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Abstract: Approaches to preserve corticomotor excitability (CE) are attracting interest as a treatment
for pain-induced changes in neural plasticity. We determined the effects of mirror therapy (MT) on
skeletal muscle pain. Fifteen healthy adults who received hypertonic saline injections (5.8% NaCl,
0.2 mL) into the first dorsal interosseous (FDI) muscle of the right hand to induce experimental
skeletal muscle pain were assigned to either the “MT and injection” or “injection only” group. Post-
injection, the “MT and injection” group observed their left index finger abducting and adducting
for 4 min, creating the illusion that the right index finger was moving. The “injection only” group
remained at rest. CE and pain were assessed by measuring motor-evoked potentials (MEPs) of
the right FDI triggered by transcranial magnetic stimulation and the numerical rating scale (NRS),
respectively. MEP amplitudes were significantly higher in the “MT and injection” group, a trend
that persisted post-MT intervention (MT intervention; p < 0.01, post-1; p < 0.05). The time for the
NRS score to reach 0 was notably shorter in the “MT and injection” group (p < 0.05). Our preliminary
results suggested that MT decreases CE and pain in skeletal muscles, potentially preventing neural
plasticity changes associated with skeletal muscle pain and providing early pain relief.

Keywords: corticomotor excitability; experimental muscle pain; hypertonic saline; motor-evoked
potentials; mirror therapy; transcranial magnetic stimulation

1. Introduction

Acute pain can affect many aspects of motor control and performance, including
changes in muscle strength, endurance, and force control [1–3]. Chronic pain also alters
behavior and movement patterns, leading to pain avoidance [4–6]. These changes lead to
long-term changes in corticomotor excitability (CE) that might cause plastic changes in the
central nervous system [7,8]. This notion is supported by the experimental acute muscle
pain decreases in the CE of painful muscles [9].

In studies where short-lasting pain is induced in healthy participants, it has been
shown that a decrease in CE occurs. This decrease is thought to be a physiological defense
mechanism, protecting the painful area from further pain or damage [9]. Conversely, in
cases of persistent pain, it has been reported that the more severe the pain, the greater
the decrease in CE [9]. In addition, since it has been reported that increasing CE using
non-invasive brain stimulation techniques, such as high-frequency repetitive transcranial
magnetic stimulation, alleviates pain in chronic pain patients, it is conceivable that a
relationship exists between persistent pain and CE [10]. Therefore, if the attenuation in CE
induced by pain can be restored before transitioning to chronic pain, it holds the potential
to prevent the development of chronic pain. Furthermore, recent reports have highlighted
that exercise can activate endogenous descending pain inhibitory pathways, a phenomenon
being increasingly recognized as exercise-induced hypoalgesia [11].
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Fractures, common orthopedic injuries necessitating immobilization for bone and
joint recovery, have been reported to cause organic changes in both the peripheral and
central nervous systems, inducing mechanical hyperalgesia and other symptoms [12,13].
Particularly, in the central nervous system, these changes have been observed at the cortical
level, which may lead to further dysfunction and prolonged pain [14,15]. To remedy this
situation, it is necessary to develop interventions that allow exercise to be performed
without exerting physical stress on the affected region. Additionally, restoring the decrease
in CE in the injured cortical areas is essential [16].

