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Abstract: The gut–brain axis (GBA) plays a significant role in various neurodegenerative disorders,
such as Alzheimer’s disease (AD), and the gut microbiome (GM) can bidirectionally communicate
with the brain through the GBA. Thus, recent evidence indicates that the GM may affect the patho-
logical features and the progression of AD in humans. The aim of our study was to elucidate the
impact of probiotics on the pathological features of AD in a 5xFAD model. Probiotics (Bifidobacterium
lactis, Levilactobacillus brevis, and Limosilactobacillus fermentum) were orally administered in 5xFAD
mice to modify the GM composition. Additionally, freeze-dried food containing phosphatidylserine
was used as the positive control. Behavioral pathogenesis was assessed through the cross maze and
Morris water maze tests. Our findings revealed that probiotic administration resulted in significant
improvements in spatial and recognition memories. Furthermore, the neuroprotective effects of
probiotics were substantiated by a reduction in amyloid-β accumulation in critical brain regions.
Microglial activation in 5xFAD mice was also attenuated by probiotics in the hippocampus and
cerebral cortex. Moreover, elevated tau phosphorylation in 5xFAD mice was ameliorated in the
probiotics-treated group. The results highlight the potential use of probiotics as a neuroprotective
intervention in AD.
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1. Introduction

Alzheimer’s disease (AD) is a chronic, progressive neurodegenerative disease that
affects brain functions, including memory and cognition. The core pathophysiology of
AD has been postulated as the intraneuronal aggregation of hyperphosphorylated tau, a
microtubule-associated protein, which leads to the formation of neurofibrillary tangles,
and the interstitial aggregation of insoluble forms of the amyloid-β (Aβ) peptide, which
results in neuritic plaques [1]. Less than 1% of cases are characterized by the familial
type of AD, which is associated with autosomal dominant inheritance, Aβ overexpression,
and onset often before the age of 65 years [2]. In the sporadic form of AD, both genetic
and environmental risk factors play a role. Plaque formation in the brain has toxic ef-
fects on neurons and occurs due to the overproduction or decreased clearance of Aβ [3].
Additionally, substantial evidence suggests that neuroinflammation plays a key role in
the pathophysiology of AD. Specifically, the accumulation of activated microglia around
damaged areas is a hallmark of neuroinflammation in AD. Moreover, microglia can be
activated by pathogens and improperly deposited proteins such as Aβ in AD [4].

The brain interacts with the gut either through the nervous system or through chemical
substances that cross the blood–brain barrier (BBB). The gut microbiota (GM) produces
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amino acids and monoamines that, through the lymphatic and vascular systems, reach the
central nervous system (CNS) where they can affect its activity [5]. Additionally, aging
causes substantial changes in the content and function of the gut–brain axis (GBA), which
can have an impact on health and age-related disorders [6]. Emerging evidence suggests
the GBA’s role in neurodegenerative disease progression through diverse pathways [7].
Bacterial metabolites contribute to immune and metabolic changes, potentially increasing
intestinal and blood–brain barrier permeability, modulating inflammatory responses, and
influencing microglial maturation, which is crucial for CNS homeostasis and regulating
inflammation. Notably, research has identified a correlation between gut dysbiosis and the
aggregation of Aβ, the formation of tau proteins, and the onset of neuroinflammation and
oxidative stress, all of which are implicated in AD [8].

Recent studies indicate that the consumption of specific probiotics can ameliorate
a range of diseases, including sepsis, cancer, and neurodegeneration, via antioxidant
and anti-inflammatory pathways [9]. Clinical studies have provided strong evidence
supporting potential interventions of probiotics for neurodegenerative diseases. Of these
strains, lactic acid bacteria (LAB), such as Lactobacillus and Bifidobacterium, are the most
widely utilized probiotics [10]. According to a preclinical study, probiotics may improve
cognitive function in animal models of cognitive impairment [11]. It has been demonstrated
that mixed cultures of LAB and Bifidobacterium strains exert a synergistic effect on host
health, leading to the enhanced production of short-chain fatty acids and modulation of
the immune response [12]. Thus, it is important to investigate the possible therapeutic
advantages of probiotics on brain health in degenerative diseases like AD [13].

