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Abstract: Migraine is a burdensome neurological disorder that still lacks clear and easily accessible
diagnostic biomarkers. Furthermore, a straightforward pathway is hard to find for migraineurs’ man-
agement, so the search for response predictors has become urgent. Nowadays, artificial intelligence
(AI) has pervaded almost every aspect of our lives, and medicine has not been missed. Its applications
are nearly limitless, and the ability to use machine learning approaches has given researchers a chance
to give huge amounts of data new insights. When it comes to migraine, AI may play a fundamental
role, helping clinicians and patients in many ways. For example, AI-based models can increase
diagnostic accuracy, especially for non-headache specialists, and may help in correctly classifying the
different groups of patients. Moreover, AI models analysing brain imaging studies reveal promising
results in identifying disease biomarkers. Regarding migraine management, AI applications showed
value in identifying outcome measures, the best treatment choices, and therapy response prediction.
In the present review, the authors introduce the various and most recent clinical applications of AI
regarding migraine.

Keywords: migraine; migraine diagnosis; migraine management; migraine attack prediction; artificial
intelligence; machine learning; personalised medicine

1. Introduction

Migraine is a primary headache typically presenting with recurring episodes of
moderate-to-severe unilateral throbbing pain that may usually last from 4 to 72 h [1].
The episodes in some patients may be preceded or accompanied by transient focal neuro-
logical symptoms (i.e., aura), configuring migraine with aura (MwA), a subpopulation quite
peculiar compared to migraine without aura (MwoA) patients. Migraine is one of the most
frequent neurological disorders, with an estimated prevalence that goes up to 15% of the
worldwide population [2]. Due to its disabling nature, it represents in many ways a societal
problem since it entails very high direct and indirect costs on a large scale [3]. Based on the
presentation of pain episodes, migraine can be classified as chronic (CM—i.e., headache for
at least 15 days per month with 8 or more showing migraine features for at least 3 months)
or episodic (EM—i.e., if the abovementioned criteria are not met) [1]. Moreover, one of
the main issues is that there is still a consistent number of patients who do not receive
a diagnosis, even because of the very high prevalence of the disease. In addition, many
patients are misdiagnosed due to the difficulty of referring them to a headache specialist,
particularly in low-income countries, where the prevalence may even be underestimated [4].
Consequently, only a portion of migraineurs are correctly treated for their condition, while
the others still suffer and are exposed to the harm and side effects of improper medications
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or their improper use. When a mistreated migraine patient starts using more and more
painkillers to bear with her recurrent pain episodes, a secondary condition may overlap,
called medication overuse headache (MOH) [1]. From a clinical point of view, MOH is a
different headache that shows non-specific features but worsens a pre-existing chronic (i.e.,
presenting at least 15 days per month) primary headache. This acute drug overuse is often
linked to behavioural factors such as the anticipatory fear of the next headache attack, but
it even shows some features that resemble drug addiction [5,6].

Migraine diagnosis has always constituted a challenge for the medical community
since it relies entirely on the patient’s reported history in the absence of any unequivocal
diagnostic biomarker to be used in everyday clinical practice. This may be one of the reasons
why this widespread neurological disorder still lacks dignity in terms of healthcare costs,
reimbursement, and absence from work recognition in most countries. When correctly
diagnosed, migraine management relies on the use of abortive (symptomatic) drugs for
acute pain control and on preventive ones to reduce headache episode frequency if necessary
(i.e., when a patient complains of two or more days of debilitating headache per month) [7].
Among the acute drugs are listed generic painkillers such as paracetamol, non-steroidal
anti-inflammatory drugs (NSAIDs), or specific ones such as triptans or ditans [8]. Among the
preventatives, there are traditional oral drugs such as beta-blockers (e.g., atenolol, bisoprolol,
metoprolol, or propranolol), antiepileptics (e.g., topiramate), angiotensin II-receptor blockers
(e.g., candesartan), tricyclic antidepressants (e.g., amitriptyline), or injective ones such as on-
abotulinumtoxinA (BoNT-A) and the recent anti-calcitonin gene-related peptide antibodies
(anti-CGRP mAbs) [7]. Unfortunately, in this broad scenario, where even non-migraine-
specific drugs find their place, it becomes very challenging to find reliable elements that
may predict drug efficacy a priori and may guide migraine management straightforwardly.

In recent years, the pervasive presence of artificial intelligence (AI) has become appar-
ent, penetrating various aspects of our daily lives. Within the expansive landscape of AI,
machine learning (ML) has emerged as a central and transformative subfield. Its ability
to empower systems to learn through the analysis of huge amounts of data has moved it
to the forefront of technological innovation. For this reason, ML systems are also called
data-driven models. Moreover, within the realm of ML, deep learning stands out as a
cornerstone of research and development.

