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Abstract: Exposure to repeated mild blast traumatic brain injury (mbTBI) is common in combat
soldiers and the training of Special Forces. Evidence suggests that repeated exposure to a mild or
subthreshold blast can cause serious and long-lasting impairments, but the mechanisms causing
these symptoms are unclear. In this study, we characterise the effects of single and tightly coupled
repeated mbTBI in Sprague–Dawley rats exposed to shockwaves generated using a shock tube. The
primary outcomes are functional neurologic function (unconsciousness, neuroscore, weight loss,
and RotaRod performance) and neuronal density in brain regions associated with sensorimotor
function. Exposure to a single shockwave does not result in functional impairments or histologic
injury, which is consistent with a mild or subthreshold injury. In contrast, exposure to three tightly
coupled shockwaves results in unconsciousness, along with persistent neurologic impairments.
Significant neuronal loss following repeated blast was observed in the motor cortex, somatosensory
cortex, auditory cortex, and amygdala. Neuronal loss was not accompanied by changes in astrocyte
reactivity. Our study identifies specific brain regions particularly sensitive to repeated mbTBI. The
reasons for this sensitivity may include exposure to less attenuated shockwaves or proximity to
tissue density transitions, and this merits further investigation. Our novel model will be useful in
elucidating the mechanisms of sensitisation to injury, the temporal window of sensitivity and the
evaluation of new treatments.

Keywords: blast traumatic brain injury; blast neurotrauma; blast trauma; functional deficits; repetitive
brain injury; concussion

1. Introduction

Traumatic brain injury (TBI) is a major cause of mortality and morbidity in both mil-
itary and civilian populations [1–4]. In the last 22 years, more than 470,000 US service
personnel have been diagnosed with a TBI [5]. Exposure to blasts, particularly from impro-
vised explosive devices (IEDs), has become a significant cause of military TBI [6,7], and
blast TBI has been called a “signature injury” associated with military operations in Iraq
and Afghanistan [8]. Blast TBI is increasingly experienced by civilians in conflict zones [9]
and during terrorist attacks or industrial explosions. The 2020 Beirut port explosion, which
was the largest non-nuclear explosion in recent history, was caused by the detonation of
2750 tons of inappropriately stored ammonium nitrate fertilizer; this explosion, occurring
in an urban environment, resulted in over 6000 civilian injuries and 200 fatalities [10]. A
multicentre study of the injury characteristics of patients presenting at emergency depart-
ments after the Beirut explosion found that 6.2% had concussion originating from primary
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blast exposure [11]. The current (2022) conflict in Ukraine has seen cities and civilian
infrastructure targeted by artillery and guided weapons [12].

The majority (~80%) of TBIs in both military and civilian populations are mild [4,5,7].
Due in part to an overlap of symptoms with other conditions, mild blast TBI can be difficult
to diagnose. A particular concern in military deployment and training is exposure of
personnel to repeated mild blast injuries and concussion [13]. In addition to exposure
to multiple mild blasts from IEDs during operations, there are specific groups, such as
breachers and artillery personnel, that are routinely exposed to multiple mild blasts [14].
Repetitive head injury is also common in contact sports, such as boxing, American football,
and rugby, as well as in ‘non-contact’ association football [15–17]. It is estimated that
sports-related injuries in the USA annually result in up to 3.8 million concussions, but this
number may be significantly higher due to under reporting [16].

Historically, there has been controversy regarding whether mild or subconcussive
head injuries can have lasting effects. However, it is now recognised that exposure to
repeated mild subthreshold TBI (which, when considered alone, results in minimal or no
effect) can lead to lasting cognitive and behavioural impairments and increases the risk of
patients developing chronic traumatic encephalopathy (CTE) and other neurodegenerative
conditions [14,17–21]. The mechanisms underlying the factors leading initial subthreshold
exposure to cause sensitisation of the brain to subsequent injury remain unclear, as is the
answer to the question of whether specific brain areas are more sensitive to repetitive injury.

Real-life blast neurotrauma consists of a number of components: primary blast injury
resulting from the blast shockwave, secondary blast injury resulting from blunt or pene-
trating injury caused by projectiles or fragments, and tertiary blast injury resulting from
acceleration/deceleration due to inertial displacement [22–24]. While blunt and penetrating
brain trauma have been more widely studied, the other components of blast neurotrauma
are much less well understood, and consensus is lacking as to the way in which primary
and tertiary blast injury mechanisms interact to cause this pathology [19,25–27].

Animal models have been playing an important role in understanding blast neu-
ropathology, and attention has focused on the blast shockwave, which is unique to blast
neurotrauma. A large number of animal studies investigating moderate-to-severe blast TBI
resulting from exposure to a single blast shockwave have reported behavioural deficits and
neuropathological changes (for a review, see [28]). Several pre-clinical studies provided
evidence of an acute neuroglial inflammatory response following blast [19,25,27,29,30]. In
contrast, with some notable exceptions [31–34], few early studies investigated the effects
of repeated blast TBI. However, in recent years, interest in the effects of repetitive mild
blast TBI has increased, with studies demonstrating behavioural deficits and neuroinflam-
mation [35–37]. Whether the inflammatory response leads directly to loss of neurons is as
yet unclear, but reactive astrogliosis has been observed in the brains of human blast vic-
tims [18,19,38], and serum biomarkers of neuronal injury have been detected in personnel
exposed to blasts [39,40].

Our aim was to investigate and characterise the effects of single and repeated mild
blast-induced TBI in a novel rat model incorporating primary and tertiary blast components,
as well as to determine whether repeated mild blasts result in behavioural deficits, neuronal
loss, and astrogliosis. Primary outcomes were neurologic and motor function and neuronal
density in the associated brain areas. Secondary outcomes were neuronal density in other
regions of interest and astrogliosis.

2. Materials and Methods
2.1. Experimental Subjects

Experiments were performed in compliance with the UK Animals (Scientific Pro-
cedures) Act of 1986 and approved by the Animal Welfare and Ethical Review Body of
Imperial College London (PPL 7007466/PD8ED7926). Our study design complies with
the ARRIVE and PREPARE guidelines [41,42]. Young adult male Sprague–Dawley rats
(n = 90) aged 10–12 weeks old were obtained from Charles River Laboratory (Margate, UK).