Hypertonic saline is widely used to induce experimental pain, and CE can be assessed
as motor-evoked potentials (MEPs) using transcranial magnetic stimulation (TMS). These
techniques have been applied to reduce pain-induced CE [17–20]. The hypertonic saline-
induced decrease in CE caused by pain in an experimental skeletal muscle pain model
can be inhibited by action observation and motor imagery tasks that facilitate CE [21,22].
However, although active observation and motor imagery affect the nervous system, they
do not alter the perception of pain itself [22]. Thus, we focused on mirror therapy (MT) as a
potentially effective treatment modality (Figure 1A). Movement of an unaffected extremity
is used to facilitate the CE involved in the movement of an affected extremity [23–25]. MT
was originally used to treat phantom limb pain in amputees [26]. Pain reduction is thought
to be caused by the illusion of extremity movement triggered by MT and facilitation of CE
through the mirror neuron system by action observation [27]. MT can enhance excitability in
the motor limb and ipsilateral motor cortex [28]. Furthermore, considering the effectiveness
of physical therapy in mitigating pain [29], combining MT with actual exercise might
reduce pain.
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Figure 1. Mirror therapy task. (A) Equipment setup required for mirror therapy. (B) Motor-evoked po-
tential measurements. Mirrors were concealed from the “injection only” group during measurements.
(C) The mirror therapy task in the “MT and injection” group involved observation of abduction and
adduction movements of left index finger. Transcranial magnetic stimulation was synchronized with
abduction movement timing using infrared sensors to detect movement of left index finger. Sensor
was positioned on the surface on which hands were placed. EMG, electromyography; MT, mirror
therapy; TMS, transcranial magnetic stimulation.

MT can activate the neural network involved in moving an injured extremity, even
in the absence of physical movement [28]. Thus, it might be a useful treatment for acute
musculoskeletal pain. We speculated that the visual illusion created by MT and its ability
to facilitate CE might reduce pain.

This study aimed to determine the effects of MT tasks on pain intensity and CE in
acute experimental skeletal muscle pain. We tested the hypotheses that MT counteracts
decreases in CE associated with experimental muscle pain and reduces pain.

2. Materials and Methods
2.1. Participants

The inclusion criteria comprised being right-handed, being healthy, being aged ≥ 18 years,
having no pain due to injury or other causes at the time of recruitment, and being with-
out previous upper extremity pain or injury that required treatment from a healthcare
professional. All participants were screened for the risk of being affected by TMS and
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injections and were given verbal and written explanations about the study before they
provided written informed consent to participate. The study was approved by the local
Ethics Committee of the Nagasaki University Graduate School of Biomedical and Health
Sciences (approval no.: 19101004-3; date of approval: 8 March 2022). All the experimental
procedures were conducted in accordance with the principles embodied in the Declaration
of Helsinki.

2.2. Experimental Design

The experimental design is shown in Figure 2. Participants were randomly assigned to
the either the “injection only” or “MT and injection” group. In the “injection only” group,
hypertonic saline was injected into the first dorsal interosseous (FDI) muscle, after which
participants remained at rest without any movement while their pain status was monitored.
Conversely, in the “MT and injection” group, the same hypertonic saline solution was
injected into the FDI muscle. However, they performed the MT task for 4 min, starting
from 60 s to 300 s post-injection, while their pain status was monitored.
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Baseline CE for both groups was assessed with 1 min of MT practice, followed by
3 min of rest before injection [30]. All participants were instructed to rest with their eyes
closed, and then were evaluated with 20 MEPs obtained from random TMS pulses at
6–8 s intervals programmed using LabVIEW (National Instruments, Austin, TX, USA). All
participants were exposed to TMS pulses every 10 s from 70 to 780 s after hypertonic saline
injection, and 72 TMS MEPs per participant were recorded. We aligned MEPs during MT
with the timing of left FDI contractions in the “MT and injection” group using an infrared
sensor switch (KM221-010; Unique Medical Co., Ltd., Tokyo, Japan) and synchronously
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recorded TMS triggers using the LabVIEW system. The MEPs in the “injection only” group
were recorded while the participants rested with their eyes closed (Figure 3).
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Figure 3. Experimental protocol. The “MT and injection” group was injected with hypertonic
saline; then, the next 30–60 s were designated as the preparatory exercise period for MT. Abduc-
tive/adductive left index finger movements proceeded or were observed at 1 Hz rhythms from 60 to
300 s. Thereafter, participants rested with eyes closed for 780 s. Motor-evoked potential amplitudes
were measured from 70 s after injection to 780 s at 10 s intervals (72 shots). MT, mirror therapy; NRS,
numerical rating scale.