Before 2006, typically, ML referred to all those non-deep learning methods. These
methods, also called shallow learning methods, include algorithms that are very com-
mon nowadays, such as shallow neural networks (neural networks with only one hidden
layer of nodes), random forests, support vector machines, decision trees, XGBoost, etc. [9].
However, with the introduction of depth as an architectural characteristic of models, the
expansion of deep learning begins. Deep learning methods include very common archi-
tectures such as neural networks with many layers, including Convolutional Networks,
Transformers, Recurrent Neural Networks, Restricted Boltzmann Machines, Deep Belief
Networks, and many other architectures [10]. While deep learning has emerged as the
predominant choice for addressing a myriad of tasks due to its unparalleled capacity to
extract complex features from vast datasets, shallow learning approaches continue to have
a certain appeal in scenarios where simplicity is paramount and data scarcity poses a
constraint. The widespread adoption of these technologies, and in particular deep learning
architectures, can be attributed to the substantial availability of data and extensive efforts
to enhance their accessibility [11]. Consequently, AI models in medicine have demon-
strated performance levels comparable to conventional diagnostic methods, indicating
their potential to significantly contribute to the diagnostic process across diverse contexts.

The versatility of ML models is underscored by their ability to analyse various types of
data, ranging from images and tabular data to sequences and molecular structures. For this
reason, several papers have also been proposed for the study of brain diseases [12] involving
the analysis of radiological images [13–15], histopathological images [16], spectroscopy [17],
electroencephalography signal processing [18], clinical genomics [19], etc. [20]. In addition,
irrespective of the nature of the data, ML excels at tackling classification tasks, such as



Brain Sci. 2024, 14, 85 3 of 15

distinguishing samples based on characteristics like malignancy, histotype, or genetics [21].
Additionally, these models prove to be valuable in detection tasks, identifying regions
of interest (ROI) within images or patterns within sequences. The segmentation of data
is another field where ML showcases its efficacy, along with many other contexts [15,22].
Their application also seems to have been embedded in many neurological disciplines,
including epilepsy, movement disorders, neuropsychiatric diseases, etc. [23].

Despite prevailing criticisms and reservations regarding the risks associated with AI,
especially in the domain of generative AI, its continued proliferation remains unabated.
The accruing benefits introduced by AI systems seem to outweigh the perceived risks,
contributing to the sustained growth of their adoption. Regulatory agencies have responded
to this trend by acknowledging the advantages of AI and its drawbacks and initiating the
formulation of pertinent regulations in this area [24,25]. Concepts like Explainable AI and
Trustworthy AI have emerged as focal points in these regulatory discussions. Despite
lingering concerns, the trajectory of AI adoption in medicine suggests a trend towards
greater integration, supported by evolving regulations that prioritize ethical considerations
and the responsible use of these advanced technologies.

In this kaleidoscopic scenario, AI could support migraine diagnosis and management
in many ways. For instance, it could help non-headache specialists reach the correct
diagnosis and guide them to the choice of the best treatment for the patient. The objective
of this narrative review is to present the most recent evidence about the role that AI plays
today in supporting the diagnosis and classification of migraine, as well as its management,
including the identification of outcome measures, personalised treatments, and in therapy
response prediction.

2. Search Methods

The review included the full original articles written in the English language of a
literature search in the PubMed/Medline electronic database up to 4 December 2023.
Papers presenting non-original data, such as review articles or books, have been excluded
from the results but used exceptionally for introducing a new subject. The search queries
used included but were not limited to “artificial intelligence migraine”, “machine learning
migraine”, “AI migraine”, “artificial intelligence headache”, “machine learning headache”,
and “AI headache”.

3. AI in Migraine Diagnosis
3.1. Improving Diagnosis

As already mentioned, one of the main issues associated with migraine is that it is often
not recognised. Consequently, many patients spend several years not seeking medical atten-
tion and using self-medication. Moreover, general practitioners (GPs) or other non-headache
specialists may come to the wrong conclusions, explaining headache with neck musculoskele-
tal disorders or vision defects. Therefore, patients often undergo useless additional evaluations
and delay the correct diagnosis. Table 1 lists the articles that have been found that show how
AI may aid clinicians in migraine diagnosis and classification. In this scenario, AI models
based on questionnaires developed by headache specialists demonstrated good accuracy in
recognising the correct diagnosis, especially for migraine [26]. In the second phase, such
models demonstrated even the ability to increase the accuracy of the diagnoses formulated by
non-headache specialists [27]. This approach could be very useful as a retest tool and could
provide a better health service for patients, reducing the percentage of misdiagnoses.

Furthermore, it is possible to use hybrid intelligent approaches [28] or ML decision
trees to realise systems that are able to make a reliable diagnosis of primary or secondary
headache based on ICH-3 criteria [1]. The results of a cross-sectional study on 202 patients
showed how a Computer-based Diagnostic Engine (CDE) proved to be a reliable tool
compared to a semi-structured interview performed by a headache specialist. Particularly,
CDE improved the diagnostic process, helping to rule in or out the diagnoses of migraine
or probable migraine [29]. The proposed algorithm was easily implementable on any
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internet-connected device (e.g., computer, tablet, or mobile phone). Therefore, it is possible
to think that in the future, similar tools may be used to aid GPs or non-headache specialist
clinicians in reaching a correct diagnosis. Moreover, they could even be used as a pre-
visit screening tool to improve and shorten the time of the patient’s visit at a headache
outpatient clinic. In addition, ML models have been revealed to be even more useful for
the differential diagnosis between migraine and tension-type headache (TTH), the most
prevalent primary headache worldwide. In this case, it even helped to recognise the most
important symptoms to distinguish the two conditions [30,31].