Brain Sci. 2023, 13, 1298 3 of 24

Animals had undergone no previous procedures before entering the study. Animals were
housed in groups of 3–4 in filter-top cages in a pathogen-free facility in a 12:12 light–dark
cycle (7 am–7 pm light) at 22 ◦C with ad libitum access to food and water. Animals were
monitored daily before experiments, continuously monitored in the post-blast period for
at least 4 h, monitored again early the following day and then daily until the end of the
experimental protocol.

2.2. Experimental Groups, Randomizing, and Blinding

Animals were randomly assigned to sham or blast groups using a computerised
random number generator. The distributions of animals were 1 × blast (n = 22), 1 × sham
(n = 18), 3 × blast (n = 28), and 3 × sham (n = 22). Animals were allowed to survive for
24 h, 5 d, or 22 d. A subset of these animals was used to perform histological analysis
at 24 h and 5 d. Planned group sizes for the histological outcomes were 6–8 animals per
group, with this size based on early pilot studies. The actual histological group sizes were
1 × blast 24 h (n = 8), 1 × sham 24 h (n = 8), 1 × blast 5 d (n = 9), 1 × sham 5 d (n = 8),
3 × blast 24 h (n = 7), 3 × sham 24 h (n = 6), 3 × blast 5 d (n = 8), and 3 × sham 5 d (n = 6).
The blast procedure, including animal preparation and the operation of the shock tube, was
carried out by one experimenter. A separate experimenter, who was blinded to the groups,
performed neurologic tests. Histological outcomes were assessed by blinded observers.

2.3. Blast TBI Procedure and Neurological Outcomes

A shock tube blast generator developed for use in a variety of in vitro and in vivo
biological models, described previously [43–50] was used to generate shockwaves with a
Friedlander waveform (Figure 1). Shockwave data were obtained during the experiments
from a radial pressure sensor at the distal end of shock tube [48] with animals in position.

Animals were anaesthetised with propofol (via a tail vein cannula) through a series
of bolus injections in order to maintain an appropriate depth of anaesthesia, which was
evaluated via repeated assessment of the lack of a pedal withdrawal reflex. The amount
and timing of propofol administration were recorded and were similar for blast and
sham groups in each configuration. Analgesia was provided via subcutaneous injection of
buprenorphine before blast exposure or sham procedure (0.03 mg/kg or 0.04 mg/kg for sin-
gle or repeated blast respectively). The sham and blast groups for each blast configuration
received the same dose of propofol (mg/kg) (Supplementary Table S1).

Animals were placed onto a horizontal stainless steel platform with a 10-millimetre-
thick Sorbothane sheet (KM Sounds Ltd., Staines-Upon-Thames, UK) bolted to the distal
end of the shock tube. Animals were positioned such that the head was the only part of the
body exposed to the shockwave, and they were secured in position inside of a custom-made
tight-fitting plastic restraining cone attached to the platform using Velcro® straps held in
place with metal clamps. The centre of the cranium was aligned with the vertical axis of
the shock tube outlet, being as close as possible to the shock tube (head midline 2 cm from
outlet), perpendicular to the shock tube, with the right side of the head facing the outlet
(Figure 2).

The thorax and abdomen were positioned along the outlet flange such that they
were shielded from the shockwave, avoiding blast-lung or thoracic systemic inflammatory
response. Due to the securing of the rat body, any motion along the longitudinal axis of the
body (z-axis) was constrained. Sham animals were positioned on the platform for the same
amount of time as the blast animals, but the shock tube was not fired. All animals were
given supplemental oxygen (0.5 L/min) and were spontaneously breathing throughout the
procedure. Animals were exposed to either a single shockwave, with peak overpressure,
duration, and impulse of 259 ± 3 kPa, 1.40 ± 0.10 ms and 132 ± 8 kPa·ms, respectively, or
to three tightly coupled shockwaves, with peak overpressure, duration, and impulse of
256 ± 2 kPa, 1.30 ± 0.03 ms, and 129 ± 3 kPa·ms, respectively, with an inter-blast interval
of 7.0 ± 0.2 min, which were similar to the previously described models of repetitive blast
injury [31,51,52].
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Figure 1. A representative shock wave recorded during the experiment with animal in position. A 
signal obtained from a radial pressure sensor (2300 V1, Dytran Instruments, Chatsworth, CA, USA) 
at the distal end of the shock tube: the radial peak overpressure was 246 kPa; the positive wave 
duration was 1.3 ms; the impulse was 117 kPa·ms. Compressed air was used in the shock tube with 
a single diaphragm configuration using 225 µm Mylar®. Data were recorded using a high-band-
width oscilloscope (Tektronix model DPO4104B Tektronix Inc., Beaverton, OR, USA) at a sampling 
rate of 50 MHz, before being digitally filtered offline at 40 kHz. 
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Figure 1. A representative shock wave recorded during the experiment with animal in position. A
signal obtained from a radial pressure sensor (2300 V1, Dytran Instruments, Chatsworth, CA, USA)
at the distal end of the shock tube: the radial peak overpressure was 246 kPa; the positive wave
duration was 1.3 ms; the impulse was 117 kPa·ms. Compressed air was used in the shock tube with a
single diaphragm configuration using 225 µm Mylar®. Data were recorded using a high-bandwidth
oscilloscope (Tektronix model DPO4104B Tektronix Inc., Beaverton, OR, USA) at a sampling rate of
50 MHz, before being digitally filtered offline at 40 kHz.
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Figure 2. Kinematic characterisation of rat head movement in the blast neurotrauma model.
(i) Schematic diagram of animal orientation and positioning on platform at distal end of shock
tube. Rats were oriented with the right side of the head towards incident shockwave, being posi-
tioned such that only the head was exposed and the thorax was shielded from the shockwave. The
head could move unrestrained in the x-y plane. (ii) Head displacement in x-y plane. (iii) Head
x-displacement as a function of time. (iv) Head y-displacement as a function of time. (v) Velocity in x
axis as a function of time. (vi) Velocity in y axis as a function of time. Lines shown are the means of
data obtained from 3 animals.
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2.4. Physiologic Monitoring

Physiological monitoring in animal models of brain injury mirrors the processes
that happen in human trauma patients and is recognised as part of good experimental
design [53–55]. During anaesthesia induction and recovery, animals were placed onto a
temperature-controlled heating mat and given supplemental oxygen (0.5 L/min). Clinically
relevant physiologic parameters were monitored, including peripheral blood oxygenation
via pulse oximetry (OXY-100 Vet Pulse Oximeter, Gima, Gessate, Italy), non-invasive systolic
and diastolic blood pressure, heart rate, and core body temperature (Kent CODA monitor,
EMKA Technologies, Paris, France).