In this study, we investigated the effect of probiotics on amyloid-induced pathology in
an AD model. The 5xFAD mice, containing APP and presenilin mutants, are commonly
used as an AD model, constituting approximately 10% of all AD studies that employ an
animal model [14]. These mice develop amyloid pathology, with plaques appearing in
the brain between 2 to 4 months of age [15]. In contrast, the 3xTG mouse model, which
contains APP, presenilin, and tau mutants, exhibits a much slower disease progression and
amyloid deposition starting around 6 months. For our study, we used 4-month-old 5xFAD
mice and investigated the effect on tau, Aβ, and microglial activity.

2. Materials and Methods

2.1. Animals

Four-month-old 5XFAD (APP K670N/M671L [Swedish], APP I716V [Florida], APP
V717I [London], PSEN1 M146L, and PSEN1 L286V; Jackson Laboratory, Bar Harbor, ME,
USA) mice and wild-type (WT) littermates were housed under a regular 12 h light/12 h
dark cycle at room temperature (20–25 ◦C) and supplied with food and water [16]. For
the experiment, each mouse (WT: male n = 7, female n = 8; 5xFAD: male n = 16, female
n = 16) was placed into an individual cage. All protocols for the animal experiments were
approved by the Institutional Animal Care and Use Committee of Chonnam National
University (CNU IACUC-YB-2022-154; CNU IACUC-YB-2023-156) [17].

2.2. Probiotics and Phosphatidylserine Supplementation

The mice were divided into four groups: 5xFAD, 5xFAD/Probiotics, 5xFAD/
Phosphatidylserine (PS), and WT. Starting from 4 months of age, the probiotics group
was supplemented daily with 8 × 107 CFU of probiotics (Bifidobacterium lactis KL101,
Limosilactobacillus fermentum KL271, and Levilactobacillus brevis KL251; Kolab, Inc., Gwangju,
Republic of Korea) in 8 mL sterilized water for 3 months. The probiotics were prepared
as described with minor modifications [9]. The bacterial cultures were stored at 4 ◦C and
used in their live state. PS significantly improved cognitive function when administered
to AD patients [18]. Several studies confirmed the efficacy of PS in AD patients and an
animal model [19–21]. In the rodent model, the effective dose was 15–30 mg/kg and we
used 21mg/kg daily in this study. The PS group, as a positive control, was fed freeze-dried
food containing PS for 3 months.
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2.3. Open Field Test

After 2 months of probiotics supplementation, the mice were subjected to behavior
tests. Locomotor activity was measured in an open-field test as described [22]. Each mouse
was placed in the center of the arena (40 × 40 × 40 cm) and allowed to freely explore for
5 min for prehabituation. In the main test, the movement of each mouse was recorded for
20 min and analyzed using ANY-maze software ver. 6.32 (Stoelting, Wood Dale, IL, USA).

2.4. Cross Maze

Each mouse was placed in a cross-shaped maze with four arms and monitored. The
duration of the examination period was 10 min. The rate of spontaneous alternation was
determined using the following formula: actual alternation/(possible alternation [total
number of arm entries] − 3) × 100 (%) [17].

2.5. Morris Water Maze

The Morris water maze (MWM) test utilized a circular, open pool, which was filled
with opaque water, with a diameter of 114 cm [23]. The water became opaque using non-
toxic paint and the temperature was maintained at ~24 ◦C. A hidden platform (17 × 10.5 cm)
was strategically positioned in the target quadrant below the water surface [24]. The mice
were then subjected to the acquisition and probe phases. In the acquisition phase, each
mouse underwent training, which involved four trials per day for 4 days [25]. During each
trial, the mice were given a 60 s time limit to swim, and the trial concluded as soon as they
reached the platform. Following the completion of each trial, the mice were allowed to
remain on the platform for 20 s. After finishing the 4-day acquisition phase, a probe test
was performed without the platform, lasting for 90 s. The movement of each mouse was
then recorded, and time spent in the designated target quadrant and the latency to reach
the platform were analyzed using ANY-maze software.