Migraine may be more evident among adults, but it is a very frequent disorder even
in the paediatric population, with an estimated prevalence overall of around 11% [32]. The
main issue for children’s diagnosis is that sometimes migraine is not so eloquent, with pain
that may be shorter lasting (i.e., from 2 h). Furthermore, it may show atypical features
or presentations (i.e., migraine equivalents) [33]. Here, AI may be particularly useful for
the correct diagnosis, as demonstrated by a study based on headache questionnaires of
children and adolescents from the ages of 6 to 17 years [34]. An AI diagnostic model based
on questionnaires easily addressable to children through parents or teachers may lead to
early diagnoses with less burden. Moreover, since there is a high prevalence of migraine
among children, it could be easily provided to paediatricians.

A different application of AI is not related to the diagnosis of migraine itself but
to the detection of its comorbidities. The relationship between migraine and a higher
cardiovascular risk is long known, and it is particularly described for MwA [35]. One of the
reasons may be found in the increased risk of subclinical atrial fibrillation (AF) that has been
demonstrated in a large cohort of MwA patients with an AI-ECG algorithm [36]. Differently,
another study tried to use ML algorithms to detect subgroups of migraine patients based
on pain intensity and found even a group sharing common cervical musculoskeletal
characteristics [37].

AI proved to be a useful tool even to extract real-world evidence (RWE) from electronic
health records (EHRs). Traditional RWE data extraction may rely on structured information
(e.g., problem lists, tick boxes, etc.), but clinicians tend to write more detailed information
in free text, and the latter is harder to analyse. Here, an AI-based advanced RWE approach
produced a wider number of migraine diagnoses and more accurate data [38]. This ap-
proach could be very helpful in identifying migraine patients in different contexts, both to
avoid missing diagnoses and to improve data collection for research purposes.

3.2. Improving Classification

After a correct diagnosis, it could be useful for both clinical and research purposes
to classify people affected by migraine among different subtypes (e.g., MwoA, MwA,
typical aura without migraine, and familial or sporadic hemiplegic migraine). The use of
artificial neural networks showed, in this case, high precision and accuracy in correctly
classifying migraine patients based on their symptoms and reported characteristics [39].
In addition, resting-state EEG connectivity studied using ML methods proved to be a
useful means to differentiate patients affected by MwA from MwoA [40]. Similar high-
performance results in ML-based classification methods were obtained by studying resting-
state magnetoencephalographic oscillatory connectivity in patients affected by CM and
comparing them to healthy subjects (HS). Even the distinction with EM patients was reached
with a good performance, as was the one with patients with fibromyalgia (FM) [41].

Using supervised and unsupervised ML models, it was possible to classify different
types of pain in a series of migraine patients who self-reported their attacks using a mobile
phone app. In the mentioned study, the authors found that the most represented pain
patterns were constituted by (i) high or medium-intense, (ii) sudden, (iii) long-lasting,
and (iiii) mild or low-intense pain episodes. Accordingly, they thought that the patient
could even be classified into five types, one per every pain type and another one showing
a mixture of pain types [42]. Such classification could improve patient management,
influencing the physician’s approach based on the main pain pattern reported by the patient.
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Table 1. Main articles using AI to improve migraine diagnosis and classification.

Reference
(First Author, Year) Type of AI Main Results Number of Patients/Data Analysed

Chiang, 2022 [36]
AI-ECG algorithm able to predict the risk of

subclinical AF using a convolutional
neural network

MwA is associated with an increased risk of
subclinical AF 40,002 patients (17,840 MwA and 22,162 MwoA)

Cowan, 2022 [29]
CDE: a decision tree designed to ask questions to
diagnose ICHD-3 primary headaches and several

secondary ones

A positive CDE result helps rule in migraine or
probable migraine diagnoses; a negative result

helps rule them out
202 patients

Frid, 2019 [40]

Predictive (classification methods and
attribute-selection techniques) and traditional
explanatory (statistical) analyses on functional

connectivity measures

Functional connectivity metrics of resting-state EEG
can be considered a biomarker to differentiate MwA

from MwoA; MwoA patients show higher
connectivity in the theta band

52 patients (30 MwA and 22 MwoA)

Gálvez-Goicurla, 2022 [42] Pain episodes clustered and then classified by
unsupervised and supervised ML models

Migraine pain types are classified as high- or
medium-intense pain episodes, sudden pain

episodes, long-lasting pain episodes, and mild- or
low-intense pain episodes.

