e) weights: Applied as uniform, assigning equal weight to all neighbours.

2. Random Forest (RF):

(a) criterion: gini, as the split quality metric.
(b) n_estimators: 120, determining the forest’s tree quantity.
(c) max_depth: None, allowing trees to grow unrestricted.
(d) min_samples_split: 28, minimal samples to split an internal node.
(e) min_samples_leaf : 10, the lowest number of samples for a tree’s leaf node.

3. XGBoost:

(a) eta (learning_rate): 0.1, to control overfitting by moderating step size.
(b) n_estimators: 280, defining the count of boosting stages to perform.
(c) max_depth: 8, limiting the tree depth.
(d) colsample_bytree: 1, determining the fraction of features selected for

tree construction.
(e) reg_alpha: 0.05, introducing L1 regularisation.

4. Extra Trees (ET):

(a) criterion: gini, for evaluating splits.
(b) n_estimators: 150, the tree count developed.
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(c) max_depth: None, implying no depth limitation.
(d) min_samples_split: 30, the minimum required samples to split a node.
(e) min_samples_leaf : 15, the smallest count of samples a leaf node must have.

3.6. Model Evaluation

Each trained model was evaluated using different evaluation metrics:

• Sensitivity quantifies the capability of a model to correctly identify the two groups
of subjects (having Alzheimer’s disease or healthy adults). It represents the rate of
true positives (TP) over the actual positives. A higher sensitivity is synonymous
with the robustness of a model in reducing mis-classifications of AD patients from
healthy controls.

Sensitivity =

(
TP

TP + FN

)
(10)

• Precision reflects the accuracy of a model in predicting positive outcomes, calculated as
the fraction of true positives amongst all instances classified as positive by the model.
A high precision implies a reduction in the occurrence of false negatives.

Precision =

(
TP

TP + FP

)
(11)

• Accuracy measures the overall correctness of a model’s classifications, expressed as the
percentage of true overall predictions.

Accuracy =

(
TP + TN

TP + TN + FP + FN

)
(12)

• Area under the ROC curve represents a model’s ability to discriminate between AD
patients and HC. It depicts the true positive rate against the false positive rate (on the
y and x axes, respectively) at varying thresholds. ROC stands for Receiver Operating
Characteristic and is expressed mathematically as follows:

TPR =

(
TP

T + FN

)
(13)

FPR =

(
FP

FP + TN

)
(14)

The AUC-ROC is an aggregate measure of the overall performance of a model, which
is its capability to distinguish between positive and negative instances across all
possible classification thresholds.

• F1 score: The F1 score is a measure used to evaluate the performance of a model or a
test, especially in cases where the balance between precision and recall is crucial. It is
essentially a way to capture the balance between the importance of precision—how
many of the items identified were relevant—and recall—how many of the relevant
items were identified. This score is particularly valuable in situations where an uneven
class distribution exists. The F1 score is the harmonic mean of precision and recall,
providing a single metric that balances both concerns. The formula to calculate it is
as follows:

Accuracy =

(
2 ∗ Precision ∗ Recall

Precision + Recall

)
(15)

4. Results and Discussion

Table 2 shows the performance metrics (from Section 3.6) of our models, evaluated
using the original, unbalanced dataset. On the one hand, the results demonstrate that
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Alzheimer’s disease subjects could be discriminated with a superior precision (94–96%)
compared to the frontotemporal disease subjects and healthy controls. On the other hand,
the discrimination of FTD subjects always had the lowest precision across comparisons
(86–88%). Sensitivity scores were always above 90% across the three comparisons, along
with the F1-scores.

Table 2. Classification results associated with the model trained with the 90% overlap EEG window
strategy on original (unbalanced) data using KNN classifier with SVD Entropy (Alzheimer’s disease
subjects versus healthy controls in the top row, healthy controls versus frontotemporal dementia
subjects in the middle row, and Alzheimer’s disease versus frontotemporal dementia subjects in
bottom row).

