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Abstract: Objectives: The temporal and spatial information of electroencephalogram (EEG) signals
is crucial for recognizing features in emotion classification models, but it excessively relies on
manual feature extraction. The transformer model has the capability of performing automatic
feature extraction; however, its potential has not been fully explored in the classification of emotion-
related EEG signals. To address these challenges, the present study proposes a novel model based
on transformer and convolutional neural networks (TCNN) for EEG spatial–temporal (EEG ST)
feature learning to automatic emotion classification. Methods: The proposed EEG ST-TCNN model
utilizes position encoding (PE) and multi-head attention to perceive channel positions and timing
information in EEG signals. Two parallel transformer encoders in the model are used to extract
spatial and temporal features from emotion-related EEG signals, and a CNN is used to aggregate the
EEG’s spatial and temporal features, which are subsequently classified using Softmax. Results: The
proposed EEG ST-TCNN model achieved an accuracy of 96.67% on the SEED dataset and accuracies
of 95.73%, 96.95%, and 96.34% for the arousal–valence, arousal, and valence dimensions, respectively,
for the DEAP dataset. Conclusions: The results demonstrate the effectiveness of the proposed
ST-TCNN model, with superior performance in emotion classification compared to recent relevant
studies. Significance: The proposed EEG ST-TCNN model has the potential to be used for EEG-based
automatic emotion recognition.

Keywords: EEG; emotion classification; transformer; CNN; multi-head attention

1. Introduction

Emotion is a comprehensive representation of an individual’s subjective experience
and behavior, encompassing various feelings, behaviors, and thoughts. It significantly
influences an individual’s perception and attitude, and its identification has potential appli-
cations [1]. There are two primary types of methods used for emotion recognition [2]. One
involves external responses evoked by emotions, such as facial expressions and gestures [3],
while the other focuses on internal responses induced by emotions like electroencephalo-
gram (EEG) and electrocardiogram signals, along with other physiological signals [4].
Compared with non-physiological signals, physiological signals are less easily controlled
subjectively by individuals and are challenging to conceal [5]. Among the several physiolog-
ical signals, EEG is an electrical signal generated by the central nervous system. Nunez et al.
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discovered that EEG signals exhibit certain associations with physiological events such
as sleep patterns, neurological disorders, and emotional states [6]. Existing studies have
been conducted regarding the recognition of individual emotional states using EEG [7],
suggesting that EEG holds promise as a physiological signal for emotion recognition.

The current methods for emotion recognition based on EEG include two primary
methods: traditional machine learning and deep learning. Bhardwaj et al. [8] classified
seven different emotions based on EEG signals, preprocessed the data using filtering and
an independent component analysis (ICA), and then extracted the energy and power
spectral density (PSD) as features. The average classification accuracies achieved using
a support vector machine (SVM) and linear discriminant analysis (LDA) were 74.13%
and 66.50%, respectively. Wang et al. [9] utilized the minimum redundancy maximum
relevance method to extract key EEG features for four types of emotions and compared its
classification accuracy to that of of k-nearest neighbors (KNN), multi-layer perceptron, and
SVM, demonstrating that the frequency domain features combined with SVM achieved an
average accuracy of 66.51%. Xiao et al. [10] proposed a 4D attention neural network that
involved the conversion of the raw EEG into a spatial–spectral–temporal representation
in four dimensions. Subsequently, a CNN was used to process both spectral and spatial
information, while attention mechanisms were integrated into a bidirectional long short-
term memory network (Bi-LSTM) for processing temporal information. The deep learning
model achieved an average accuracy of 96.90% and 97.39% in the valence and arousal
dimensions, respectively, for the DEAP dataset [11]. Additionally, it achieved an average
accuracy of 96.25% for the SEED dataset [12], encompassing three types of emotions:
positive, neutral, and negative. Furthermore, it achieved an accuracy of 86.77% for the
SEED-IV dataset [13], which includes four types of emotions: happy, sad, fear, and neutral.

The proposed EEG emotion recognition algorithm by An et al. [13] is based on 3D
feature fusion and a convolutional autoencoder (CAE). First, the differential entropy (DE)
features from various frequency bands of EEG were fused to construct 3D features of
EEG signals, which preserve spatial information between channels. Then, the constructed
3D features were input into the CAE for emotion recognition. The deep learning model
achieved an average accuracy of 89.49% for the valence dimension and 90.76% for the
arousal dimension when evaluated on the DEAP dataset.