344 migraine attack data from 51 patients

Hsiao, 2022 [41] SVM algorithms to establish the classification model

Functional connectivity of resting neuromagnetic
activity may identify CM; discriminative features

may be found from the interactions among salience,
sensorimotor, and default mode networks; the

classification model exhibited excellent
performance in differentiating CM from HC and
high performance in distinguishing CM from EM

and FM

240 subjects (70 HS, 100 CM, 35 EM, and 35 FM);
data from 56 HS and 80 CM were included in the

training dataset, while those of 14 HS, 20 CM,
35 EM, and 35 FM were included in the

testing datasets

Katsuki, 2023 [26] AI-based headache diagnosis model AI model demonstrated high diagnostic
performance for migraine

6058 patients (4829 with migraine, 834 with TTH,
78 with TACs, 38 with other primary headache

disorders, and 279 with other headaches)
(4240/6058 training and 1818/6058 test datasets)

Katsuki, 2023 [27] AI-based headache diagnosis model AI model improved the non-specialist diagnostic
performance

4000 headache patients diagnosed by a specialist
(2800 training and 1200 test datasets)

Kwon, 2020 [31]

Stacked classifier model with four layers of binary
XGBoost classifiers (1. migraine vs. non-migraine; 2.

TTH vs. non-TTH; 3. TAC vs. non-TAC (i.e.,
epicranial headaches and TCH); and 4. epicranial

headaches vs. TCH)

Excellent performance of the ML approach, but
good accuracy just for migraine

2162 patients who visited the headache clinic
(1286 training and 876 test datasets)
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Table 1. Cont.

Reference
(First Author, Year) Type of AI Main Results Number of Patients/Data Analysed

Liu, 2022 [30]

Decision tree, random forest, gradient boosting
algorithm, and SVM models used to build a

discriminant model and a confusion matrix used to
calculate the evaluation indicators of the models

Applying ML to the decision-making system for
primary headaches improves diagnostic accuracy;
nausea/vomiting and photophobia/phonophobia

are identified as the most important factors for
distinguishing migraine from TTH

173 patients (84 with migraine and 89 with TTH)

Perez-Benito, 2019 [37]
Subgrouping based on ML algorithms: nearest
neighbours’ algorithm, multisource variability

assessment, and random forest model

Based on pain intensity, one group of patients was
younger, with lower joint positioning sense error in

cervical rotation, greater cervical mobility in
rotation and flexion, lower flexion-rotation test
scores, positive PAIVMs reproducing migraine,
normal PPTs over the tibialis anterior, a shorter

migraine history, and lower cranio-vertebral angles
while standing than the remaining subgroups.

67 women affected by migraine

Sanchez-Sanchez, 2021 [39] Supervised learning technique based on an artificial
neural network

Artificial neural networks can achieve high
precision and accuracy in migraine classification

400 medical records of users diagnosed with
pathologies associated with migraine

Sasaki, 2023 [34]
AI-based model using 17 objective items from

questionnaires and predicted migraine or
non-migraine diagnosis

AI model exhibited high diagnostic performance for
paediatric and adolescent migraine

909 questionnaire sheets (636 training and
273 test datasets)

Simic, 2021 [28]
Various mathematical, statistical, and artificial

intelligence techniques, including decision-making
methodology and clustering methods

The optimal number of clusters is three,
representing three classes of headaches: (i)
migraine, (ii) TTH, and (iii) other primary

headaches; good quality of the system

1022 subjects

Abbreviations: AI = artificial intelligence; CDE = Computer-based Diagnostic Engine; CM = chronic migraine; EM = episodic migraine; FM = fibromyalgia; HS = healthy subject;
ML = machine learning; MwA = migraine with aura; MwoA = migraine without aura; PAIVMs: passive accessory intervertebral movements; PPTs: pressure pain thresholds;
SVM = support vector machine; TAC = trigeminal autonomic cephalalgia; TCH = thunderclap headache; and TTH = tension-type headache.
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3.3. Biomarker Identification

As already mentioned, one of the fields of application of AI relies on the analysis of brain
imaging. Those that may look like a few magnetic resonance imaging (MRI) slices to the
human eye contain plenty of information for a machine. When it comes to migraine detection,
things are not easy, and a reliable biomarker has long been looked for. Table 2 shows the main
papers in the literature in which AI was to try to identify a migraine biomarker. A study that
used several approaches to distinguish HS from MwA patients found that the thickness of the
left temporal pole, right lingual gyrus, and left pars opercularis can be considered markers for
MwA. Moreover, the authors divided MwA patients between the ones with simple aura (i.e.,
visual—MwA-S) and the ones with complex aura (i.e., all the other aura symptoms—MwA-
C). In this case, the thickness of the left pericalcarine gyrus and of the left pars opercularis
represented the markers for the MwA subtype classification [43]. Other authors recognised
a distinct connectome marker in MwoA patients using resting-state functional connectivity
(rsFC). By using recursive feature elimination (RFE) combined with support vector machine
(SVM), the authors identified a map of functional connections involving visual, default mode
network, sensorimotor, and frontoparietal networks, with an accuracy ranging from 84% to
91%, helping discriminate MwoA patients from HS. Moreover, the authors identified core
network alterations in migraine that were not different from those observed in chronic pain
disorders such as FM and low back pain [44].