2.6. Immunohistochemistry

The animals were euthanized after a 3-month period of receiving treatments. Subse-
quently, their brains were extracted, fixed in a 4% paraformaldehyde solution, and then
soaked in phosphate-buffered saline (PBS) with 30% sucrose overnight. The brain tissues
were then embedded in optimum cutting temperature (OCT) freezing media, sliced (30 µm
thickness), and mounted on glass slides. Brain sections were permeabilized using 0.15%
Triton X-100 in PBS (PBST) for 30 min and then washed with PBS. The sections were then
incubated with 3% bovine serum albumin (BSA) and 3% goat serum in PBS with 0.1%
Triton X-100 for 30 min. The primary antibodies, mouse anti-Aβ (6E10, 1:3000; BioLegend,
San Diego, CA, USA) and rabbit anti-IBA-1 (1:3000; Wako, Richmond, VA, USA), were
applied to the samples for 3 days at 4 ◦C. The sections were then washed with PBS and
incubated with the secondary antibodies, Alexa Fluor 568 anti-mouse IgG or Alexa Fluor
488 goat anti-rabbit IgG (1:2000; Invitrogen, Waltham, MA, USA), overnight at 4 ◦C.

2.7. Quantification and Image Analysis

Fluorescence images were captured utilizing the EVOS M7000 (Invitrogen, Waltham,
MA, USA) microscope. Subsequent quantification and analyses were carried out uti-
lizing ImageJ software ver. 1.53q developed by the National Institutes of Health (NIH,
https://imagej.net/ij/). The immunoreactivity of Aβ was calculated as the percent area of
immunoreactive cells per slide (%). Regarding the microglia, the relative immunoreactivity
was determined based on the stained slides. Images were taken using a Leica Stellaris 5
(Leica, Deerfield, IL, USA) confocal microscope to analyze microglial branches z-stacked at
1.5 µm intervals and compressed to about 15 images.

2.8. Microglia Morphology Analysis

A ramified cell is one that exhibits a complex network of processes originating from
the cell body. Changes in microglia ramification indicate a microglial response to altered

https://imagej.net/ij/
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physiological conditions. ImageJ software (NIH) was consistently employed to process
all photomicrographs, converting them into binary and skeletonized images. To analyze
the microglial branches, we measured processes from a total of 10–20 microglia for each
location in one mouse and summarized the number of branches and the total process
length using ImageJ software. In addition to generating skeletonized images, we manually
counted the cell bodies in each photomicrograph [26].

2.9. Protein Preparation

The brain cortex was collected in radioimmunoprecipitation assay (RIPA) lysis buffer
composed of 25 mM Tris-HCl (pH 7.6), 0.01% Nonidet P-40, 150 mM NaCl, 1% sodium
deoxycholate, 0.1% sodium dodecyl sulfate (SDS), 100 mM phenylmethylsulfonyl fluoride
(PMSF), and protease inhibitors. These lysates were mechanically homogenized using
a 26-gauge needle with 10 repetitions. Subsequently, the samples were centrifuged at
16,100 cfg for 30 min at 4 ◦C. RIPA lysis buffer was utilized in a volume of 200 µL for small
tissue samples and 500 µL for larger tissues, such as the cortex. The protein concentration
in the lysates was determined using the bicinchoninic acid (BCA) assay.

2.10. Western Blot

Lysates containing 35 µg of protein were separated on a 10% acrylamide gel through
SDS-polyacrylamide gel electrophoresis (PAGE). The separated proteins were subsequently
transferred onto polyvinylidene difluoride (PVDF) or nitrocellulose membranes (Amer-
sham, Little Chalfont, UK). To prevent non-specific binding, the membranes were blocked
using a blocking buffer composed of 5% skim milk in Tris-buffered saline (TBS) containing
0.1% Tween 20 (TBST) buffer for 30 min at room temperature. Following the blocking step,
the membrane was washed four times with TBST for 5 min each time. Afterward, it was
incubated with the primary antibody, mouse anti-PHF-1 (1:3000), in TBST overnight at
4 ◦C. The next day, the membrane was exposed to the goat anti-mouse HRP-conjugated
secondary antibody (ENZO, Farmingdale, NY, USA) in TBST at a dilution of 1:10,000 at
room temperature for 2 h. Finally, the immunoreactive bands were selectively detected
using the enhanced chemiluminescence (ECL) reaction.