Group Precision Sensitivity F1-Score Number of Windows

Alzheimer 0.94 0.91 0.94 58,119
Healthy controls 0.89 0.92 0.92 48,239

Accuracy 0.91 106,358

Healthy controls 0.96 0.92 0.94 48,095
Frontotemporal dementia 0.88 0.94 0.91 33,200

Accuracy 0.93 81,295

Alzheimer 0.96 0.90 0.93 58,008
Frontotemporal dementia 0.86 0.95 0.90 33,322

Accuracy 0.91 91,330

The observed lower precision in discriminating frontotemporal dementia (FTD) sub-
jects from healthy controls, as compared to discriminating Alzheimer’s disease (AD) sub-
jects, can be attributed to several factors intrinsic to the nature of these neurological condi-
tions and the characteristics of the EEG signals they produce. The discrepancy in outcomes
using feature extraction techniques (SVD Entropy, Detrended Fluctuation Analysis, Zero
Crossing Rate, Higuchi Fractal Dimensions, Hjorth parameters) and machine learning
algorithms (XGBoost, Random Forest, Extra Trees) may stem from the following:

• Overlap in EEG signal characteristics: FTD and healthy control EEG signals might
share more similar characteristics than those observed between AD and healthy
controls. FTD, particularly in its early stages, can manifest subtle EEG changes that
are less distinct than those seen in AD, where more pronounced disruptions in brain
activity patterns are common. This overlap makes it challenging for the applied feature
extraction techniques to capture distinctive features that accurately differentiate FTD
from healthy brain activity.

• Sensitivity and specificity of features: The feature extraction techniques employed
may have differing sensitivities and specificities to the pathological changes in brain
activity characteristic of FTD versus AD. For instance, features that are highly sensitive
to global cognitive decline and widespread neural network disruption in AD may not
be as effective in detecting the more localised or less severe disruptions typical of FTD.

• Stage of the disease: The stage of disease at the time of EEG recording could also
impact the precision of discrimination. Early-stage FTD may produce very subtle EEG
abnormalities that are difficult to distinguish from normal ageing processes, whereas
AD-related changes, such as increased slow-wave activity, might be more evident and
easier to detect even at earlier stages.

• Technical and methodological limitations: The choice of window size for EEG analysis,
preprocessing steps, and the specific parameters used in both feature extraction and
machine learning algorithms could preferentially favour the detection of AD over
FTD. Optimising these methodologies specifically for FTD might require adjustments
to better capture the nuanced differences in EEG signals associated with FTD.
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• Variability within FTD spectrum: FTD encompasses a spectrum of disorders with
heterogeneous clinical presentations, including behavioural variant FTD (bvFTD) and
primary progressive aphasias. This variability contributes to a wider range of EEG
signal manifestations, complicating the task of identifying a consistent set of features
that distinguish FTD patients from healthy individuals across all subtypes.

Figure 2 shows the performance of models trained on balanced data with SMOTE in
distinguishing Alzheimer’s disease subjects from healthy controls (top row), frontotem-
poral dementia subjects from healthy controls (middle row), and Alzheimer’s disease
versus frontotemporal dementia subjects (bottom row) with the 50% and 90% overlapping
windows strategy, over 5 runs. The details of these results are presented in Tables 3–8.

Table 3. Classification of Alzheimer’s disease from healthy adults with the 50% overlap strategy
across the feature-extraction techniques for EEG data and the learning techniques.

Feature Extraction Learning Techn. Accuracy Precision Sensitivity AUC

SVD KNN 84.68 81.37 85.93 91.82

ET 82.72 81.93 79.43 91.06

RF 82.22 81.33 78.94 90.42

XGB 81.66 78.87 81.41 89.96

HFD KNN 81.51 80.56 78.10 90.21

ET 80.32 78.69 77.65 88.90

RF 80.02 77.92 78.11 88.42

XGB 79.06 77.39 76.08 87.84

ZCR ET 80.37 77.85 79.09 88.89

KNN 79.53 75.07 81.95 87.35

RF 79.53 76.66 78.69 88.16

XGB 78.63 74.00 81.29 87.51

DFA ET 80.54 78.25 79.01 88.98

KNN 79.25 74.8 81.74 87.25

RF 79.63 76.87 78.74 88.11

XGB 78.64 74.08 81.32 87.34

Hjorth RF 76.67 76.22 70.84 84.29

ET 76.36 76.38 69.54 84.19

XGB 76.04 74.05 72.89 84.18

KNN 74.98 71.98 73.67 81.90

Table 4. Classification of Alzheimer’s disease from healthy adults with the 90% overlap strategy
across the feature-extraction techniques for EEG data and the learning techniques.