Among the biomarkers that have been proposed to recognise migraine patients, neu-
rophysiological ones have always played a central role. It is, therefore, difficult to choose
the best technique to obtain the most reliable result. A precedent study highlighted how
migraine patients show an increase in the magnitude of the EEG beta band from channels
T5-T3 when stimulated with flashes at 2, 4, or 6 Hz [45]. The same group took advantage of
an artificial neural network model to establish which of the stimulation frequencies could
be most effective in revealing the expected results [46].

A recent study attempted to distinguish CM from MOH patients or HS using an
AI approach based on linear discriminant analysis and quadratic discriminant analysis.
Particularly, they showed how the different groups showed different characteristics dur-
ing a mental arithmetic task when comparing the features of functional near-infrared
spectroscopy of the prefrontal cortex [47].

Table 2. Main articles using AI for migraine biomarkers identification.

Reference
(First Author, Year) Type of AI Main Results Number of Patients/Data

Analysed

Akben, 2012 [46] Multi-layer perceptron
neural network

4 Hz of flash stimulation frequency is the most effective
frequency, and an 8 s period is necessary to identify
migraine at the beta band on the EEG T5-T3 channel

15 migraine patients and
15 HS

Chen, 2022 [47] Linear discriminant analysis and
quadratic discriminant analysis

The change of hemodynamic signals of HS was smaller,
while there was a large difference among

migraine patients

34 subjects (13 HS, 9 CM,
and 12 MOH)

Mitrovic, 2023 [43] Several models, the best being
linear discriminant analysis

The thickness of the left temporal pole, right lingual
gyrus, and left pars opercularis was found as markers

for MwA classification; the thickness of left
pericalcarine gyrus and left pars opercularis was

proposed as the features for the classification between
MwA-S and MwA-C

78 subjects, among which
46 MwA (22 MwA-S and

24 MwA-C) and 32 HS, with
340 different features used

Tu et al., 2020
[44]

Recursive feature
elimination + SVM

Different rsFC can accurately differentiate migraine by
HS. No difference in this connectome was detected

between MwoA and chronic pain patients.
These markers helped to predict response

to acupuncture.

144 subjects, among which
70 MwoA, 46 HS, 17 CLBP,

and 11 FM

Abbreviations: CLBP = chronic low back pain; CM = chronic migraine; FM = fibromyalgia; HS = healthy subject;
MwA = migraine with aura; MwA-S = with simple (i.e., visual) aura; MwA-C = with complex (i.e., different
or additional neurological symptoms) aura; MwoA = migraine without aura; rsFC = resting-state functional
connectivity; and SVM = support vector machine.
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3.4. Attack Prediction and Triggers

If a patient could know in advance when her migraine attack would present, she could
organise her life better. Moreover, some behavioural strategies could even be effective in
managing the attack and preventing it. Table 3 shows the studies that used AI to obtain
models of attack forecasts. Regarding migraine attack prediction, a study demonstrated
that by using data from a mobile app, it was possible to create an AI model able to predict
a migraine attack the next day with good performance [48].

Table 3. Main articles using AI for migraine attack forecasting.

Reference
(First Author, Year) Type of AI Main Results Number of Patients/Data

Analysed

Katsuki, 2023 [49] Statistical and deep
learning-based methods

Low barometric pressure, barometric
pressure changes, high humidity, and

rainfall were associated with an
increased occurrence of

headache attacks

4375 filtered users with
336,951 headache events

Stubberud, 2023 [48]

Several standard ML
architectures with random

forest classification show the
best performance

An AI migraine attack forecasting
model is possible; the most predictive

factors were premonitory symptoms of
craving, swelling, feeling cold, the

amount of sleep, and the presence and
intensity of headache

18 patients who completed
388 headache diary entries

Abbreviations: AI = artificial intelligence; ML = machine learning.

The question about migraine attack triggers has always been controversial and ex-
tremely personal for each patient. For some, sleep deprivation or sleep dysregulation can
cause an attack, while for others, a similar causation may be found with certain foods or
alcohol. Here, a Japanese group used AI to analyse big data from a large cohort of patients
using a mobile phone app to note their headache attacks, together with weather changes.
The population was not exclusively represented by patients affected by migraine since
users were general headache sufferers, and several had no definite diagnosis. Nevertheless,
the authors found a significant relationship between low barometric pressure, baromet-
ric pressure changes, high humidity, rainfall, and an increased occurrence of headache
attacks [49].

4. AI in Migraine Management

The role of AI in migraine management has several implications, both for the prediction
of MOH and the evaluation of responsiveness to acute and preventive therapies. Indeed,
there is an urgent need for a personalised approach, and AI could add clinical-decision
support tools for migraine. Table 4 contains the main results of the included studies.