2.5. High Speed Videography and Kinematic Analysis

A Phantom v611 high speed video camera (Vision Research Inc., Wayne, NJ, USA) with
a frame rate of 100,000 fps was positioned facing towards the nose of the rat placed onto the
platform at the distal end of the shock tube. Videos were acquired using Phantom Camera
Control v3.5 software (Vision Research Inc., Wayne, NJ, USA) and stored on a computer.

To provide reference points, under anaesthesia, two lines were drawn using a marker
pen, with one line horizontally drawn across the head at a point between the ears and
another perpendicular line drawn from a point midway between the ears and the nose.
The reference point for the kinematic analysis was the point midway between the ears at
which the line from the nose intersected the horizontal line. The origin of the x-y plane
(Figure 2i) in each video was the position of the intersection between these two lines in the
frame before movement began. The position of this reference point was tracked until the
head movement ended. Data regarding x- and y-positions and velocities were calculated
for each animal using Tracker v5.1.5 software (Open Source Physics, www.compadre.org),
with sampling occurring every 20 frames (0.2 ms). The regions of maximum change in
velocity were determined by inspection of the x- and y-velocity versus time graphs, and
maximum accelerations were calculated from a linear fit of tangents to these graphs at
these points.

2.6. Blast-Induced Unconsciousness: Loss of Righting Reflex

The increase in the time until the recovery of the righting reflex after the blast compared
to sham animals was used as a measure of the blast-induced loss of consciousness [56]. After
blast exposure, the animals were placed in the supine position on a feedback-controlled
temperature mat until they righted themselves (all four paws placed on the surface of
the mat). The time from the last shock wave until the recovery of the righting reflex was
recorded [56]. Following the recovery of the righting reflex, animals were returned to their
home cages.

2.7. Neurological Outcome Score

We used a modified version of a neurological outcome score [57]. Our modified
version focused on simple and complex motor function, including beam walking (2.5 cm
beam) and general status; we omitted sensory tests. Uninjured healthy animals should
score zero, with severely impaired rats scoring a maximum of 34 points. We assessed the
baseline neurological score 1 day before the procedures and again 1 day after the blast or
sham procedure.

www.compadre.org
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2.8. Vestibulomotor Function

Vestibulomotor function was assessed using a RotaRod (model 47700, Ugo Basile,
Gemonio, Italy). Prior to the procedures, animals underwent three days of training to
achieve steady baseline. On day 0 of training, animals underwent acclimatisation to
the Rotarod at a constant low speed of 4 rpm for 5 min. On training days 1 and 2, an
accelerating protocol was used, starting at 4 rpm with a linear increase in speed up to
40 rpm over the 5-minute trial period. Each animal underwent 3 consecutive trials, with
5 min between trials.

The latency to fall was recorded using the single best trial (longest time) as a measure
of performance, with testing occurring using the accelerating protocol at 1 day, 5 days,
15 days, and 22 days after the procedure.

2.9. Body Weight Change

Animals were weighed on the day of the procedure (day 0). Animals’ body weights
were monitored in the days following procedure, and the weight change for each animal
was calculated as a percentage of its pre-procedure body weight.

2.10. Histological Processing, Immunofluorescence Staining, Imaging, and Analysis

Histological processing, immunofluorescence staining, and imaging procedures were
similar to those previously described [58]. At each histology endpoint, animals were
terminally anaesthetised using intraperitoneal pentobarbital and transcardially perfused
using ice cold phosphate buffered saline (PBS) (Sigma Aldrich, Gillingham, Dorset, UK),
followed by ice cold 4% paraformaldehyde (Thermo-Fisher Scientific, Loughborough, UK)
in PBS.

The brains were carefully removed from the skull and post-fixed in 4% paraformalde-
hyde in PBS overnight at 4 ◦C, before being transferred to 30% sucrose (Sigma Aldrich,
Gillingham, Dorset, UK) solution in PBS until equilibration. Brains were frozen in pow-
dered dry ice and stored at −80 ◦C until processing. Frozen brains were embedded in
optimal cutting temperature medium (OCT, Thermo-Fisher Scientific, Loughborough, UK),
and 20-micrometre coronal sections were cut using a cryostat (Leica CM3050, Leica Mi-
crosystems, Milton Keynes, UK).

Slices were stained with antibodies of neuronal nuclei (NeuN), glial fibrillary acid
protein (GFAP), and the nuclear stain DAPI, as previously described [58]. Images were
captured using a Zeiss AxioObserver Inverted Widefield Microscope (Facility for Imaging
by Light Microscopy, Imperial College London) equipped with a motorised stage and a
20 × objective (Zeiss Plan Apochromat, NA 0.8, WD 0.55 mm), as described previously [58].

