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A large body of evidence from old stimulation and lesion studies on the hypothala-
mus in animals and humans demonstrates that this subcortical area significantly affects
socioemotional behavior [1–4]; more recent optogenetic studies extended this evidence by
showing that the stimulation of distinct hypothalamic nuclei elicits defensive and aggressive
responses [5–11]. Additional studies have revealed that hypothalamic stimulation can also
trigger pleasant responses and prosocial behavior [12–15]. Similarly, studies on the effects
of the intranasal administration of oxytocin (OXT) and arginine-vasopressin [16–22]—two
evolutionarily conserved hypothalamic peptides—have reported heterogenous and diver-
gent results, including augmented prosocial attitudes and behaviors as well as increased
mistrust, competition, and aggressive reactions [23–26].

Notwithstanding these findings on the important hypothalamic role in mediating
socioemotional responses, this brain region was, for a long time, mainly considered a relay
station, passing signals among the amygdala, basal forebrain, and mesencephalic structures
to support behavioral, autonomic, and endocrine components of higher-level controlled
emotional responses. Furthermore, until recently a rather limited number of investigations
explored, in humans, the direct involvement of the hypothalamus during socioemotional
responses. In addition, functional neuroimaging studies often undervalued or neglected
the hypothalamic contribution to social cognition and behavior.

Building on this evidence, this Special Issue, titled “Hypothalamus, Neuropeptides
and Socioemotional Behavior”, attempted to collect novel scientific reports highlighting the
central role of the hypothalamus in socioemotional behavior from different neurobiological
perspectives and methodologies in both healthy and clinical human populations, and in
animals. The studies hosted in this Special Issue, including neuroimaging or neurochem-
ical investigations, indeed provided some additional insights into the relevance of the
hypothalamus and its associated neuropeptides in modulating socioaffective responses.

For instance, considering the well-known modulatory role of oxytocin in social in-
teractions, including social comparisons and intergroup competition, the research of Kim
and colleagues [27] examined whether and how OXT differentially influences social com-
parisons in an intergroup situation. Using a double-blind placebo-controlled design, they
studied the effects of intranasal OXT administration on participants performing a social
comparison task, playing a gamble-like card selection game with either an in-group or
out-group member. They reported that the OXT-treated participants showed a greater social
comparison effect in games with an out-group member than in games with an in-group
member. Specifically, the participants in the OXT treatment condition showed a greater
acceptance rate for relative gain and a lower acceptance rate for relative loss while playing
with an out-group member rather than an in-group member. In contrast, no such effect
was observed among placebo-treated participants. These findings indicated that OXT also
modulates intergroup social comparisons with out-group versus in-group members.

Linking OXT and parental behavior, Cataldo and colleagues [28] aimed to extend our
current knowledge of the interactions between oxytocin receptor gene (OXTR) polymor-
phism, parental attachment, and socioemotional responses. Their research investigated
the influence of parental bonding and genetic allelic variation in an OXTR polymorphism
(rs53576)—an allelic variation that has been associated with socioemotional disorders such
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as autism [29]—on the levels of anxiety and avoidance in adult relationships. In 313 young
adults belonging to two different cultural contexts, namely Italy and Singapore, they ob-
served main effects of maternal characteristics, care, and overprotection on the levels of
experienced anxiety and avoidance. In addition, they reported an interaction effect between
OXTR rs53576 and maternal overprotection in explaining levels of anxiety and avoidance,
suggesting differential environmental susceptibility between Western and Eastern groups
despite equivalent individual genetic features.

Aiming to explore potential group differences in endogenous OXT concentrations
between individuals with autism spectrum disorder, ASD, and neurotypical (NT) controls,
Moerkerke and colleagues [30] conducted a meta-analysis of studies showing correlations
between individual differences in endogenous OT levels and social deficits, thus suggesting
a role of endogenous OT in the pathogenesis of social impairments characterizing ASD. An
analysis of 18 studies including 1422 participants revealed that endogenous OXT levels
were lower in children with ASD as compared to NT controls, but not in adolescent and
adult populations. Additionally, while no significant subgroup differences were found in
regard to sex, the group difference in the OXT levels of individuals with versus without
ASD appeared only in studies with male participants and not female participants. These
results suggest that atypical development might possibly be coupled with developmental
changes in endogenous OT levels; however, further research adopting more consistent and
appropriate methodologies is still necessary to confirm this assumption.