2.11. Statistical Analysis

Behavioral data, images, and Western blot data underwent analysis using a
two-way analysis of variance (ANOVA) and one-way ANOVA, followed by post hoc analy-
sis utilizing Tukey’s post hoc test. All presented data are expressed as the mean ± standard
error of the mean (SEM). Statistical significance was determined with a threshold of
p < 0.05, where values below this threshold were considered statistically significant.

3. Results

3.1. Probiotics Improve Recognition, Memory, and Spatial Memory in 5xFAD Mice

In this study, we investigated the hypothesis that probiotics enhance memory in animal
models of AD, as suggested by a preclinical study [11,12]. To test this, we supplied a mixture of
probiotic bacteria (Bifidobacterium lactis, Levilactobacillus brevis, and Limosilactobacillus fermentum)
and phosphatidylserine (PS) as a positive control or the vehicle for 2 months before the
behavior study (Figure 1A). PS improved the pathology and symptoms of AD by inhibiting
neuroinflammation, increasing glucose metabolism in the brain, and normalizing N-Methyl-
D-aspartate (NMDA) receptor activity [27]. Cognition and memory were evaluated in 5xFAD
mice, an AD mouse model, using cross maze, novel object recognition, and MWM tests, while
continuing to supply probiotics to the mice. In the cross maze test, the 5xFAD mice treated
with probiotics or PS showed a significant improvement in their memory, represented by a
higher alternation ratio, compared to that of the untreated 5xFAD mice. However, there was
no change in the total arm entry (Figure 1B,C). Similarly, in the novel object recognition test,
the 5xFAD mice treated with probiotics or PS exhibited enhanced memory, showing a higher
preference index compared to that of the untreated 5xFAD mice, though the difference was
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not statistically significant (Supplemental Figure S1). Furthermore, in the MWM test to assess
hippocampus-dependent spatial learning and memory, a notable increase in the memory
(represented by decreased time spent in the target quadrant) was observed in the 5xFAD mice
treated with probiotics or PS in the probe test as compared to that of the vehicle-treated 5xFAD
mice (Figure 1D–G). These findings strongly suggest that probiotics can have a protective
effect on the loss of spatial and recognition memories in the 5xFAD mouse model.
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Figure 1. Probiotics alleviated the memory defect in 5xFAD mice. (A) The experimental procedure
for the mice is displayed. (B,C) The cross maze and (D–G) Morris water maze were utilized to assess
the learning and memory of mice. (B) In the cross maze test, the loss of the alternation rate was
attenuated by probiotics, (C) but no changes in the number of total arm entries of the 5xFAD mice
were seen. (D–G) Probiotics also diminished the defects in learning and memory in the Morris water
maze test. (D) Escape latency during the learning phase. (E) Representative track plot of Day 4.
(F) Time spent in each quadrant (seconds) during the probe phase. Treatment, F (3, 35) = 0.4372,
p = 0.7278; Quadrant time, F (3, 105) = 16.58, p < 0.0001; Interaction Treatment × Quadrant time, F
(9,105) = 5.365, p < 0.0001 was analyzed using two-way ANOVA, post hoc Tukey’s test. (G) Target
quadrant time (seconds) in the probe phase. WT: Wild type, n = 13; TG: 5xFAD transgenic mice, n = 9;
TG + PB: Probiotic-treated 5xFAD transgenic mice, n = 9; TG + PS: Phosphatidylserine-treated 5xFAD
transgenic mice, n = 8. One-way analysis of variance (ANOVA) test; two-way ANOVA test; n.s, not
significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001.
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3.2. Probiotics Alleviated Aβ Accumulation in the Hippocampus and Cerebral Cortex of
5xFAD Mice