2.11. Image Analysis

NeuN positive neurons were manually counted using Fiji (ImageJ) [59], as described
previously [58]. Figure 3 shows a typical slice stained with NeuN and DAPI showing
the neuronal regions of interest (ROIs). Our injury paradigm had the right side of the
head perpendicular to the shockwave, and there was a possibility of a lateralisation of
the neuronal loss; therefore, we quantified the neuronal density in both left and right
hemispheres. Astrocyte activation was assessed by measuring the percentage GFAP positive
area, as described previously [58]. Similar imaging parameters (exposure time and LED
intensity) were used to acquire the images, and the same binarisation threshold was used
for all images in the GFAP area analysis. The dimensions of the ROIs used are described in
the Supplementary Information document.
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Figure 3. Changes in neuronal density after single and repeated blast injury were mapped in cortical
and subcortical regions in coronal brain sections. Image shows a typical section at Bregma −3.36 mm
from a sham animal at 24 h, stained with neuronal marker NeuN (yellow) and non-specific nuclear
marker DAPI (red). Neurons were counted in left and right retrosplenial cortex (RSC) in layers 1,
2/3/4, and 5/6; the motor/medial parietal association cortex (M1/MPtA) was assessed in layers 1,
2/3, 4, and 5/6; the somatosensory cortex trunk region and barrel field (S1Tr, S1BF) were assessed
in layers 1, 2/3, 4, and 5/6; the auditory cortex (Au1) was assessed in layers 1, 2/3, 4, and 5/6; and
the ectorhinal cortex (Ect) was assessed in layers 1, 2/3, 4, and 5/6. Finally, in subcortical regions
of amygdala (Amyg), ventromedial hypothalamus (VMH), centromedial thalamic nucleus (CM),
ventromedial/ventrolateral thalamic nucleus (VM/VL), ventral posteromedial thalamic nucleus
(VPM), laterodorsal thalamic nucleus, ventrolateral (LDVL), and medial habenular nucleus (MHb)
and hippocampus (CA1; CA2; CA3 and DG) were assessed. The scale bar is 1000 µm.

2.12. Lung Tissue Processing and Histology

Following euthanasia under anaesthesia, fresh lungs were extracted from the thoracic
cavity and inflated with approximately 6 mL of PBS and trachea tied off. The samples
were placed in individual 50-millilitre tubes containing neutral buffered formalin. After
48 h, formalin was replaced with 70% ethanol. Samples were stored in the dark at 4 ◦C
until further processing. The right caudal lobe was removed, placed in a biopsy cassette
containing 70% ethanol, and embedded in paraffin wax prior to cutting. Slices (5 µm) were
cut using a Leica rotary microtome (model 2125RT, Leica Microsystems, Milton Keynes, UK)
and stained with mercury-free haematoxylin and eosin (H&E) (VWR Ltd., Leicester, UK).
A Zeiss AxioObserver widefield microscope with 20 × objective (Zeiss Plan Apochromat,
NA 0.8, WD 0.55 mm) was used to perform brightfield imaging.



Brain Sci. 2023, 13, 1298 8 of 24

2.13. Statistics

For the loss of the righting reflex, propofol dose, neurologic outcome score, and
immunohistology results, the blast groups and sham groups were compared using a Mann–
Whitney test or a Kruskal–Wallis test with Benjamini–Yekutieli correction.

Rotarod and body weight change data were analysed using a two-way ANOVA with
Sidak’s correction. p values of less than 0.05 were taken to indicate a significant difference
between groups. Unless otherwise stated, values are quoted as means ± SEM. Sample sizes,
designated as n = number of animals, are indicated in the figure legends. Statistical tests
were implemented using GraphPad Prism version 7.03 for Windows (GraphPad Software,
GraphPad Software, Boston, Massachusetts, USA, www.graphpad.com (accessed on 30
July 2023)).

3. Results
3.1. Characterisation of Head Kinematics

Head motion in the x-y plane (Figure 2) described an oval trajectory, following ex-
posure to a 260-kilopascal shockwave. The kinematic parameters, x-y displacements,
velocities, and accelerations are given in Table 1. Motion along the longitudinal axis of the
body (z-axis) was prevented (see Methods).

Table 1. Kinematics for exposure to a single mild blast shockwave. Values are mean (SEM), n = 3 animals.

Kinematic Parameter Maximum Value At Time

x-displacement 4.0 ± 0.4 cm 12 ms
x-velocity 15.4 ± 1.4 ms−1 4 ms

x-acceleration 3806 ± 826 ms−2 6.5 ms
y-displacement 3.2 ± 0.5 cm 25 ms

y-velocity 4.9 ± 0.3 ms−1 4 ms
y-acceleration 1357 ± 60 ms−2 11.7 ms

3.2. Exposure to Single Blast Shockwave Does Not Affect Physiological Parameters

Peripheral oxygen saturations were in the normal range (median values 95% or above;
minimum values of ≥90%) before and after the blast (Supplementary Table S1). Core
body temperature, heart rate, and blood pressure (systolic and diastolic) were within the
normal physiological range before and after the blast, with no significant differences in any
parameters recorded before and after the procedures or between the sham and blast groups
(Supplementary Table S1).

3.3. Exposure to Single Blast Shockwave Does Not Result in Functional Impairments

There was no significant difference in the time required to recover the righting reflex,
as a measure of blast-induced unconsciousness, between single blast group (13.3 ± 1.1 min)
and the sham group (11.4 ± 1.4 min) (Figure 4i). There was no difference in the dose of
propofol administered to each of the two groups (Supplementary Table S1). These findings
are consistent with a single blast of this intensity not inducing unconsciousness. There was
no significant difference in the neurological outcome score between the single blast and the
sham group before or after the blast or sham procedure (Figure 4ii).
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Weight loss in the days after TBI in rodents has been shown to correlate with neuro-
logical and sensorimotor deficits, injury severity, and neuronal loss [60,61]. The change in 
body weight compared to the day of the procedure is shown in Figure 4iii. There was no 
weight loss in either group after the blast or sham procedure. Compared to the sham 
group, the single blast group was not significantly different up to day 15, but percentage 
weight increases of the single blast group were significantly greater than those of the sham 

Figure 4. Single blast does not result in unconsciousness or persistent neurological deficits.
(i) A single 260-kilopascal shockwave does not result in blast-associated unconsciousness. Time
until recovery of righting reflex immediately after blast (blue bar) was not significantly different to
that of sham procedure (white bar), indicating that there was no blast-associated unconsciousness.
(ii) Neurological outcome score in blast and sham groups was not significantly different one day
before blast or one day after blast. (iii) Weight change relative to procedure day up to 22 days
following blast or sham procedure. There was no weight loss in either sham or blast group. Values
shown are means, and error bars are standard errors. ** p < 0.01, ns not significant. Loss of righting
reflex, 1 × blast n = 22, sham n = 18, Mann–Whitney test. Neuroscore 1 × blast n = 6, sham n = 4,
Kruskal–Wallis test with Benjamini–Yekutieli correction. Weight change, 1 × blast n = 16, sham
n = 10, two-way ANOVA with Sidak’s correction.