The aforementioned studies demonstrate the effectiveness of traditional machine
learning and deep learning techniques in EEG-based emotion classification involving
the extraction and selection of an optimal feature set from raw EEG data. However, the
process of extracting features from raw EEG signals may result in the loss of valuable
information, thereby hindering the model’s ability to learn missing information. In this
study, transformers are utilized to automatically extract the spatial–temporal features that
are relevant to emotions from EEG data, aiming to mitigate the loss of valuable information.
Additionally, a CNN is used for aggregating these extracted spatial–temporal features as a
means to address the aforementioned challenges.

The transformer model, initially proposed by Vaswani et al. in 2017 [14], has demon-
strated remarkable success in the fields of natural language processing [15] and computer
vision [16]. Unlike CNN, RNN, and LSTM networks, this model overcomes the limita-
tions of local receptive fields and enables concurrent consideration of information across
all positions in a sequence. Consequently, it excels at capturing global relationships and
exhibits superior performance in calculating correlations among features within long se-
quences while effectively processing long-term dependencies. In this study, we anticipate
that leveraging the power of the transformer model will enable effective extraction of the
spatial–temporal features of emotion-related EEG signals, thereby improving the accuracy
of emotion classification.
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2. Materials and Methods
2.1. Datasets

The SEED dataset, publicly released by Shanghai Jiao Tong University, is widely
utilized in the fields of emotion recognition and emotion-related BCI research [13]. The
experimental approach involves using movie clips as stimuli to evoke specific emotions,
including positive, neutral, and negative emotions. Fifteen participants (seven males,
eight females) with an average age of 23.27 were involved in the experiment. Each session
required the participants to watch a set of 15 movie clips, each lasting approximately 4 min.
These clips covered positive, neutral, and negative emotions, with five clips correspond-
ing to each emotional category [17]. The EEG recordings were obtained using the ESI
NeuroScan system, with a 62-channel electrode distribution following the international
10–20 standard system. The EEG channels included FP1, FPZ, FP2, AF3, AF4, F7, F5, F3, F1,
FZ, F2, F4, F6, F8, FT7, FC5, FC3, FC1, FCZ, FC2, FC4, FC6, FT8, T7, C5, C3, C1, CZ, C2, C4,
C6, T8, TP7, CP5, CP3, CP1, CPZ, CP2, CP4, CP6, TP8, P7, P5, P3, P1, PZ, P2, P4, P6, P8,
PO7, PO5, PO3, POZ, PO4, PO6, PO8, CB1, O1, OZ, O2, and CB2. The data were initially
sampled at a rate of 1000 Hz and subsequently downsampled to 200 Hz. Furthermore,
filtering was performed using a bandpass filter with a frequency range of 0–75 Hz.

The DEAP dataset, established by Sanders Koelstra et al. [12], is a publicly available
multimodal emotion dataset focusing on emotional dimensions. The dataset consists of
32-channel EEG recordings from 32 participants while they watched 40 one-minute-long
music video clips. After watching each clip, the participants were asked to self-rate their
arousal and valence levels on a scale ranging from 1 to 9. The EEG channels included Fp1,
AF3, F3, F7, FC5, FC1, C3, T7, CP5, CP1, P3, P7, PO3, O1, Oz, Pz, Fp2, AF4, Fz, F4, F8, FC6,
FC2, Cz, C4, T8, CP6, CP2, P4, P8, PO4, and O2. To enhance the data quality, the raw EEG
signals were downsampled to a frequency of 128 Hz and filtered using a bandpass filter
with cutoff frequencies of 4 Hz and 45 Hz.

2.2. Preprocessing

The study conducted by Lashgari et al. [18] demonstrates that segmenting and re-
assembling data in the time domain preserves information, enables data expansion, and
enhances classification accuracy. Previous research has demonstrated that implementing
a 3 s time window leads to improved classification accuracy [19]. Therefore, this study
employs a 3 s time window for EEG segmentation.

2.3. Experimental Platform

The entire experimental process was conducted in an environment with an Intel(R)
Core i5-12400F processor and an NVIDIA RTX3080 Ti GPU. The model was implemented
using the Python 3.7 programming language and the Pytorch deep learning framework.