A recent study found significant variations in the composition of the GM (which
regulates the decline in cognitive function) and an increase in Aβ deposition in an AD
model [28]. Therefore, we investigated the Aβ-positive area in the hippocampus and
cerebral cortex to further evaluate the neuroprotective effects of probiotics. In the tissue
staining, a significant decrease in the Aβ (6E10)-positive area was seen in 5xFAD mice
that were treated with either probiotics or PS compared to that of the untreated 5xFAD
mice (Figure 2). These findings provide compelling evidence of the neuroprotective effects
of probiotics, especially in the hippocampus and cerebral cortex, thus highlighting their
potential use as a treatment for AD.
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Figure 2. Probiotics decreased amyloid-β (Aβ) accumulation in the hippocampus and cerebral cortex
in 5xFAD mice. (A) Representative immunohistochemistry images of the hippocampus and cerebral
cortex. Scale bar = 100 µm. (B–E) Probiotics significantly decreased the Aβ level as quantified as the
percent area of Aβ staining (6E10 positive) in the dentate gyrus (DG), Cornu Ammonis (CA) 1, CA3,
and cortex in 5xFAD mice. Phosphatidylserine showed a similar protective effect. WT: Wild type,
n = 6; TG: 5xFAD transgenic mouse, n = 6; TG + PB: Probiotics-treated 5xFAD transgenic mice, n = 6;
TG + PS: Phosphatidylserine-treated 5xFAD transgenic mice, n = 5. One-way analysis of variance
(ANOVA) test; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001.

3.3. Probiotics Reduced Microglial Activation in the Hippocampus and Cerebral Cortex in
5xFAD Mice

Microglial activation is a prominent feature of AD [29] and the impact of the host GM
on microglia homeostasis has been suggested [30]. We investigated the effects of probiotics
on microglia by evaluating the intensity of the activated microglia in the hippocampus
and cerebral cortex in 5xFAD mice. As a result, increased immunoreactivity and activated
microglia were observed in the brains of 5xFAD mice (Figure 3). However, 5xFAD mice
treated with either probiotics or PS showed a significant reduction in both the number and
activity of microglia as compared to that of the vehicle-treated 5xFAD mice (Figure 3). These
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findings provide compelling evidence for the role probiotics play in alleviating microglial
activation in the AD model.
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Figure 3. Activation of microglia in 5xFAD mice was reduced by probiotics. (A) Representative
images of activated microglia (IBA-1) in the hippocampus and cerebral cortex. Scale bar = 100 µm.
(B–I) Probiotics reduced the stained area of microglia and the number of microglia in the dentate
gyrus (DG), Cornu Ammonis (CA) 1, CA3, and cortex in 5xFAD mice treated with either probiotics
or phosphatidylserine, as compared to that of the vehicle-treated 5xFAD mice, and as quantified as
the percent area of IBA-1 immunoreactivity. WT: Wild type, n = 6; TG: 5xFAD transgenic mouse,
n = 6; TG + PB: Probiotics-treated 5xFAD transgenic mouse, n = 6; TG + PS: Phosphatidylserine-treated
5xFAD transgenic mouse, n = 5. One-way analysis of variance (ANOVA) test; *, p < 0.05; **, p < 0.01;
***, p < 0.001; ****, p < 0.0001.

3.4. Probiotics Suppressed Microglial Activation in 5xFAD Mice

We further analyzed the detailed morphological modification of microglial activation
using the microglial skeleton analysis method. Our results indicate that the number of
branches and the total process length of the microglia were reduced in the hippocampus
and cerebral cortex (Figures 4 and S2) of 5xFAD mice. However, the administration of
probiotics and PS attenuated these changes in 5xFAD mice (Figure 4). Taken together, these
findings imply that the use of probiotics may efficiently suppress microglial activation in
the AD mouse model.
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Figure 4. Probiotics suppressed microglial activation in the dentate gyrus (DG), Cornu Ammonis
(CA) 1, and CA3 in the hippocampus and cerebral cortex of 5xFAD mice. (A) Representative images
of microglial processes in the DG, CA1, and CA3 in the hippocampus and cerebral cortex. The
inset indicates an enlarged area of the upper white dotted frame. Scale bar = 100 µm, inset scale
bar = 20 µm. Our results demonstrate that the administration of probiotics and phosphatidylserine
to 5xFAD mice resulted in increased numbers of branches and the total process length of microglia,
as compared to that of the 5xFAD mice in the (B,C) DG, (D,E) CA1, and (F,G) CA3 in the (H,I)
hippocampus and cerebral cortex. WT: Wild type, n = 6; TG: 5xFAD transgenic mouse, n = 6;
TG + PB: Probiotics-treated 5xFAD transgenic mouse, n = 6; TG + PS: Phosphatidylserine-treated
5xFAD transgenic mouse, n = 5; One-way analysis of variance (ANOVA) test; *, p < 0.05; **, p < 0.01;
***, p < 0.001.