4.1. The Role of AI in the Identification of Outcome Measures

The evaluation of outcomes in migraine can be challenging because of the difficulty
of encapsulating subjective aspects (the so-called ‘soft’ outcomes) of the disease. For this
purpose, some authors applied natural language processing (NLP) and ML algorithms,
analysing 2006 encounters from 1003 patients obtained from EHRs. Eleven data elements
between headache severity, severe headache descriptors, and associated symptoms (nausea,
vomiting, photophobia, and phonophobia) reached an accuracy threshold >80% using the
F1 score, a method used to measure the accuracy of two classifications, assuming that
recall and precision are equally important. These results show that the application of AI to
EHR data has high accuracy in characterising disease outcomes when compared to a score
generated via manual annotation [50].

Medication overuse (MO) is one of the main contributing factors to the chronification
of episodic migraine, and consequently, the prediction of MO can be useful for preventive



Brain Sci. 2024, 14, 85 9 of 15

and therapeutic purposes. Ferroni et al. (2020) applied an ML-based decision support
system to a dataset of 777 consecutive migraine patients. A combined approach using
SVM and Random Optimisation (RO), or RO-MO, was employed to obtain prognostic
information from clinical, biochemical, drug exposure, and lifestyle data. When predicted
using at least three RO-MO models, medication overuse was accurately predicted with an
area under the curve (AUC) of 0.87 [51].

4.2. The Role of AI in Assisting the Choice of Therapy

The increasing armamentarium of antimigraine drugs has highlighted another poten-
tial field of application of AI, as recently observed in a study using big data with a two-level
nested logistic regression model. In a retrospective analysis of more than 10,000,000 mi-
graine attack records obtained using a smartphone e-diary application, the effectiveness of
25 abortive drugs for migraine attacks was tested, being significantly higher for triptans
(OR, 4.8), ergots (OR, 3.02), and anti-emetics (OR, 2.67). When compared to ibuprofen, low
effectiveness was observed for other medications such as acetaminophen, NSAIDs, and
combination analgesics. Except for aspirin, the OR for 24 drugs achieved statistical signif-
icance, with an area under the curve (AUC) of 0.849 using the above-mentioned logistic
regression model. Unfortunately, due to their relatively low use at the moment of data
extraction, the effectiveness of ditans and gepants was not included in the analysis [52].

Machine prescription for CM was tested in a study including the structured clinical
record of 1446 CM patients treated by 11 preventive strategies among BoNT-A, flunarizine,
candesartan, serotonin noradrenaline reuptake inhibitors (SNRI), topiramate, tricyclic
antidepressants (TCAs), acupuncture, valproate, beta-blockers, and serotonin agents. The
authors adopted standard NLP techniques to extract information from medical records; to
model individualised treatment responses, a causal multi-task Gaussian process model was
implemented and validated to calculate the average treatment effects. Data obtained from
individualised treatment effects show that, when compared to expert guidelines, machine
prescription allowed for successful treatment in a shorter time with no significant increase
in expense. Finally, logistic regression was employed to compare individualised treatment
effects to the average treatment effects; higher individual response rates were observed
when compared to the overall population, underlying the multifactorial pathophysiology
of CM and consequent heterogeneity in responsiveness to therapies [53].

4.3. AI and Predicting Therapy Responses

ML approaches can also be used to predict responses to precise therapeutic strategies
taken singularly. Response to anti-CGRP mAbs was evaluated in a recent multicentre
study involving 712 patients (84% CM) using variables commonly recorded in real clinical
practice, such as frequency of headaches, migraine days per month, and the Head Impact
Test-6 (HIT-6) scale. ML-based models found an F1 score range of 0.70–0.97 with an
AUC range of 0.87–0.98 at 6, 9, and 12 months after anti-CGRP therapy started, with a
response rate ranging from 50% to 75%. Moreover, according to this ML model, none of the
above-mentioned clinical characteristics significantly contributed to predicting response,
suggesting that anti-CGRP therapies can be effective in different migraine populations [54].

The prediction of response to BoNT-A has already been evaluated in two different
studies. In the first study, simulated annealing (SA) and a random tree algorithm were used
to predict the response to BoNT-A using HIT-6 and several other classifiers and clusters.
A total of 173 patients were included, and the efficacy of BoNT-A was tested before the
first infiltration and 12–16 weeks after each infiltration. Although sampled from 18 out of
173 records, a strategy based on the HIT-6 achieved an accuracy of over 91%. Other classi-
fiers (e.g., CM time evolution, drugs tested before BoNT-A, a first-grade family member
with migraine, etc.) predicted responses with an accuracy of 85%, confirming literature
data [55]. In another study, an ML method was used to predict treatment response after one
single cycle and 12 weeks after the fourth BoNT-A cycle compared to baseline, according
to the PREEMPT paradigm. Data from 145 patients (113 CM, 32 high-frequency EM, or
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HFEM) were analysed, applying several ML methods (artificial neural network, SVM,
Adaptive Neuro-Fuzzy Inference System, and random forest). In the CM group, no clinical
feature was able to discriminate between responders and non-responders, suggesting the
increasing need for novel and multimodal biomarkers. However, in the HFEM group, four
clinical features (i.e., age of migraine onset, opioid use, the anxiety subscore of the hospital
anxiety and depression scale, and the Migraine Disability Assessment, or MIDAS) helped
predict a good response to BoNT-A [56].