Feature Extraction Learning Techn. Accuracy Precision Sensitivity AUC

SVD KNN 94.72 94.66 93.42 96.64

ET 90.24 89.72 88.59 96.64

RF 89.10 88.41 87.38 95.81
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Table 4. Cont.

Feature Extraction Learning Techn. Accuracy Precision Sensitivity AUC

XGB 83.19 80.35 83.23 91.62

HFD KNN 89.43 86.87 90.30 95.79

ET 85.76 83.82 84.92 93.77

RF 85.07 82.67 84.78 93.13

XGB 80.45 76.26 82.47 89.47

ZCR KNN 78.41 73.51 81.75 86.36

ET 77.99 77.17 72.87 86.96

XGB 67.57 65.09 60.99 74.21

RF 77.10 76.59 71.08 85.74

DFA KNN 84.07 80.41 85.68 91.61

ET 83.91 81.41 83.51 92.20

XGB 79.86 74.98 83.28 88.82

RF 83.27 80.28 83.57 91.62

Hjorth KNN 84.41 82.28 83.61 91.64

ET 82.02 82.71 76.30 90.22

RF 81.49 81.51 76.53 89.59

XGB 77.68 75.90 74.41 86.01

Table 5. Classification of frontotemporal dementia from healthy adults with the 50% overlap strategy
across the feature-extraction techniques for EEG data and the learning techniques.

Feature Extraction Learning Techn. Accuracy Precision Sensitivity AUC

SVD ET 87.57 85.52 83.61 94.74

KNN 87.21 80.36 90.75 94.10

RF 86.85 83.47 84.40 94.25

XGB 86.01 81.49 84.90 93.70

HFD ET 84.11 82.40 77.56 91.72

RF 83.86 80.92 79.04 91.43

XGB 82.53 76.63 82.21 91.18

KNN 81.84 73.29 87.23 90.36

ZCR ET 80.37 77.85 79.09 88.89

KNN 79.53 75.07 81.95 87.35

RF 79.53 76.66 78.69 88.16

XGB 78.63 74.00 81.29 87.51

DFA ET 83.87 85.84 72.58 91.16

RF 83.62 83.76 74.43 90.99

XGB 82.34 78.16 78.92 90.47
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Table 5. Cont.

Feature Extraction Learning Techn. Accuracy Precision Sensitivity AUC

KNN 80.45 72.18 85.05 89.37

Hjorth RF 77.85 71.87 74.74 86.29

ET 77.69 72.77 72.43 86.50

KNN 75.10 65.64 81.82 83.83

XGB 76.94 68.99 79.03 86.34

Table 6. Classification of frontotemporal dementia from healthy adults with the 90% overlap strategy
across the feature-extraction techniques for EEG data and the learning techniques.

Feature Extraction Learning Techn. Accuracy Precision Sensitivity AUC

SVD KNN 94.18 90.49 95.85 98.23

ET 93.48 92.98 90.88 98.29

RF 92.41 90.99 90.35 97.68

XGB 87.81 83.51 87.36 95.14

HFD KNN 90.52 84.59 93.81 96.86

ET 89.20 88.96 83.89 95.73

RF 88.58 87.16 84.37 95.25

XGB 84.24 78.58 84.28 92.65

ZCR ET 80.96 83.63 66.15 89.16

KNN 80.81 73.38 82.89 88.97

RF 80.22 81.85 66.03 87.94

XGB 71.44 69.35 53.38 77.47

DFA RF 87.05 87.96 79.02 94.02

ET 86.99 89.48 77.12 94.09

KNN 85.17 77.71 89.17 93.17

XGB 83.83 79.71 80.90 91.84

Hjorth KNN 84.80 76.85 89.72 93.08

ET 84.39 81.03 80.53 92.59

RF 83.62 79.12 81.21 91.82

XGB 78.28 70.03 81.59 88.21

Table 7. Classification of Alzheimer’s disease from frontotemporal dementia adult subjects with the 50%
overlap strategy across the feature-extraction techniques for EEG data and the learning techniques.

Feature Extraction Learning Techn. Accuracy Precision Sensitivity AUC

SVD ET 85.50 85.45 92.43 94.28

RF 84.96 82.15 74.88 91.82

KNN 83.60 73.23 86.50 90.30

XGB 81.58 73.15 77.94 89.21
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Table 7. Cont.