Weight loss in the days after TBI in rodents has been shown to correlate with neuro-
logical and sensorimotor deficits, injury severity, and neuronal loss [60,61]. The change
in body weight compared to the day of the procedure is shown in Figure 4iii. There was
no weight loss in either group after the blast or sham procedure. Compared to the sham
group, the single blast group was not significantly different up to day 15, but percentage
weight increases of the single blast group were significantly greater than those of the sham
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group at day 21 and day 22. These findings are consistent with this intensity of a single
blast not resulting in global neurological or sensorimotor deficits.

3.4. Exposure to Single Blast Shockwave Does Not Result in Cortical Neuronal Loss

No significant differences in neuronal cell density between the single blast and
sham groups were observed at either time point in any of the cortical areas investigated
(Supplementary Figures S1 and S2i–iv).

3.5. Exposure to Single Blast Shockwave Does Not Result in Subcortical Neuronal Loss

No significant differences in neuronal cell density between the single blast and sham
groups were observed at either time point in any of the subcortical areas investigated
(Supplementary Figure S2v–viii).

Taken together, the lack of blast-induced unconsciousness after a single shockwave of
260 kPa, together with the lack of neurological impairments, or weight loss and the absence
of cortical or subcortical neuronal loss are consistent with this intensity of a single blast
resulting in a very mild, or subthreshold, blast TBI.

3.6. Exposure to Three Repeated Blast Shockwaves Does Not Affect Physiological Parameters or
Cause Lung Injury

Peripheral oxygen saturations were found to be in the normal range (median values
97% or above; minimum values of ≥92%) before and after the blast (Supplementary Table S1).
The normal oxygen saturations after the blast are consistent with good peri-procedure
care, as well as with our configuration effectively shielding the thorax and lungs from
the shockwave. To further investigate whether there was any pulmonary injury, we car-
ried out a histological examination of the lung tissue. Lung tissues from sham and blast
animals were normal and clearly distinguishable from blast lung (Figure 5). The core
body temperature, heart rate, and blood pressure (systolic and diastolic) were within the
normal physiological range before and after the blast (Supplementary Table S1). There
were no significant differences in any of the parameters, except temperature, before and
after the procedure or between the sham and repeated blast groups. In the case of core
body temperature, there were no significant differences between the sham and repeated
blast groups, but there was a significant reduction in the temperature (to 37 ◦C) in both
groups after the blast or sham procedure (Supplementary Table S1).
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Figure 5. Head-only blast model avoids lung injury. Typical haematoxylin- and eosin-stained slices
obtained from right caudal lobe of lungs of animals exposed to sham procedure or three repeated
shockwaves at 24 h after the blast or sham procedure. Also shown is right caudal lobe obtained from
an animal with fatal blast lung. The alveolar spaces in the sham and three repeated blast animals are
clear, well inflated, and free of red blood cells. In contrast, the tissue obtained from animal with blast
lung exhibits severe pulmonary haemorrhage, or ‘hepatisation’. Scale bar is 100 µm.
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3.7. Exposure to Three Repeated Blast Shockwaves Results in Acute and Persistent Functional Deficits

In contrast to a single blast, three repeated blasts resulted in prolonged and significant
blast-induced unconsciousness (Figure 6). The time until the recovery of the righting reflex
after the final blast was significantly increased (28.5 ± 2.2 min, p < 0.001) compared to the
sham group (10.0 ± 1.0 min) (Figure 6i). There was no significant difference in the total dose
of propofol (mg/g) between the sham and repeated blast groups (Supplementary Table S1).
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Figure 6. Repeated blast results in unconsciousness and persistent neurological deficits. (i) Three
repeated shockwaves result in blast-associated unconsciousness. Time until recovery of righting
reflex immediately after blast (blue bar) was significantly increased compared to sham procedure
(white bar), indicating blast-induced unconsciousness. (ii) There are neurological impairments after
three repeated shockwaves. One day before procedure, there was no significant difference between
blast (blue bar) and sham (white bar) groups. Following blast, there was a significant increase in neuroscore
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in blast group compared to sham group, indicating neurological impairments. (iii) RotaRod perfor-
mance indicates persistent vestibulomotor deficits following repeated blast exposure. There was
no difference in latency to fall between blast and sham groups on two training days before injury.
Latency to fall was significantly decreased in blast group on day 1, day 15, and day 22 after blast.
(iv) Weight change relative to procedure day up to 22 days following blast or sham procedure.
There was no weight loss in sham group. There was significant weight loss in repeated blast group
compared to sham group. Values shown are means, and error bars are standard errors. * p < 0.05,
** p < 0.01 *** p < 0.001, **** p < 0.0001, ns not significant. Loss of righting reflex, 3 × blast n = 28,
n = 22 sham, Mann–Whitney test. Neuroscore 3 × blast n = 10, sham n = 9, Kruskal–Wallis test with
Benjamini–Yekutieli correction. Weight change, 3 × blast n = 25, sham, n = 22, two-way ANOVA with
Sidak’s correction. Rotarod; 3 × blast n = 15, sham n = 12, two-way ANOVA with Sidak’s correction.

One day following the blast, there were significant (p < 0.01) neurological impairments
(increase in neuroscore) in the repeated blast group (6.8 ± 0.9) compared to the sham group
(2.0 ± 0.5) (Figure 6ii).

In order to assess vestibulomotor function, we measured latency to fall in an accel-
erating RotaRod protocol (Figure 6iii). Before the blast or sham procedure, there was
no difference between groups in terms of RotaRod performance (training day 1, train-
ing day 2). In contrast, following repeated blast TBI, the latency to fall was significantly
(p < 0.05) reduced compared to the sham group on day 1, day 15, and day 22, indicating a
persistent locomotor deficit (Figure 6iii). On day 5, after repeated blasts, the latency to fall
was reduced, but this reduction did not reach significance. These findings are consistent
with prolonged vestibulomotor impairments following repeated blasts.