2.3. Measurement of Corticospinal Excitability

Corticospinal excitability was assessed in each participant by recording the MEPs
induced by TMS. The peak-to-peak MEP amplitude was measured over the FDI muscle in
every trial. Analysis of the MEP amplitude was conducted using peak-to-peak values.

Surface electromyography (EMG) activity was recorded in the FDI muscles using
pairs of 9 mm Ag–AgCl surface cup electrodes (SDC112, GE Healthcare; Chicago, IL,
USA). Surface EMG signals were amplified and filtered at a bandwidth of 5–3000 Hz using
a digital signal processor (Neuropack Sigma MEB-5504, Nihon Kohden; Tokyo, Japan).
Analog outputs from a single processor were digitized at a sampling rate of 10 kHz and
saved onto a computer for off-line analysis using an A/D converter (PowerLab16/30, AD
Instruments; Bella Vista, NSW, Australia) (Figure 1B).

At the beginning of the experiment, we identified the optimal TMS coil position
for evoking MEPs in the right FDI muscle (the hotspot). TMS was delivered to the left
primary motor cortex hotspot, marked with a pen on a swimming cap covering the scalp
of each participant. TMS employed a 70 mm figure-of-eight coil connected to a magnetic
stimulator (Magstim 200, Magstim, UK). The coil was positioned tangentially over the
scalp with its handle pointing backward and rotated approximately 45◦ away from the
mid-sagittal line. Care was taken to maintain the same coil position relative to the scalp
throughout the experiment. The resting motor threshold was defined as the lowest stimulus
intensity required to evoke an MEP of at least 50 µV in amplitude in the right FDI muscle in
5 out of 10 trials. The test stimulus intensity was carefully adjusted to elicit a peak-to-peak
MEP amplitude of approximately 1 mV in the FDI muscles under the control condition
(110–130% of the resting motor threshold). Throughout the experiments, participants were
instructed to avoid inadvertent movements that could give rise to background EMG activity.
For each muscle in each trial, the 20 ms period preceding TMS initiation was checked for
background EMG activity. If background EMG data were found, data from both muscles in
the trial were rejected.

2.4. Mirror Therapy Task

The “MT and injection” group watched their left hand in a mirror during repetitive
internal/external rotation movements of the left index finger at a rhythm of 1 Hz. Verbal
encouragement was provided to facilitate the perception that their right hand was moving.
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All participants repeated the same MT task for 1 min before being injected with hypertonic
saline. The “MT and injection” group then implemented the MT task for 4 min from 1 to
5 min thereafter. The first 30–60 s after injection were designated as a preparatory period
that allowed the participants to synchronize their movements to the prescribed rhythm
(Figure 1C).

2.5. Hypertonic Saline Injection and Measurement of Pain Intensity

The injection site was determined by palpating the contracted FDI muscle. The skin
was disinfected with alcohol, and pain was induced by injecting a bolus of sterile hypertonic
saline (0.2 mL, 5.8% NaCl) into the FDI muscle using a 1 mL syringe with a disposable 27 G
needle [13,16]. Pain intensity was scored from 0 to 10 using a numeric rating scale (NRS)
at 30 s after injection and every 30 s thereafter until the first NRS score of 0 indicated the
disappearance of pain.

2.6. Statistical Analyses

We compared MEPs at rest, and at 0–300 (during MT intervention), 310–540 (post-1),
and 550–780 (post-2) safter injection. We determined whether interactions or main effects
occurred by evaluating MEP amplitude using two-way repeated measures analysis of
variance (ANOVA) with both “groups” (“MT and injection”/“injection only”) and elapsed
“time” after hypertonic saline injection as the main factors. A post-hoc test was conducted
with Bonferroni adjustment to compare the “group” and with Dunnett’s test to compare
the “time”.