Prediction of biofeedback efficacy in migraine treatment was shown in a recent
study using an artificial neural network (ANN) named ARIANNA. In this complex study,
20 women with a CM diagnosis were included before and after 12 sessions of biofeedback
(3 sessions per week), and input layer parameter pre-treatment comprised age, MIDAS,
superoxide dismutase (SOD), nitrite and nitrate (NOx), and peroxide levels. ARIANNA
accurately predicted the post-treatment MIDAS score in 75%, being MIDAS correlated
with NOx levels (R = −0.675) and partially with peroxide levels within a specific range
(R = −0.675) [57].

In a trial exploring the effects of magnesium and cobalamin supplementation and
high-intensity interval training (HIIT), clinical and biological data were collected in 60 mi-
graine patients undergoing an AI analysis. Social network analysis aided in identifying
target biomarkers for migraine, and therefore, after this analysis, CGRP was selected as a
biomarker for the effect of cobalamin and magnesium treatment. The combined treatment
of supplementation with aerobic exercise succeeded in reducing serum CGRP levels, MI-
DAS, frequency, intensity, and duration of migraine attacks. In this study, AI identified
a pathophysiological and prognostic marker of migraine with a multistep computational
molecular biological analysis [58].

Several lines of evidence indicate transcutaneous vagal nerve stimulation (tVNS) as
having a class I recommendation for EM [59]. A recent study conducted in 70 patients
with MwoA and 70 with HS using functional MRI (fMRI) showed that using an SVM, it is
possible to accurately distinguish migraineurs from HS by 3650 discriminative features. In
the same study, an ML-based approach was used to predict response to tVNS and identified
70 out of 3650 features located in the trigeminal cervical and rostral ventromedial medulla
(TCC/RVM), thalamus, medial prefrontal cortex (mPFC), and temporal gyrus [60]. Using
fMRI, a neural marker previously identified with ML methods could predict response to
acupuncture [44].

Finally, a structured algorithmic analysis of 131 pain drawings using a random forest
ML helped predict outcomes after headache surgery, and a poor surgical outcome (defined
as a non-significant reduction in the Migraine Headache Index) was predicted by diffuse
pain, facial pain, and pain at the vertex, extracted from patients’ sketches [61].

4.4. Miscellaneous

The recent launch of the popular Chat Generative Pre-training Transformer (ChatGPT—i.e.,
an AI language model able to give answers to specific queries using reinforcement learning
from human feedback) raised concern about any useful application for clinicians. A recent
study tried to assess the quality of the ChatGPT replies, asking for literature papers supporting
different migraine preventatives. Despite some of the answers that could have been useful, the
authors reported that 66% of the provided references were fake, resulting from the so-called
“hallucinations”, i.e., an inaccurate response not justified by the AI training data. So, the
authors concluded that, despite the potentiality, the results of that version of ChatGPT were
still unreliable for medical purposes [62].
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Table 4. Main articles using AI for migraine therapy choose and response prediction.

Reference
(First Author, Year) Type of AI Main Results Number of Patients/Data Analysed

Chartier et al., 2022
[61] Random forest machine learning Data extracted from patients’ drawings had high accuracy in

defining poor surgical outcomes in headache patients. 131 pain drawings

Chiang et al., 2023 [52] Two-level nested logistic regression model Effectiveness of abortive drugs was accurately evaluated
with this model for triptans, ergots, and anti-emetics.

10,842,795 migraine attack records extracted from
an e-diary smartphone application

Ciancarelli et al., 2022 [57] Artificial neural network called ARIANNA (artificial
intelligent assistant for neural network analysis)

ARIANNA accurately predicted the post-treatment MIDAS
score after biofeedback treatment in 75%. 20 women with CM

Ferroni et al., 2020
[51]

SVM and Random Optimisation (RO-MO),
logistic regression

RO-MO can accurately predict medication overuse in
migraine, taking into consideration clinical, biochemical,

drug exposure, and lifestyle (four predictors). By using at
least 3 RO-MO, accuracy can be higher than 0.87.

777 migraine patients

Fu et al., 2022 [59] Leave-one-out cross-validation (LOOCV), SVM, and
support vector regression (SVR)

3650 fMRI features accurately distinguished migraine from
HS. 70 features accurately predicted response to transcranial

vagal nerve stimulation (tVNS).

70 EM
70 HS

Gonzalez-Martinez et al., 2022
[54]

Classification algorithms (random forests and
hyperparameters) and optimization metric (F1 score)

Independently from clinical and demographical features, AI
can accurately predict responses to anti-CGRP therapies.

712 patients with migraine receiving
anti-CGRP therapies

Hindiyeh et al., 2022
[50] NLP and ML algorithms (F1 score)

Data extracted from EHR were compared to reference
standards, and the average F1 score for automated

extraction was 90.2% for AI for 11 features, suggesting the
possibility of using AI for extracting ‘soft’ outcomes.