3.5. Probiotics Reduce Phosphorylated Tau in the Cerebral Cortex in 5xFAD Mice

Tau hyperphosphorylation is another distinct pathological feature in the brains of
AD patients. Accumulating evidence suggests microglia play a role in the tau level and
distribution in AD [31,32]. Recent studies have reported that microglial activation is an
important factor that accelerates the aggregation and propagation of tau [32,33]. In this
study, we observed the tau phosphorylation level using a phosphorylated tau-specific
antibody. In the Western blotting assay, tau phosphorylation was elevated in 5xFAD mice,
as compared to that of the WT mice (Figures 5 and S3). However, it was significantly
reduced in the 5xFAD group treated with probiotics, which was comparable with the effect
of PS treatment (Figure 5). These findings strongly support the idea that probiotics have a
beneficial effect in reducing tau phosphorylation in the brain of an AD mouse model.
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Figure 5. Probiotics reduce p-tau (s396, s404; PHF-1) in the cerebral cortex. (A) A representative West-
ern blot of the cerebral cortex revealed that the level of phosphorylated tau (PHF-1) was significantly
decreased in the 5xFAD group treated with probiotics when compared to that of the vehicle-treated
5xFAD group. A similar effect was observed in mice subjected to phosphatidylserine. (B) Immunoblot
quantification of phosphorylated tau. WT: Wild type, n = 4; TG: 5xFAD transgenic mouse, n = 4;
TG + PB: Probiotics-treated 5xFAD transgenic mouse, n = 4; TG + PS: Phosphatidylserine-treated
5xFAD transgenic mouse, n = 4. One-way analysis of variance (ANOVA) test; *, p < 0.05; **, p < 0.01.

Altogether, our data suggest that oral uptake of probiotics alleviated Aβ or tau pathol-
ogy and memory loss in an AD model, which might be mediated by the attenuation of
microglial activation.

4. Discussion

Currently, the existing treatments for AD are primarily focused on symptom man-
agement rather than halting or preventing the progression of the disorder. However,
therapeutic approaches directly targeting Aβ or tau have had limited application up until
now. Recently, significant research efforts have been focused on GM and GBA as alterna-
tive mechanisms to regulate AD. This approach showed a potential for the development
of novel therapeutic interventions for AD [34]. Specifically, oral bacteriotherapy, which
involves orally administering beneficial bacteria, is gaining recognition as a viable strategy
for preventing and treating various disorders, including those related to the CNS [11,35,36],
given that probiotics may enhance recognition and spatial memories in animal models of
cognitive impairment. Therefore, we hypothesized that probiotics may have a therapeutic
effect on 5xFAD mice. In our various behavioral tests, we found that probiotics improved
recognition and spatial memories in 5xFAD mice.

In the previous report, oral supplementation with Bifidobacterium breve had a protective
effect against memory impairment in an AD model [37]. The probiotics (Bifidobacterium
lactis, Levilactobacillus brevis, and Limosilactobacillus fermentum) also improved LPS-induced
cognitive impairment and memory loss in mice [9]. In this study, we used the same
combination of live probiotic bacteria strains to investigate their therapeutic effects on
AD. The probiotics improved the cognitive defects and memory loss and attenuated Aβ
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accumulation in 5xFAD mice. Additionally, the protective effect of the combined strains
on Aβ and memory in this study was more pronounced than that of the single strain used
previously. This suggests a beneficial effect of the combined use of probiotics. However,
direct comparisons were not possible because the two studies used different AD models.
Hence, further investigation comparing a single strain and multiple strains in a model
would give direct evidence of the beneficial effect of combining multiple strains.