We also compared the time elapsed between hypertonic saline infusion and pain
resolution, defined as an NRS score of 0, between the groups using independent t-tests. In
addition, we determined potential interactions or main effects by evaluating NRS scores
using a two-way repeated measures analysis of variance (ANOVA), with both groups (“MT
and injection” and “injection only”) and time elapsed after hypertonic saline injection as
the main factors. The NRS scores in both groups were compared every 120 s from 30 s to
750 s (seven times in total) after the hypertonic saline was injected.

All data were analyzed using SPSS 23 (IBM Corp., Armonk, NY, USA). Statistical
significance was set at <5%.

3. Results
3.1. Study Participants

Table 1 summarizes the characteristics of the “MT and injection” and “injection only”
groups. One participant withdrew from the study due to developing vagal reflexes after
hypertonic saline injection. Consequently, data from 15 participants were analyzed. Age,
sex, and baseline MEP values did not significantly differ between the groups.

Table 1. Characteristics of the participants.

Characteristic “MT and Injection” “Injection Only”

Male/female (n) 4/3 4/4
Age (years) 24.9 ± 6.3 21.8 ± 2.4

Baseline MEP amplitude (mV) 0.94 ± 0.14 0.89 ± 0.12
MEP, motor-evoked potential; MT, mirror therapy; mV, millivolts.

3.2. Response of TMS MEPs to Pain Induced by Hypertonic Saline

A two-way repeated measures ANOVA revealed a significant interaction between
“group” and “time” (F3,39 = 5.531, p < 0.01, parietal η2 = 0.298). Post-hoc analysis with
Bonferroni correction revealed significantly higher MEP amplitude in the “MT and in-
jection” group than in the “injection only” group during MT intervention (p < 0.001),
post-1 (p < 0.05), and revealed marginally non-significantly higher MEP amplitude in
post-2 (p = 0.055). Post-hoc analysis with Dunnett’s test revealed significantly higher MEP
amplitude in MT intervention compared to rest in the “MT and injection” group (p < 0.05)
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and significantly lower MEP amplitude in post-1 compared to rest in the “injection only”
group (p < 0.05) (Figure 4).
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(±SE) FDI MEPs. Blue and red lines indicate “MT and injection” and “injection only” groups,
respectively. Mirror therapy intervention and post-1 significantly differed between groups (* p < 0.05;
** p < 0.001). FDI, first dorsal interosseous muscle; MEP, motor-evoked potential; MT, mirror therapy;
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3.3. Response of NRS Score to Pain Induced by Hypertonic Saline

We defined an NRS score of 0 as the time when pain disappeared. The independent
t-test revealed that pain dissipated significantly faster in the “MT and injection” group than
in the “injection only” group (p < 0.05; Table 2).

Table 2. Comparison of the time when pain disappeared between groups.

“MT and Injection” “Injection Only” p-Value

Time (ms) 394.3 ± 155.8 573.8 ± 155.8 p < 0.05
MT, mirror therapy; ms, milliseconds.

3.4. Time Course of NRS Scores

The time courses of NRS scores for pain induced by hypertonic saline to pain dissipa-
tion are shown in Figure 5. A two-way repeated measures ANOVA revealed a significant
main effect of “group” (F1,13 = 5.188, p < 0.05, parietal η2 = 0.285) and “time” (F6,78 = 128.697,
p < 0.001, parietal η2 = 0.908). However, there was no significant interaction between
“group” and “time” (F2.9,37.8 = 2.237, p = 0.102, parietal η2 = 0.147).
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4. Discussion

Approaches that can preserve CE have recently attracted increasing interest owing
to their potential application to musculoskeletal pain rehabilitation [16]. As far as we can
ascertain, this is the first investigation into the impact of a visual illusion of hand movement
on experimental skeletal muscle pain and associated neuroplastic changes. We applied
a paradigm based on the mechanisms through which MT induces the visual illusion of
hand movement and facilitates CE ipsilateral to the hand that is doing an exercise task.
The results indicated that pain intensity and duration were significantly improved in the
“MT and injection” group that applied the MT task during acute experimental muscle pain
compared with the “injection only” group that did not. A decrease in CE associated with
experimental pain was alleviated in the “MT and injection”, but not in the “injection only”
group. These findings provide useful clinical insights and suggest that MT can reduce pain
and restore CE in patients with acute musculoskeletal pain.