2.4. Experimental Procedures

The flowchart in Figure 1 illustrates the procedures of emotion classification using the
transformer and a CNN based on EEG spatial and temporal feature learning. Initially, the
raw EEG signals are preprocessed and segmented, and then emotion-related EEG spatial
and temporal features are extracted by the transformer-based module. Finally, the results
are generated by a prediction layer including a CNN, maximum pooling (MaxPooling),
fully connected (FC), and Softmax layer.
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which EEG signals are segmented; (c) the transformer-based module, which extracts the spatial and 
temporal features of the EEG signals; (d) the prediction layer, which aggregates the extracted tem-
poral and spatial features and performs the classification; (e) the classification results. 
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tion (Add and Norm), multi-head attention, and a feed-forward neural network. The 
scaled dot-product attention mechanism in the transformer encoder is closely connected 
to the multi-head attention mechanism. In the scaled dot-product attention, the input se-
quence is linearly transformed to obtain query, key, and value vectors. A scaling dot prod-
uct operation is then performed to calculate the attention score, which adjusts the dot 
product value by dividing it by the square root of the dimension of the query and key 
vectors. This ensures gradient stability. On the other hand, because multiple heads per-
form independent scaling dot product operations, the multi-head attention mechanism 
enables parallel focus on various aspects of the input sequence. By concatenating and fi-
nally linearly transforming these head outputs, a comprehensive representation is ob-
tained for each position. Through this tight correlation between the scaled dot-product 
attention and multi-head attention, efficient encoding and representation of the input se-
quences are achieved by the transformer encoder. 

Figure 1. The flowchart of emotion classification using the transformer and a CNN based on EEG
spatial–temporal feature learning. (a) Acquisition of input data; (b) data preprocessing steps, during
which EEG signals are segmented; (c) the transformer-based module, which extracts the spatial
and temporal features of the EEG signals; (d) the prediction layer, which aggregates the extracted
temporal and spatial features and performs the classification; (e) the classification results.

2.5. Transformer Encoder

The encoder of the transformer model used in this study is illustrated in Figure 2. The
transformer encoder includes scaled dot-product attention, addition and normalization
(Add and Norm), multi-head attention, and a feed-forward neural network. The scaled
dot-product attention mechanism in the transformer encoder is closely connected to the
multi-head attention mechanism. In the scaled dot-product attention, the input sequence
is linearly transformed to obtain query, key, and value vectors. A scaling dot product
operation is then performed to calculate the attention score, which adjusts the dot product
value by dividing it by the square root of the dimension of the query and key vectors. This
ensures gradient stability. On the other hand, because multiple heads perform independent
scaling dot product operations, the multi-head attention mechanism enables parallel focus
on various aspects of the input sequence. By concatenating and finally linearly trans-
forming these head outputs, a comprehensive representation is obtained for each position.
Through this tight correlation between the scaled dot-product attention and multi-head
attention, efficient encoding and representation of the input sequences are achieved by the
transformer encoder.
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2.5.1. Scaled Dot-Product Attention

The scaled dot-product attention is depicted in Figure 2a. Initially, the input data are
multiplied by three different weight matrices to obtain the query vector (Q), key vector (K)
and value vector (V), respectively. Subsequently, the dot product of Q and K is divided by
the scaling factor

√
dk (where dk represents the dimension of the query vector), followed by

computation of the weights using a Softmax function. Finally, these weights are multiplied
by the value vector V to obtain a weighted result. The calculation is performed using
Equation (1).

Attention(Q, K, V) = Softmax(
QKT
√

dk
)V (1)

2.5.2. Multi-Head Attention

In Figure 2b, the multi-head attention mechanism consists of h scaled dot-product
attention layers. Each scaled dot-product attention layer focuses on the information found
in different subspaces. This structure allows the model to concurrently process various
aspects of correlations, thereby comprehensively capturing the features of the input data.
Subsequently, the attention representations from these diverse heads are concatenated to
form the final multi-head attention representation, calculated using Equation (2), where
WO is the weight matrix of the output.

MultiHead(Q, K, V) = Concat(head 1, . . . , headh)W
O (2)

2.5.3. Transformer Encoder

The transformer encoder in Figure 2c is mainly composed of two modules. The
first module includes a multi-head attention layer and a normalization layer, with the
latter being used to improve the stability and accelerate convergence during training.
Additionally, residual connections are used between these layers to facilitate information
flow and alleviate the issue of gradient vanishing. The second module is composed of
a feedforward neural network layer and a normalization layer. The feedforward neural
network nonlinearly maps the features obtained from the multi-head attention mechanism,
contributing to the model’s ability to capture distinctive features within the input sequence.
Residual connections are also utilized between these layers. This architectural design aims
to fully leverage the self-attention mechanism and feedforward network in the transformer
model to effectively capture contextual information from the EEG signals and improve
classification performance.