The sham group exhibited an approximately linear increase in weight as a function
of time, as expected for animals with ad libitum access to food and water (Figure 6iv). In
contrast, the repeated blast group demonstrated weight loss on days 1 to 5 following the
blast, returning to baseline weight only on day 6, followed by an approximately linear
increase in weight as a function of time. The relative body weight in the repeated blast
group was significantly (p < 0.001) less than that of the sham group at all time points, except
day 22 (Figure 6iv). On day 22, the relative weight of the repeated blast group was less
than that of the sham group, but the difference did not reach significance.

Overall, these functional outcomes are consistent with repetitive mild blast resulting in
acute blast-induced loss of consciousness and persistent neurological and vestibulomotor
deficits.

3.8. Exposure to Three Repeated Blast Shockwaves Causes Cortical Neuronal Loss

Representative images of NeuN-stained sections showing the somatosensory cortex
(S1BF), amygdala, and auditory cortex (Au1) from the sham and repeated blast groups are
shown in Figure 7. There were significant reductions in the median neuronal densities in
the left M1/MPta in layers 2/3 (by 35%, p < 0.001) and layers 5/6 (27%, p < 0.001) 24 h
after the blast (Figure 8i). Similar reductions in median neuronal density were observed
after 5 days, but these reductions did not reach significance. In the right M1/MPta, there
were significant reductions in the median neuronal densities in layers 2/3 after both 24 h
and 5 days (33%, p < 0.05 and 35%, p < 0.05 respectively), layer 4 after 24 h (25%; p < 0.05),
and layer 5/6 after both 24 h and 5 days (33%, p < 0.01 and 31%, p < 0.05, respectively)
(Figure 8ii). In layer 4, there was a reduction in the density of a similar magnitude at 5
days after the blast, but this reduction did not reach significance. In the left S1BF, there
were significant reductions in the median neuronal density after repeated blasts in layers
2/3 after 24 h and 5 days (by 38%, p < 0.05 and 41%, p < 0.05 respectively) and layers 5/6
after 5 days (by 28%, p < 0.01) (Figure 8iii). Similar reductions in the median density were
observed in layer 4 after 24 h and 5 days and layer 5/6 after 24 h, but these reductions did
not reach significance. In the right S1BF, there were significant reductions in the median
neuronal densities after repeated blasts in layers 2/3 after 24 h (by 25%, p < 0.05), layer
4 after 24 h and 5 days (by 38%, p < 0.001 and 25%, p < 0.01 respectively), and layer 5/6
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after 24 h and 5 days (by 23%, p < 0.01 and 16%, p < 0.05, respectively) (Figure 8iv). A
similar reduction was observed in layers 2/3 after 5 days, but this reduction did not reach
significance. In the left Au1, there were significant reductions in median neuronal densities
in layer 2/3 after 24 h (by 31%, p < 0.05) and layer 4 after 24 h (by 35%, p < 0.05) (Figure 8v).
Smaller reductions in neuronal density were observed after repeated blasts in layer 4 after
5 days and layers 5/6 after 24 h and 5 days, but these reductions did not reach significance.
In the right Au1, reductions were observed in layers 4 and layers 5/6 after 24 h and 5 days
in the repeated blast group, but these reductions did not reach significance (Figure 8vi).
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Figure 7. Repeated 260-kilopascal blast results in neuronal loss. Representative neuronal staining
in sham and three repeated blast groups in (i) right somatosensory cortex (S1BF) layer 4, (ii) right
amygdala, and (iii) left auditory cortex (Au1) layer 4. NeuN positive cells are shown in yellow, and
DAPI is shown in red. Images represent areas included in neuronal quantification in Figures 7 and 8.
The scale bar is 50 µm.

Brain Sci. 2023, 13, 1298 14 of 26 
 

 

densities after repeated blasts in layers 2/3 after 24 h (by 25%, p < 0.05), layer 4 after 24 h 
and 5 days (by 38%, p < 0.001 and 25%, p < 0.01 respectively), and layer 5/6 after 24 h and 
5 days (by 23%, p < 0.01 and 16%, p < 0.05, respectively) (Figure 8iv). A similar reduction 
was observed in layers 2/3 after 5 days, but this reduction did not reach significance. In 
the left Au1, there were significant reductions in median neuronal densities in layer 2/3 
after 24 h (by 31%, p < 0.05) and layer 4 after 24 h (by 35%, p < 0.05) (Figure 8v). Smaller 
reductions in neuronal density were observed after repeated blasts in layer 4 after 5 days 
and layers 5/6 after 24 h and 5 days, but these reductions did not reach significance. In the 
right Au1, reductions were observed in layers 4 and layers 5/6 after 24 h and 5 days in the 
repeated blast group, but these reductions did not reach significance (Figure 8vi).  

 
Figure 7. Repeated 260-kilopascal blast results in neuronal loss. Representative neuronal staining in 
sham and three repeated blast groups in (i) right somatosensory cortex (S1BF) layer 4, (ii) right 
amygdala, and (iii) left auditory cortex (Au1) layer 4. NeuN positive cells are shown in yellow, and 
DAPI is shown in red. Images represent areas included in neuronal quantification in figures 7 and 
8. The scale bar is 50 µm. 

 
Figure 8. Three repeated shockwaves result in cortical neuronal loss. Quantification of neuronal cell 
density of cortical layers from sham (white boxes) and three repeated 260-kilopascal blasts (blue 

Figure 8. Three repeated shockwaves result in cortical neuronal loss. Quantification of neuronal cell
density of cortical layers from sham (white boxes) and three repeated 260-kilopascal blasts (blue boxes)



Brain Sci. 2023, 13, 1298 14 of 24

groups in (i) left and (ii) right motor/medial parietal association cortex (M1/MPtA), (iii) left and
(iv) right somatosensory cortex (S1BF), and (v) left and (vi) right auditory cortex (Au1). Lines are
medians, boxes represent interquartile intervals, and whiskers are ranges. * p < 0.05, ** p < 0.01, and
*** p < 0.001 compared to sham; Kruskal–Wallis test with Benjamini–Yekutieli correction. After 24 h,
sham n = 6 and blast n = 7; after 5 days, sham n = 6, and, blast n = 8. Not all slices included Au1.