1003 patients
2006 encounters

Martinelli et al., 2023
[56]

Random forest, SVM, artificial neural network (ANFIS
and MLP), and fuzzy clustering

AI can efficiently predict responses to BoNT-A in CM and
HFEM. Only in HFEM a pattern of clinical features can

predict responsiveness to BoNT-A.

113 CM
32 HFEM

Matin et al., 2022 [58] Network and in silico analysis of differential gene
expression, using STRING 11.0 database

Aerobic exercise combined with vitamin B12 and
magnesium supplementation significantly ameliorated

MIDAS and headache features, paralleled by a decline in
CGRP levels.

60 CM

Parrales Bravo et al., 2019 [55]
Feature subset selection (C4.5, WrapperSubsetEval, and
ClassifierSubsetEval), simulated annealing method (SA),

and random tree

AI can predict responsiveness to BoNT-A with an accuracy
ranging from 85% (using clinical data) to 91% (HIT-6). 173 CM

Stubberud et al., 2022 [53] NLP, causal multi-task Gaussian process model, and
logistic regression model

AI can help choose the right individual preventive therapy
quicker. 1446 CM

Abbreviations: AI = artificial intelligence; CGRP = calcitonin gene-related peptide; CM = chronic migraine; EHR = electronic health record; EM = episodic migraine; HFEM = high-frequency
episodic migraine; HS = healthy subject; ML = machine learning; NLP = natural language processing; and SVM = support vector machine.



Brain Sci. 2024, 14, 85 12 of 15

5. Future Directions

The arrival of AI in the scientific world entailed nearly infinite clinical applications,
both for patients and clinicians. In the first place, it would be possible to establish a
correct diagnosis of migraine and to exclude, with a certain degree of certainty, other
causes of headaches through an AI-based interactive questionnaire. In such a way, GPs
or non-headache specialists would be supported in their work, while the patients would
receive an early diagnosis and treatment, avoiding pain and exposure to unnecessary
medications. The prevalence is so high, and the resources are often so few that a patient
could sometimes wait even more than one year before being referred to a neurologist for
suspicion of migraine. So, an AI-based provisional diagnosis could buy some precious
time to correctly address the patient and the GP to the correct diagnosis and management
waiting for a specialist consultation. It is worth underscoring that there will still be a role
for the neurologist in the diagnostic pathway. Indeed, the patient’s examination maintains
its relevance, and the exclusion of secondary headaches through the cautious identification
of red flags and/or the interpretation of imaging studies is still needed [63]. Moreover, a
headache expert is essential when dealing with resistant or refractory patients [64].

The scientific community has always tried to identify a reliable diagnostic biomarker
of migraine, but the one to be used in everyday clinical practice is still missing. It is possible,
though, that the huge amount of data that can be analysed with AI may come into use. As
illustrated above, there are already protocols able to analyse imaging data from MRI and
suggest migraine diagnosis or its classification. In the next few years, such techniques will
become more and more accurate and available so that migraine diagnosis will not be just
clinical but even supported by instrumental data.

The diffusion of wearable smart devices could be one of the main means through which
AI could serve patients directly. It is indeed possible to imagine that there will be devices
able to analyse internal and external factors and warn patients about an imminent migraine
attack. Furthermore, if such AI-based technology could reliably detect the prodromal
phase of the migraine cycle (i.e., up to 48 h before the pain starts [65]), the patient could
carry out some behavioural approach (e.g., regulate sleep) to disrupt the attack. It cannot
be excluded that, in the future, it would be possible to apply even pre-pain preventive
pharmacological strategies.

Unfortunately, it is still not possible to know in advance which preventive treatment
would be the most effective and tolerable for any migraine patient. Clinicians usually tend
to choose first- or second-line preventatives based on patients’ comorbidity. It is, therefore,
desirable that the AI-based analysis of clinical, neurophysiological, or imaging data could
give a hint about the treatment of choice both for efficacy and tolerability. It happens that
CM patients who need advanced treatments (e.g., BoNT or anti-CGRP mAbs) may wait
even more than 6 months or a year in the hope of becoming responders. So, if there were
algorithms able to predict the response of a treatment or the chance of conversion from
non-responder to responder, clinicians’ work could be facilitated, and patients’ lives could
be improved. Moreover, under the umbrella of anti-CGRP mAbs, AI may predict the best
one for the patient based on clinical or paraclinical data.

6. Conclusions

The emerging use of AI-based approaches shows huge potential for migraine from a
clinical point of view. Most applications aid clinicians in optimising the accuracy of the
diagnosis using data both from electronic records and headache-designed questionnaires.
Other approaches are still used nearly entirely for research purposes, such as the search
for migraine biomarkers. Smartphone-based AI interfaces have shown good accuracy in
migraine attack prediction, analysing both patients’ symptoms and external factors (e.g.,
weather). The optimisation of the choice of the preventive drug for migraine patients has
always represented a challenge. Luckily, AI-based algorithms are progressively leading to
advances and will soon provide tools to identify prognostic and therapeutic biomarkers,
allowing more and more personalised medicine.
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