2.6. Transformer and CNN Models for Learning Emotion-Related EEG Temporal and
Spatial Features

This study proposes a novel emotion classification model, named EEG spatial–temporal
transformer and CNN (EEG ST-TCNN), which is based on EEG spatial–temporal feature
learning, as illustrated in Figure 3. The model effectively uses both the spatial and temporal
information embedded in EEG signals.

The EEG ST-TCNN model consists of three components. The first component is
the input module of the model, where the raw EEG signals are concurrently input into
the model in both spatial and temporal arrangements. The batch_size, channel, and
time_point were set to 128, 62, and 600, respectively, during the experimentation on the
SEED dataset. Similarly, for the DEAP dataset, the batch_size was set to 128, while the
channel and time_point were adjusted to 32 and 384, respectively. To capture the EEG
sequence information effectively, positional encoding (PE) is applied to embed the input
EEG. PE plays a crucial role in understanding the relationship between element position
and order when processing sequence data with transformers, thereby enhancing their
performance in various natural language processing and sequence modeling tasks [14]. In
this study, we adopt the method of relative positional encoding, which is implemented
using Equations (3) and (4):
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PE(pos, 2i) = sin(
pos

10000
2i
d
) (3)

PE(pos, 2i + 1) = cos(
pos

10000
2i
d
) (4)

where PE(pos, 2i) and PE(pos, 2i + 1) denote the two elements of the positional encoding
at position pos and dimension i, respectively. Here, d denotes the dimension of the
embedding vector.
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In the second component, two transformer encoders are used to extract the deep spatial
and temporal features from the input EEG. The third component consists of a prediction
layer, which consists of 2 convolution layers (with a convolution kernel size of 3 × 3, and
there are 64 convolutional kernels), 1 MaxPooling layer (with a window size of 2 × 2), 1 FC
layer, and 1 Softmax layer. Within the prediction layer, the spatial and temporal features
extracted by the transformer encoder are concatenated. This concatenated representation is
then processed by a combination of CNN and MaxPooling layers to effectively aggregate
the features and capture the local features. Subsequently, the processed features are passed
into the FC before being classified into different emotional states by Softmax.
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2.7. Model Training Strategy and Process

In order to train and validate the proposed model, a ten-fold cross-validation method
was used to divide the EEG data of each subject into ten samples, of which nine were
used as training samples and one was used as a test sample. Finally, the average accuracy
was calculated as the classification result. In the multi-head attention mechanism of the
transformer, the parameter “h” was set to 8, and cross-entropy along with L2 regularization
terms were utilized as the loss functions. The Adam optimizer was used for optimization.
During the training process, the parameters learning rate and “batch_size” were set to
0.0001 and 128, respectively. Additionally, a dropout value of 0.3 was set to prevent
overfitting, and the ReLU function was used as the activation function.

2.8. Evaluation Metrics

The classification performance of the model is evaluated using accuracy (Acc),
precision (P), recall (R), and F1-score as evaluation metrics, which are calculated using
Equations (5)–(8):

Acc =
TP + TN

TP + TN + FP + FN
(5)

P =
TP

TP + FP
(6)

R =
TP

TP + FN
(7)

F1 Score = 2 × P × R
P + R

(8)

where TP indicates that the prediction of the positive class is positive, TN indicates that the
prediction of the negative class is negative, FP indicates that the prediction of the negative
class is positive, and FN indicates that the prediction of the positive class is negative.

3. Results
3.1. Classification Performance

We conducted independent experiments on both the SEED and DEAP datasets. Four
models were systematically obtained by progressively removing a certain module from the
model, including EEG ST-TCNN, the model without CNN (EEG ST-T), the model with only
spatial dimensions as input (EEG S-T), and the model with only temporal dimensions as
input (EEG T-T). The classification results of these four models were compared to validate
the effectiveness of the removed modules in the model. Figure 4 shows the accuracy of
emotion recognition for these aforementioned models. Both the EEG ST-TCNN and EEG
ST-T models achieved high accuracy on the SEED and DEAP datasets. Compared to the
EEG ST-T model, the EEG ST-TCNN model demonstrated improvements of 0.69%, 1.93%,
0.78%, and 1.9% in the positive–neutral–negative, arousal–valence, arousal, and valence
dimensions, respectively. The average accuracy and variance of the four models in the
different dimensions are presented in Table 1, while Table 2 displays the t-test results for the
accuracies of these models across the different dimensions. The results of EEG ST-TCNN
and EEG ST-T did not show significant differences in the arousal dimension, whereas there
were significant differences between the results of EEG ST-TCNN and other models in the
positive–neutral–negative, arousal–valence, and valence dimensions.