To further map cortical neuronal density after blasts, we investigated the effects of
repeated blasts on the retrosplenial cortex (RSC), somatosensory cortex trunk region (S1Tr),
and ectorhinal cortex (Ect) (Supplementary Figure S3). Interestingly, the RSC, S1Tr, and Ect
appear to be less sensitive to repeated blast injury, with no significant changes in median
neuronal density observed in any of the RSC layers investigated (layer 1, layers 2/3/4, and
layers 5/6) (Figure S3i,ii). Reductions in neuronal density after repeated blasts in the S1Tr
layers 2/3, layer 4, and layers 5/6 (Figure S3iii,iv), as well as in the Ect layers 2/3 and layer
4, occurred (Figure S3v,vi), but these reductions did not reach significance.

3.9. Subcortical Regions Are Differentially Sensitive to Three Repeated Blast Shockwaves

In the amygdala (Figure 9i), there were significant reductions in neuronal cell density
after repeated blasts in the right hemisphere after 24 h and 5 days (by 19%, p < 0.05 and 19%,
p < 0.05, respectively). Similar reductions were observed in the left hemisphere (by 16%
and 8%, respectively, at 24 h and 5 days), but these reductions did not reach significance
(Figure 9i). In contrast, the hypothalamus (Figure 9ii) appears to be less sensitive to
repeated blasts, as there were no significant differences in the median neuronal density
following blasts. Similarly, most of the hippocampal subregions appear to be insensitive to
repeated blasts (Figure 9iii–v), with the exception of the left CA3 region, where there was a
reduction in neuronal density of 17% after 24 h, but this reduction did not reach significance
(Figure 9v). There were reductions in the median neuronal density after repeated blasts
in the left medial habenular nucleus (8% after 24 h and 5 days) (Figure S4i), and the
laterodorsal thalamic nucleus, ventrolateral (17% after 24 h; 15% after 5 days) (Figure S4ii),
but these reductions did not reach significance. In contrast there was no change after
repeated blasts in the ventral posteromedial thalamic nucleus, ventromedial/ventrolateral
thalamic nuclei, or centromedial thalamic nucleus (Figure S4ii–v).
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(iii) CA1, (iv) CA2, (v) CA3, and (vi) DG subregions; and in sham (white boxes) in repeated 260-
kilopascal blasts (blue boxes). The lines are medians, boxes are interquartile intervals, and whiskers
are ranges. * p < 0.05 compared to sham; Kruskal–Wallis test with Benjamini–Yekutieli correction.
After 24 h, sham n = 6 and blast n = 7; after 5 days, sham n = 6 and blast n = 8.

3.10. Exposure to Three Repeated Blast Shockwaves Does Not Result in Astrogliosis in Cortical and
Subcortical Regions

We quantified the GFAP-positive area as a measure of astrocyte activation. There
were no significant differences in the median GFAP-positive area in any of the cortical or
subcortical regions investigated (Supplementary Figures S5 and S6).

4. Discussion
4.1. Blast Injury Model

Any animal blast TBI model represents a compromise between the multiple hetero-
geneous (and uncontrolled) factors influencing real-world blast injury and the possibility
of carefully controlling and modelling specific aspects of the real-world blast in order
to understand the contributions of individual factors. We used a shock tube to generate
reproducible shockwaves with a Friedlander waveform typical of a free field explosion. We
aimed to model both primary and tertiary blast injuries; therefore, we chose a configuration
that included head motion [27,62–65]. We chose to model head-only blast neurotrauma, in
part because the widespread use of modern body armour by military personnel provides
effective thoracic protection [66].

There is debate regarding the appropriate scaling parameters between animal models
and humans, with mortality-based scaling suggesting that scaling of duration is impor-
tant [67]. It has been estimated that the relevant scaling factor for blast-wave duration
between rodents and humans is around seven-fold; thus, waves with durations of ~1.5 ms
in rodents would be representative of exposure of a human to a typical IED blast with
a duration of less than 10 ms [66]. However, recent predictions based on blast-induced
intracranial pressure measurements in animal models have suggested that the scaling of the
overpressure may be more important than the duration [68]. We used shockwaves of peak
overpressure of 260 kPa, a duration 1.4 ms, and an impulse of 130 kPa·ms. According to
calculations made using the Kingery–Bulmarsh equations [69], an impulse of ~130 kPa·ms
corresponds to using 2 kg of TNT at a standoff of 3 to 4 m in free-field conditions.

4.2. Characterisation of Head Kinematics

There has been controversy regarding the relative contribution of the shockwave
(primary injury) and acceleration (tertiary injury) to blast neurotrauma. Some evidence
suggests that head motion plays the most important role [19,62,63,70], while other evidence
suggests that the shockwave alone results in significant injury [26,71]. There are relatively
few studies that have characterised head motion in detail, and direct comparisons between
studies are complicated because head orientation relative to shockwave is different in each
model or different species have been used (e.g., the relative sizes of mice and rats affects
the kinematics for a given blast intensity).

Our model’s head motion described an oval shape similar to the ‘bobble head motion’
described by Goldstein et al. [19], and it had a similar maximum velocity. However, in
our rat model, maximum accelerations were 4 to 8 times smaller in magnitude than those
reported in mice [19,27,70]. Given the similarities in peak velocities, the difference in the
accelerations likely reflects the approximately 10-fold greater mass of the rat compared to
the mouse. Our accelerations are similar in magnitude to those reported by Budde et al. in
rats [26].
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4.3. Repetitive Head-Only Exposure to Blast Shockwaves Results in Unconsciousness and
Persistent Neurological and Locomotor Impairments

In contrast to the lack of an acute effect of a single 260-kilopascal blast, exposure to
three tightly coupled blasts resulted in prolonged blast-induced unconsciousness. Our
observation of blast-induced unconsciousness after three repeated blasts, but not after one
blast, is consistent with studies in mice that used whole-body exposure [31]. In addition,
unlike the case of single blast exposure, we observed significant neurological impairments
at 24 h after repeated blast injury and persistent vestibulomotor impairments, which are
consistent with reports in both mice and rats [31,37]. We observed weight loss on days 1–5
following repeated blasts, which is consistent with global neurological and sensorimotor
impairments. These functional neurologic and motor impairments were among the primary
outcomes considered to assess whether blast exposure induced injury.