Feature Extraction Learning Techn. Accuracy Precision Sensitivity AUC

HFD ET 84.43 81.49 73.78 91.58

RF 83.84 78.83 75.74 90.97

XGB 81.97 72.62 80.62 90.2

KNN 81.51 80.56 78.10 90.21

ZCR RF 69.60 66.53 31.94 68.06

ET 69.57 66.45 31.89 68.55

XGB 69.38 66.75 30.45 68.86

KNN 57.98 44.43 64.96 63.94

DFA ET 84.71 82.78 73.11 91.68

RF 84.02 79.75 75.05 91.17

XGB 82.13 73.12 80.35 90.23

KNN 81.25 69.19 87.21 90.27

Hjorth ET 75.47 75.09 49.82 80.74

RF 75.26 69.96 56.04 80.39

XGB 71.48 59.95 65.04 78.52

KNN 67.87 54.30 73.71 76.48

Table 8. Classification of Alzheimer’s disease from frontotemporal dementia adults with the 90%
overlap strategy across the feature-extraction techniques for EEG data and the learning techniques.

Feature Extraction Learning Techn. Accuracy Precision Sensitivity AUC

SVD KNN 91.93 85.03 94.37 97.48

ET 92.37 93.45 84.93 97.74

RF 91.42 90.81 84.96 97.07

XGB 83.17 74.80 80.83 91.15

HFD KNN 90.88 88.24 82.90 97.11

ET 89.67 88.51 82.16 95.95

RF 88.93 86.09 82.85 95.32

XGB 83.43 74.03 83.66 91.87

ZCR RF 79.72 85.79 52.79 86.41

KNN 78.81 66.53 83.61 87.98

XGB 70.50 70.68 31.81 71.57

ET 80.81 86.63 55.63 87.74

DFA RF 87.52 84.81 79.96 94.30

KNN 86.37 76.16 90.95 94.11

ET 87.78 86.54 78.58 94.52

XGB 83.23 74.14 82.66 91.55
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Table 8. Cont.

Feature Extraction Learning Techn. Accuracy Precision Sensitivity AUC

Hjorth RF 82.36 81.16 66.92 89.38

ET 80.30 68.44 84.86 89.53

XGB 73.79 63.03 67.23 81.48

KNN 67.87 54.30 73.71 76.48

Figure 2. Average accuracy scores (over five runs) grouped by feature extraction technique and
machine learning technique for Alzheimer’s/healthy controls (top row), frontotemporal/healthy
controls (middle row), and Alzheimer’s/frontotemporal (bottom row) with the 50% overlap EEG
windows strategy (left) and the 90% strategy (right).

While consistent differences in accuracy across learning techniques have not been
found, the Singular Value Decomposition Entropy technique seems to help to consistently
develop predictive models with the highest accuracy, regardless of the underlying machine
learning technique. This can also be observed from Figure 3 where the average accuracy
of each sliding window is presented, grouped across the feature extraction measures. The
same thing cannot be said for the other feature extraction techniques, which demonstrated
no consistency across machine learning models and data overlapping strategies.
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Figure 3. Average accuracies associated with the sliding window segmentation strategies of all the
learning techniques grouped by feature extraction technique.

The higher accuracy and F1-score associated with SVD Entropy in this study can be
attributed to the following functionalities that it exhibits:

• The Singular Value Decomposition (SVD) process breaks down the EEG signal into
matrices that ignore the noise and preserve the principal characteristics of the EEG signal.

• Furthermore, SVD reduces the dimensionality of the data, abstracting it into a form
that retains essential information while discarding redundancy. This abstraction makes
it easier for machine learning models to process and learn from the data, enhancing
predictive performance.

• Additionally, assessing the entropy in the distribution of singular values obtained
from SVD quantifies the randomness and complexity of the signal. This is crucial
for EEG analysis, where the complexity of brain activity can provide insights into
neurological conditions.

Concerning the overlapping strategies, using the 90% overlapping strategy across
consecutive EEG windows clearly exhibited utility when discriminating subjects with
neurodegenerative disorders (AD and FTD versus HC).