Brain Sci. 2024, 14, 268 8 of 15

Brain Sci. 2024, 14, x FOR PEER REVIEW 8 of 16 
 

P RF1 Score = 2
P+R

××  (4)

where TP indicates that the prediction of the positive class is positive, TN indicates that 
the prediction of the negative class is negative, FP indicates that the prediction of the neg-
ative class is positive, and FN indicates that the prediction of the positive class is negative. 

3. Results 
3.1. Classification Performance 

We conducted independent experiments on both the SEED and DEAP datasets. Four 
models were systematically obtained by progressively removing a certain module from 
the model, including EEG ST-TCNN, the model without CNN (EEG ST-T), the model with 
only spatial dimensions as input (EEG S-T), and the model with only temporal dimensions 
as input (EEG T-T). The classification results of these four models were compared to vali-
date the effectiveness of the removed modules in the model. Figure 4 shows the accuracy 
of emotion recognition for these aforementioned models. Both the EEG ST-TCNN and 
EEG ST-T models achieved high accuracy on the SEED and DEAP datasets. Compared to 
the EEG ST-T model, the EEG ST-TCNN model demonstrated improvements of 0.69%, 
1.93%, 0.78%, and 1.9% in the positive–neutral–negative, arousal–valence, arousal, and 
valence dimensions, respectively. The average accuracy and variance of the four models 
in the different dimensions are presented in Table 1, while Table 2 displays the t-test re-
sults for the accuracies of these models across the different dimensions. The results of EEG 
ST-TCNN and EEG ST-T did not show significant differences in the arousal dimension, 
whereas there were significant differences between the results of EEG ST-TCNN and other 
models in the positive–neutral–negative, arousal–valence, and valence dimensions. 

 
Figure 4. The accuracy of the four models in classifying emotions on the SEED and DEAP datasets. 

  

Figure 4. The accuracy of the four models in classifying emotions on the SEED and DEAP datasets.

Table 1. The average accuracy and variance of the four models across the different dimensions.

Dimension Model Acc/% Variance

Positive–neutral–negative

EEG ST-TCNN 96.67 2.88
EEG ST-T 95.98 3.11
EEG S-T 84.29 5.66
EEG T-T 85.27 3.71

Arousal–valence

EEG ST-TCNN 95.73 5.40
EEG ST-T 93.80 6.19
EEG S-T 75.97 5.66
EEG T-T 78.03 6.35

Arousal

EEG ST-TCNN 96.95 2.04
EEG ST-T 96.17 3.42
EEG S-T 82.93 4.27
EEG T-T 87.65 2.25

Valence

EEG ST-TCNN 96.34 3.02
EEG ST-T 94.44 3.46
EEG S-T 77.22 5.26
EEG T-T 83.40 5.00

Table 2. t-test results: Comparing the accuracies across the different dimensions for the four models.

Dimension Comparison t-Value p-Value

Positive–neutral–negative

EEG ST-TCNN vs. EEG ST-T 2.07 0.045
EEG ST-TCNN vs. EEG S-T 17.54 <0.001
EEG ST-TCNN vs. EEG T-T 17.19 <0.001

EEG ST-T vs. EEG S-T 16.47 <0.001
EEG ST-T vs. EEG T-T 15.87 <0.001
EEG S-T vs. EEG T-T −1.22 0.232
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Table 2. Cont.