A recent study utilized WT and APPswe/PS1∆E9 transgenic mice to investigate the role
of dysbiosis in AD using several methods. The investigation results revealed that dysbiosis
induced heightened Aβ accumulation, significantly altered GM composition, and caused
a decline in cognitive function, suggesting the importance of the GM in preventing Aβ

burden in an AD model [38]. Consequently, our findings show that probiotics notably
reduced Aβ accumulation and prevented cognitive/memory dysfunction in the AD model.
Although Aβ has long been believed as the main pathological cause of AD, it has been
consistently demonstrated that the accumulation and deposition of amyloid-β (Aβ) plaques
do not exhibit a direct correlation with neuronal loss or cognitive decline [39–41]. Moreover,
many individuals exhibit a substantial burden of amyloid plaques, as assessed through
positron emission tomography (PET) scans, yet remain asymptomatic in terms of memory
impairment [42]. On the other hand, the mean prevalence of amyloid positivity was 88%
among the patients diagnosed with AD, meaning that significant cases of AD are not
Aβ-dependent [43]. These brought up questions about the role of Aβ in AD. Nevertheless,
the observed efficacy of recently approved anti-Aβ therapies, such as Lecanemab and
Donanemab, in mitigating cognitive decline provides further evidence supporting the
pathological involvement of amyloid-β (Aβ) in neurodegenerative processes [44].

Furthermore, inflammation-mediated pathways may trigger neurodegenerative dis-
eases via the GBA. Chronic low-grade inflammation observed in older individuals may
influence neuroinflammation by affecting glial cells, which may result in cognitive impair-
ment [45]. In AD, neuroinflammation is driven by microglia [46], which can be modified
to several morphological types. The hyperramified microglia are one type of activated
microglia, which have an enlarged soma and thickened processes. The hyperramified mi-
croglia have been described in post-mortem AD, aged, and stressed human brains [47,48],
which is possibly involved in stress-related synaptic modifications. On the other hand,
dystrophic microglia are described with beading and fragmentation of the branches of
the microglia [49]. Dystrophic microglia, which are observed in close proximity to Aβ

deposits in the brains of postmortem AD patients, are hypothesized to represent a senescent
phenotype of microglia [49,50]. In this condition, microglia lose their capacity to respond
to chronic inflammatory stimuli and to perform their neuroprotective functions [47]. In a
previous study, the microglia of 5xFAD mice had shorter processes and fewer branches com-
pared to the microglia of WT mice and we observed similar microglial modifications [51].
In our data, probiotics suppressed the modifications of microglia, which can promote toxic
activity and suppress the beneficial effects of microglia, leading to neuroinflammation in
5xFAD mice.

One defining pathological characteristic of the brains of patients with AD is the hy-
perphosphorylation of tau. In AD, patients’ brains have been shown to exhibit excessive
tau phosphorylation. This impedes the normal attachment of tau to microtubules, leading
to AD pathology. Recently, it was proposed that probiotic intake may affect tau phospho-
rylation [52]. In our findings, probiotics inhibited tau hyperphosphorylation. Specifically,
probiotics may suppress lipopolysaccharide (LPS)-generating bacteria and LPS-induced
inflammation, which stimulates tau phosphorylation [53].

In summary, the current findings support the potential use of probiotics as an in-
novative therapeutic strategy for treating AD. We demonstrated the protective effect of
probiotics in 5xFAD mice through several memory tests. In the cross maze, novel object
recognition, and MWM tests, the probiotic treatment attenuated memory impairment in
5xFAD mice. Moreover, the neuroprotective effects of probiotics in AD were supported
by a decreased accumulation of Aβ in the hippocampus and cerebral cortex. Microglial
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activation was also attenuated in these regions and the group that received probiotics
showed a reduction in tau phosphorylation. These findings suggest a protective effect of
probiotics to reduce Aβ burden, tau pathology, and microglia-mediated inflammation in
the AD model. Future studies will comprehensively identify and elucidate the mechanisms
of probiotics in the context of AD.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/brainsci14030208/s1, Figure S1: Recognition memory
defect was alleviated by probiotics in 5xFAD mice; Figure S2: Skeletonized images of microglia;
Figure S3: Additional Western blot used for the quantification of phosphorylated tau (PHF-1) in
Figure 5B.
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