4.1. Acute Experimental Pain Reduces CE

We confirmed that CE manifesting as MEP amplitude in the “injection only” group
after hypertonic saline injection was reduced; this agreed with previous findings [18,20,22].
The reduction in CE associated with pain is thought to be mediated via an increase in
gamma-aminobutyric acid inhibition and a decrease in glutamate-mediated (N-methyl-d-
aspartate receptor acting on glutamatergic interneurons) intracortical mechanisms [20]. The
reduction in CE might serve as a protective mechanism against further injury by inhibiting
the movement of an affected extremity [31,32]. Our results also confirmed that CE in the
“injection only” group decreased soon after the hypertonic saline was injected and persisted
throughout the 13 min monitoring period. A review of experimental studies of pain in
healthy persons found that the decrease in CE was sustained for up to 30 min after pain
resolution, and then returned to baseline levels [9]. Therefore, the decrease in CE identified
herein during the monitoring period might be associated with the impact of experimental
skeletal muscle pain.



Brain Sci. 2024, 14, 206 8 of 12

4.2. Mirror Therapy Might Preserve CE in Human Experimental Skeletal Muscle Pain

We revealed that MT can preserve CE in human experimental skeletal muscle pain,
possibly through its effects on the nervous system.

MT can facilitate CE ipsilaterally to the hand being exercised [28,33,34]. The primary
effect herein was a change in the CE of the hand ipsilateral to that engaged in the exercise
task caused by the visual illusion phenomenon. Unilateral hand movements are typically
generated via excitation of the contralateral corticospinal tract, while the activity of the
ipsilateral corticospinal tract is repressed (interhemispheric inhibition) [35]. However,
when MT induces a visual illusion, it can enhance CE in the motor-related area of the
hand behind the mirror that is not involved in the movement [28]. Thus, MT might have
augmented CE of the motor-related area of the afflicted hand in the “MT and injection”
group. The secondary effect was motor-related CE changes due to action observation that
facilitates the CE involved in the observed movement (mirror neuron system) [29]. Here,
the “MT and injection” group watched the exercising hand in the mirror, which might have
facilitated CE in the movement-related areas of the hand with pain on the other side of
the mirror. Furthermore, the “MT and injection” group was intentionally encouraged to
create a visual illusion of hand motion by observing mirror images during MT. This might
have induced or enhanced the induction of motor imagery during motor observation and
enhanced the facilitating effect MT had on CE [25,30].

We found that the CE of the FDI, reflected as MEP amplitude, significantly increased in
the “MT and injection” group compared with that in the “injection only” group, even after
intervention. Studies of brain activity before and after MT have found increased CE on the
same side as the hand that exercised even after treatment [28,36–40]. A study of a combined
exercise observation and motor imagery intervention for experimental skeletal muscle pain
found a significant increase in CE during and immediately after intervention compared
with a group without intervention [22]. These findings suggest that the MT applied to
experimental skeletal muscle pain in the present study counteracted the pain-induced
decrease in CE and that this effect persisted after the intervention.

4.3. Mirror Therapy Reduced and Promoted Recovery from Acute Skeletal Muscle Pain

The results of this study confirmed that pain intensity and time to pain resolution in the
“MT and injection” group was reduced compared with those in the “injection only” group,
suggesting that MT could reduce experimental skeletal muscle pain. Pain intensity is rated
lower during working memory tasks such as attention, Stroop, and three-back tasks. This
decrease in pain intensity during task progression is thought to be mediated by a decrease
in activity in pain-related brain regions as attention is diverted to the task [22,41]. The
MT task in this study required participants to accomplish certain index finger movements,
rhythms, and eye gazes. Therefore, their attention might have been diverted toward the
task rather than pain during the MT intervention.