Dimension Comparison t-Value p-Value

Arousal–valence

EEG ST-TCNN vs. EEG ST-T 2.18 0.036
EEG ST-TCNN vs. EEG S-T 21.22 <0.001
EEG ST-TCNN vs. EEG T-T 19.56 <0.001

EEG ST-T vs. EEG S-T 20.65 <0.001
EEG ST-T vs. EEG T-T 18.89 <0.001
EEG S-T vs. EEG T-T −2.03 0.049

Arousal

EEG ST-TCNN vs. EEG ST-T 2.01 0.053
EEG ST-TCNN vs. EEG S-T 17.51 <0.001
EEG ST-TCNN vs. EEG T-T 17.13 <0.001

EEG ST-T vs. EEG S-T 17.67 <0.001
EEG ST-T vs. EEG T-T 14.18 <0.001
EEG S-T vs. EEG T-T −5.84 <0.001

Valence

EEG ST-TCNN vs. EEG ST-T 2.09 0.044
EEG ST-TCNN vs. EEG S-T 22.20 <0.001
EEG ST-TCNN vs. EEG T-T 17.66 <0.001

EEG ST-T vs. EEG S-T 19.65 <0.001
EEG ST-T vs. EEG T-T 15.42 <0.001
EEG S-T vs. EEG T-T −7.28 <0.001

Tables 3–6 present the accuracy, precision, recall, and F1-score achieved in experiments
on the SEED and DEAP datasets for the EEG ST-TCNN, EEG ST-T, EEG S-T, and EEG
T-T models. The experimental results demonstrate that utilizing the raw EEG spatial and
temporal arrangement input concurrently is superior to solely using the spatial or temporal
arrangements as inputs. Compared with EEG ST-T, the integration of the CNN into the
EEG ST-T model leads to enhanced effects across the various dimensions.

Table 3. The accuracy, precision, recall, and F1-score of the four models in the positive–neutral–
negative dimension.

Model Acc/% P/% R/% F1-Score/%

EEG ST-TCNN 96.67 96.70 96.64 96.67
EEG ST-T 95.98 95.64 95.54 95.59
EEG S-T 84.29 84.26 84.25 84.25
EEG T-T 85.27 85.27 85.24 85.25

Table 4. The accuracy, precision, recall, and F1-score of the four models in the arousal–valence
dimension.

Method Acc/% P/% R/% F1-Score/%

EEG ST-TCNN 95.73 95.72 95.72 95.72
EEG ST-T 93.80 93.80 93.78 93.79
EEG S-T 75.97 76.07 75.97 76.02
EEG T-T 78.03 78.15 78.03 78.09

Table 5. The accuracy, precision, recall, and F1-Score of the four models in the arousal dimension.

Method Acc/% P/% R/% F1-Score/%

EEG ST-TCNN 96.95 96.95 96.91 96.95
EEG ST-T 96.17 96.17 96.17 96.17
EEG S-T 82.93 82.94 82.93 82.94
EEG T-T 87.65 87.69 87.65 87.67
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The confusion matrices in Figures 5–8 illustrate the results obtained by the four dif-
ferent models across the positive–neutral–negative, arousal–valence, arousal, and valence
dimensions. In each figure, (a) represents the confusion matrix achieved by EEG ST-TCNN
in the corresponding dimension experiment; (b) represents the confusion matrix achieved
by EEG ST-T in the corresponding dimension experiment; (c) represents the confusion
matrix achieved by EEG S-T in the corresponding dimension experiment; and (d) represents
the confusion matrix achieved by EEG T-T in the corresponding dimension experiment.
The experimental results demonstrate that the proposed EEG ST-TCNN shows superior
performance on both the SEED and DEAP datasets.
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3.2. Comparison of the Results Obtained Using Other Methods

Shen et al. [2] firstly calculated the differential entropy (DE) features from different
EEG channels signals and then converted them into a four-dimensional structure. The struc-
ture integrated the frequency domain, time domain, and spatial domain features of the EEG
signals. Subsequently, these structured data were then input into a four-dimensional con-
volutional recurrent neural network (4D-CRNN) for training. Liu et al. [20] constructed an
undirected graph based on the spatial relationships between EEG electrodes. They utilized
the differential entropy features of the EEG signals to represent the nodes of the undirected
graph. Furthermore, they proposed a model for emotion recognition based on EEG signals
using a global-to-local feature aggregation network (GLFANet). Finally, the undirected
graph was fed into this model. Zheng et al. [21] constructed an EEG electrode location
matrix corresponding to brain region distribution, thereby reconstructing EEG data. They
used a combined model of a graph convolutional neural network and LSTM (GCN + LSTM)
to extract the spatial and temporal features of the EEG signals. Liu et al. [22] proposed
a model that combines a convolutional neural network (CNN), sparse autoencoder, and
deep neural network (CNN-SAE-DNN). They integrated the frequency–domain features
and spatial location information of EEG signals to construct a two-dimensional data input
for the model. Yang et al. [23] utilized various frequency–domain features of EEG signals
to construct three-dimensional data, which was then fed into a continuous convolutional
neural network (continuous CNN). Table 7 compares the classification performance of
these classical or cutting-edge deep learning methods with the proposed EEG ST-TCNN
model on the SEED and DEAP datasets. The results demonstrate that the proposed model
exhibits varying degrees of improvement in classification performance on both the SEED
and DEAP datasets.
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Table 7. Classification performance of some classic or state-of-the-art deep learning methods
compared with that of the proposed model on the SEED and DEAP datasets. P-N-N represents
positive–neutral–negative, A stands for arousal, and V denotes valence.