Following the classification phase, we employed a topographical brain mapping
technique to improve the interpretability of our predictive models. These maps were
instrumental in pinpointing the cerebral regions most crucial for distinguishing AD/FTD
patients from HC and AD patients from FTD patients (Figures 4–9). We selected the
classification model with the highest accuracy (90% overlap, SVD entropy, and a tree
classifier) and computed a feature importance array for each feature extraction technique,
as detailed in Section 3.3. This array delineated the significance of features derived from
each EEG channel in accurately predicting disease. Subsequently, we visualised these
feature importance scores on topographic brain maps, illuminating the brain areas with
elevated significance in the classification process. The primary objective of this analytical
step was to derive deeper insights into the specific brain regions that are most influential
in the differentiation between AD/FTD patients and healthy controls, thereby enhancing
our understanding of the neurophysiological underpinnings of Alzheimer’s disease and
frontotemporal dementia. This approach not only aids in validating the predictive models
but also contributes to the broader field of neuroscientific research by identifying potential
biomarkers and neuroanatomical correlates of these neurodegenerative diseases.

Topographic maps indicated the importance of the occipital, frontal, and temporal
lobes in distinguishing AD from HC (Figures 4 and 5), highlighting specific EEG channels
(O2, T5, O1, Fp2, Fp1, F7, F8, T3, T4). Similar regions were critical for differentiating FTD
from HC (Figures 6 and 7), but with a different order of significance (O2, Fp1, T3, O1, F7,
Fp2, F3, T4, T5), with a notable emphasis on the frontal lobe suggesting its effectiveness in
capturing FTD features from the frontal region. In contrast to this, when differentiating
AD patients from FTD patients (Figures 8 and 9), the topographic plots show the frontal
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and temporal regions, especially channels T3, Fp1, Fp2, F7, F8, T4, F3, Fz, and F4, as being
more important than the occipital region. This finding highlights a key distinction from
feature importance patterns in AD/FTD vs. HC comparisons, where occipital dominance
was observed.

Topographic analyses show the occipital, temporal, and frontal regions’ involvement
in distinguishing AD from HC. This aligns with empirical observations about AD’s impact
areas. The frontal and temporal regions are primarily involved in differentiating AD from
FTD, which is consistent with FTD’s primary impact areas.

While topographic maps highlight the occipital region in distinguishing FTD from
HC, this may seem unexpected given FTD’s primary impact on frontal and temporal
regions [51,52]. However, this aligns with the involvement of the occipital lobe in advanced
FTD stages, where it shares degeneration patterns with AD [53,54]. This overlap and
variability in the FTD presentation underscores the need for accurate differential diagnosis
between these diseases [54].

Figure 4. Feature importance map for discriminating Alzheimer’s disease subjects from healthy
controls with the 50% window overlap.
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Figure 5. Feature importance map for discriminating Alzheimer’s disease subjects from healthy
controls with the 90% window overlap.
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Figure 6. Feature importance map for discriminating frontotemporal dementia subjects from healthy
controls with the 50% window overlap.
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Figure 7. Feature importance map for discriminating frontotemporal dementia subjects from healthy
controls with the 90% window overlap.
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Figure 8. Feature importance map for discriminating Alzheimer’s disease subjects from frontotempo-
ral dementia subjects with the 50% window overlap.
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Figure 9. Feature importance map for discriminating Alzheimer’s disease subjects from frontotempo-
ral dementia subjects with the 90% window overlap.

5. Conclusions

Alzheimer’s disease and frontotemporal dementia, resulting from neuronal damage,
impair cognitive functions. Effective denoising and feature extraction from complex, noisy
EEG data are essential for their early detection, focusing on dimensionality reduction and
key biomarker identification.



Brain Sci. 2024, 14, 335 24 of 26

Previous research on Alzheimer’s and frontotemporal dementia used limited feature
extraction methods without thorough comparison. This study addressed this by evaluating
multiple techniques for distinguishing AD and FTD conditions and healthy controls using
EEG data. We trained models on features from EEG windows with 50% and 90% overlap,
employing classifiers like K-Nearest Neighbors, Random Forest, XGBoost, and Extra Trees.
The findings reveal that an increased overlap in EEG windows enhances model accuracy,
particularly highlighting SVD entropy’s effectiveness over other techniques. Our model
accurately distinguishes AD from FTD, pinpointing critical features in frontal, temporal,
and occipital regions. This advances early-stage diagnosis by highlighting distinct EEG
patterns specific to each disease.

Future directions include expanding this pipeline’s validation across broader datasets
and more diverse subject groups, including AD, FTD, and healthy controls, and extending
its utility to diagnose other neurodegenerative diseases like Schizophrenia and Parkinson’s
disease. A further investigation is needed to determine the optimal EEG window overlap
for effective feature extraction.
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