We consider that the MT task in this study was a painless hand exercise that might
reduce pain and promote recovery, as exercise decreases sensitivity to pain stimuli [29].
This phenomenon is called exercise-induced hypoalgesia and has recently achieved pop-
ularity as a concept that might be effective for treating patients with intractable chronic
pain [42–44]. Most exercises related to exercise-induced hypoalgesia, such as aerobic ex-
ercise and resistance training, require some degree of exercise load; therefore, the ability
of the index finger exercise used in the MT task in this study to induce hypoalgesia must
be verified.

The kinesthetic illusion effect might be the mechanism through which MT reduces pain.
Kinesthetic illusions induced by MT are thought to enhance spatial attention toward an
invisible affected limb [45]. MT stimulates activity in the primary visual and somatosensory
cortices ipsilateral to a moving hand, as well as in higher-order processing areas in the
occipital and parietal lobes [46–51]. In other words, inducing the kinesthetic illusion using
a mirror image of a painful moving hand might activate neural networks associated with
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movement, including vision and perception. Increased attention to the painful hand might
have reduced pain by creating a positive image of it moving despite the pain [52].

Because we accumulated CE data for up to 13 min after pain onset, we could not
determine CE trends thereafter. Since CE decreased for ~30 min after hypertonic saline
injection [9], the long-term effects of MT require further investigation. In addition, the
effects of MT on patients with acute traumatic injuries, such as fractures, should be clinically
investigated using randomized controlled trials before our results can be clinically applied.
The advantages of MT are that it does not require hand movements on the injured side
and carries little risk. Our findings indicate that understanding the effects of MT in clinical
practice would be valuable.

Our study has some limitations. First, the sample size was small. The sample size
calculation based on effect size required more than 40 participants. It is crucial to recognize
that the findings of this study should be regarded as preliminary because data were
obtained from only 15 participants. In the future, the number of participants should
be increased, and the data should be augmented. Second, the conditions under which
the control group was set were limited, and the effects of MT cannot be fully verified.
Especially crucial is the establishment of appropriate controls for the “injection only” group
to thoroughly scrutinize the outcomes of this study. Further verification in the future is
necessary. Specifically, potential control groups could involve those solely engaged in
action observation or motor imagery, individuals performing a working memory task, and
participants executing the index finger exercise without a mirror display. We believe that
future validation of these additional conditions will help elucidate the details of the effects
of MT on skeletal muscle pain.

The clinical significance of this study is that MT has the potential to preserve CE at the
site of injury that has been reduced by pain, thereby reducing the duration of pain. This
may help prevent the chronicity of pain associated with immobility that occurs during
periods of rest and immobilization necessary for the recovery of damaged tissue, a common
requirement in many orthopedic conditions. In addition, one of the greatest advantages of
MT is its ability to activate the neural networks associated with movement in the affected
area in the absence of any physical stress on the area. This means that active therapeutic
intervention is possible even during the period of immobilization of the affected area,
which may contribute significantly to the acute treatment of musculoskeletal trauma.

5. Conclusions

Mirror therapy for experimental acute skeletal muscle pain could be an effective tool
for preventing plastic changes in the central nervous system associated with pain. Our
results concur with those of previous studies of mental practice. Furthermore, to the best of
our knowledge, this is the first study to test an approach aimed at preserving the reduction
in CE, which is effective against pain. Mirror therapy could be easily introduced into
clinical practice because it requires simple tools, acts on the nervous system without the
need to exercise the affected limb, and could be applied to any trauma or disease that
causes pain in the musculoskeletal system. Our findings may give hope for many patients
with pain that is difficult to treat.
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