References Methods Features P-N-N A-V A V

Shen et al. [2] 4D-CRNN DE 94.74 - 94.58 94.22
Liu et al. [20] GLFANet DE - 92.92 94.91 94.53

Zheng et al. [21] CNN-SAE-DNN DE 94.92 - 90.33 90.67
Liu et al. [22] GCN + LSTM spatial–temporal features 96.77 - 92.86 89.49

Yang et al. [23] Continuous CNN DE - 85.30 90.24 89.45
Ours EEG ST-TCNN Raw EEG 96.67 95.73 96.95 96.34

4. Discussion

To address the prevalent challenges in current EEG-based emotion recognition, which
frequently rely on manual feature extraction and the selection of an optimal feature set, this
paper proposes a novel EEG ST-TCNN model.

The robustness of the proposed model was validated through independent experi-
ments conducted on two publicly available datasets in this study. To validate the effective-
ness of each module in the model, we progressively removed one module and compared
the experimental results. As illustrated in Figure 4 and Tables 3–6, the ST model exhibits
inferior performance compared to the EEG T-T model overall. However, the EEG S-T
model contributes to enhancing the spatial location information. Notably, concurrently
utilizing a spatial and temporal arrangement input based on raw EEG data in the exper-
iment is superior to using the single spatial or temporal arrangement input alone. Both
EEG ST-TCNN and EEG ST-T demonstrate superior suitability for emotion classification
based on EEG signals. Compared with EEG ST-T, EEG ST-TCNN exhibits improved perfor-
mances in different dimensions. Importantly, EEG ST-TCNN excels in integrating spatial
and temporal information from the raw EEG signals, thereby enhancing the accuracy of
emotion recognition.

In this study, the temporal and spatial information from the raw EEG signals is
taken into consideration, while its frequency domain features are not utilized. Relative
positional encoding is used in this research; however, the impact of different positional
encoding methods on emotion classification based on EEG signals remains unexplored. It
is noteworthy that Wu et al. [24] demonstrated that various positional encoding methods
can affect transformer performance. Furthermore, individual differences among subjects
were not taken into account in this study. Importantly, other physiological signals also
contribute to the task of emotion recognition. Sun et al. [25] proposed a bimodal method
combining functional near-infrared spectroscopy (fNIRS) and EEG to identify emotions,
and their results indicated superior performance of the fNIRS+EEG method compared to
using only fNIRS or EEG.

In our future research, we will combine frequency domain features with the spatial and
temporal information of raw EEG signals and investigate the impact of different position
encoding methods on model classification results prior to integrating EEG temporal, spatial,
and frequency features into the model. Furthermore, we intend to conduct multi-modal
and cross-subject emotion recognition research, with the expectation that the proposed
model will further enhance the performance of emotion classification based on EEG signals.
Compared to offline emotion recognition, we believe that real-time emotion classification
based on EEG holds greater significance and potential applications. Real-time emotion
recognition can provide individuals with immediate feedback, thus enhancing the effective-
ness of emotion regulation. In future work, we will pay more attention to the complexity of
algorithms and endeavor to classify emotions in real-time based on EEG signals.
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5. Conclusions

The present study proposes a novel EEG STT-CNN model that is designed to address
the challenge of emotion classification based on EEG signals. Specifically, two parallel trans-
former encoders are used to extract deep spatial and temporal features from emotion-related
EEG data. Subsequently, these features are integrated using a CNN. The experimental
results demonstrate that the proposed model achieves an accuracy of 96.67% on the SEED
dataset. Additionally, it attains accuracies of 95.73%, 96.95%, and 96.34% on the DEAP
dataset for the arousal–valence, arousal, and valence dimensions, respectively. A compara-
tive analysis with recent relevant research indicates that the proposed model outperforms
existing methods, highlighting its potential for automated EEG-based emotion recognition.
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