In addition to the well-established relationship between oxytocin and social behavior,
phoenixin, a novel peptide that has been associated with reproductive functions in both the
hypothalamus and pituitary [31], has recently attracted attention. Friedrich and colleagues’
study [32] investigated, in rats, whether phoenixin could play a role in the response
to inflammatory stress. They reported that lipopolysaccharide-induced inflammatory
stress was associated with phoenixin-immunoreactive brain nuclei including the central
amygdaloid, supraoptic nucleus, arcuate nucleus, bed nucleus of the stria terminalis, and
the medial part of the nucleus of the solitary tract. These results extended previous findings
that indicated distinct changes in neuronal activity and immunoreactivity in relation to
emotional stressor restraints [33]. Considering the neuronal structures involved, these
findings further suggest that phoenixin might impact emotional-related stressful responses
through its influence on several subcortical socioemotional brain centers.

In relation to hypothalamic nuclei, Carollo and colleagues [34] reviewed the current
literature using a scientometric approach to examine the relationship between the medial
preoptic area (MPOA) and parental behavior. They observed that current studies, mainly
on rodents, focused on the properties of the MPOA as well as on the interactions of the
MPOA with other brain networks, such as the reward circuits, in response to maternal
behavior. However, more recent studies on the MPOA focused on human populations and
also considered paternal behavior.

Finally, Caria and Dall’Ò [35] provided a synthesis of human neuroimaging studies
reporting hypothalamic activation during affiliative, cooperative interactions, ticklish laugh-
ter and humor, and during aggressive as well as antisocial interactions. Their systematic
review revealed a growing number of investigations showing that the evolutionarily-
conserved hypothalamic neural circuity substantially contributes to multiple and diverse
aspects of human socioaffective behavior. All of these distinct behavioral responses appear
to be regulated through widespread functional interactions of the hypothalamus with
multiple cortical and subcortical regions [36].

On the basis of the observed heterogeneity of hypothalamus-mediated socioemotional
responses, I propose that the hypothalamus and its associated peptides might play an
extended functional role in species survival and preservation, ranging from exploratory
and approaching behaviors, promoting social interactions, to aggressive and avoidance re-
sponses, protecting and defending established social bonds. I have recently postulated [36]
that these apparently divergent findings might also be reconciled in light of the function of



Brain Sci. 2023, 13, 1303 3 of 5

the hypothalamic–pituitary–adrenocortical axis in modulating both social approach and
avoidance behaviors [37].

Furthermore, according to an allostatic perspective [38–40], the hypothalamus would
support the energetic and physiological resources required to dynamically instantiate ap-
propriate and timely socioemotional responses through the monitoring and regulation
of bodily signal changes, as well as of hormonal and neuropeptide fluctuations. Such a
complex mechanism would possibly imply the instantiation of predictive physiological
representations of socioemotional contexts and interactions, and the consecutive evaluation
of prediction error signals [41–43], to ultimately optimize adaptive anticipatory responses.
Indeed, recent evidence in nonhuman primates revealed that the lateral hypothalamus
can generate fine prediction signals of reward expectation, uncertainty, and predictabil-
ity during both approaching and avoiding behaviors relative to appetitive and aversive
contexts [44]. These findings corroborate the postulated function of the hypothalamus in
mediating the predictive processing of biologically salient signals, and conceivably suggest
that such a predictive mechanism might also intervene during socioaffective interactions.

Future research exploiting ultra-high-resolution neuroimaging methodologies and
advanced methods for measuring neurochemicals and neuropetides is required to better
comprehend the complex neurophysiological regulation and neuropeptidergic signaling
orchestrated by the hypothalamus during human socioemotional interactions. Moreover, a
multimodal integrated approach, linking genetic, or other risk factors for socioemotional
disorders, to neurophysiological, neurochemical, or behavioral mechanisms, will also help
to clarify the exact role of this brain region in mediating maladaptive interpersonal behav-
iors observed in several neuropsychiatric disorders with severe socioaffective impairments
such as autism, schizophrenia, and antisocial personality disorder.
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