4.4. Absence of Lung Injury in the Head-Only Blast Model

We aimed to investigate isolated blast injury to the head without the potential con-
founder of systemic inflammatory responses resulting from blast exposure of the thorax, as
there is evidence that systemic inflammation can result in neuroinflammation and injury to
the brain [72]. We were careful to position the animals such that only the head was exposed
to the shockwave, with the thorax being shielded. The lung, being an air-filled organ, is
extremely sensitive to injury from blast [73]. In addition to generating a systemic inflamma-
tory response, injury to the lung could result in reduced oxygen exchange, causing hypoxic
brain injury. Hence, in order to ensure that our model did not result in lung injury, we
measured peripheral oxygen saturation and carried out lung histology after blast exposure.
From a functional perspective, oxygen saturations were normal after blast injury, which
is consistent with there being no injury to the lungs, and this outcome was confirmed by
normal lung histology.

4.5. Mapping Neuronal Loss after Repetitive Blast across Cortical and Subcortical Brain Regions

The regions in which neuronal loss occurred are summarised in Figure 10. The cortex
was most sensitive to injury, with significant (p < 0.05) neuronal loss occurring in the
motor cortex, somatosensory cortex, and auditory cortex, while non-significant reductions
in neuronal density occurred in the ectorhinal cortex. The greater sensitivity of cortical
areas to repeated blast injury is consistent with our findings of persistent neurological and
motor impairments following repeated blasts. Neuronal loss in motor and somatosensory
areas associated with motor impairments was our primary histological outcome. We also
observed significant neuronal loss in the right amygdala with a non-significant reduction
in neuronal density in the left amygdala. Although the amygdala is not a cortical structure,
it is located in the outer part of the rat brain, being adjacent to the piriform cortex, and,
therefore, physically closer to the cortex than the thalamic subcortical areas. The reason
for the sensitivity of these regions to blast is unclear, but it is possible that exposure to the
unattenuated shockwave or proximity to changes in tissue density (e.g., skull/CSF/brain
parenchyma) may play a role.
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dorsal thalamic nucleus, ventrolateral; MHb, medial habenular nucleus; CA1, hippocampal CA1 
region: CA2, hippocampal CA2 region; CA3, hippocampal CA3 region; DG, hippocampal dentate 
gyrus region. The ventricles are shown in blue. Figure 10 is based on rat brain atlas of Paxinos and 
Watson [74], and is used with permission. 

Although the blast exposure was lateralised on the right side of head facing the inci-
dent shockwave, we observed bilateral neuronal loss in cortical areas. There has been de-
bate as to whether blast shockwaves result in an overall diffuse injury or more focal later-
alised injury [19,26]. The bilateral injury perpendicular to the shockwave is consistent with 
a neuroimaging study of blast injury in rats [26] and modelling of the pressure profiles in 
rat brain after blasts [75]. Potential mechanisms of bilateral injury development include 
the shockwave (primary blast injury) traversing both hemispheres, interhemispheric con-
nectivity, acceleration/deceleration (tertiary blast injury) resulting in coup–contrecoup in-
jury, or a combination of all of these factors. In the motor cortex/medial parietal temporal 
area and the somatosensory cortex barrel field, there was bilateral neuronal loss after 
blasts compared to uninjured sham group, which is consistent with the neurological im-
pairments and persistent vestibulomotor impairments that we observed following re-
peated blasts. The primary motor cortex and somatosensory cortex are closely connected 
and involved in the integration of sensory information and motor function [76]. Vestibular 
dysfunction is frequent following blast exposure in both military and civilian populations 
[77,78].  

Figure 10. Cortical brain areas are most sensitive to repeated blast TBI. Mapping of regions of
interest analysed exhibiting significant (p < 0.05) reductions neuronal density (orange), reductions
in neuronal density that did not reach significance (yellow), or no change in neuronal density
(grey). RSC, retrosplenial cortex; M1/MPtA, motor cortex/medial parietal temporal area; S1Tr,
somatosensory cortex trunk area; S1BF, somatosensory cortex, barrel field; Au1, primary auditory
cortex; Ect, ectorhinal cortex; Amyg, amygdala; VMH, ventromedial hypothalamic nucleus; VM/VL,
ventromedial/ventrolateral thalamic nucleus; VPM, ventral posteromedial thalamic nucleus; LDVL,
laterodorsal thalamic nucleus, ventrolateral; MHb, medial habenular nucleus; CA1, hippocampal CA1
region: CA2, hippocampal CA2 region; CA3, hippocampal CA3 region; DG, hippocampal dentate
gyrus region. The ventricles are shown in blue. Figure 10 is based on rat brain atlas of Paxinos and
Watson [74], and is used with permission.

Although the blast exposure was lateralised on the right side of head facing the in-
cident shockwave, we observed bilateral neuronal loss in cortical areas. There has been
debate as to whether blast shockwaves result in an overall diffuse injury or more focal
lateralised injury [19,26]. The bilateral injury perpendicular to the shockwave is consistent
with a neuroimaging study of blast injury in rats [26] and modelling of the pressure profiles
in rat brain after blasts [75]. Potential mechanisms of bilateral injury development include
the shockwave (primary blast injury) traversing both hemispheres, interhemispheric con-
nectivity, acceleration/deceleration (tertiary blast injury) resulting in coup–contrecoup
injury, or a combination of all of these factors. In the motor cortex/medial parietal temporal
area and the somatosensory cortex barrel field, there was bilateral neuronal loss after blasts
compared to uninjured sham group, which is consistent with the neurological impairments
and persistent vestibulomotor impairments that we observed following repeated blasts.
The primary motor cortex and somatosensory cortex are closely connected and involved in
the integration of sensory information and motor function [76]. Vestibular dysfunction is
frequent following blast exposure in both military and civilian populations [77,78].
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Neuronal loss was also observed in the auditory cortex, with greater loss occurring
in the left hemisphere. The reason for greater neuronal loss in the contralateral auditory
cortex is not clear; nevertheless, it is notable that the right ear is proximal to the shockwave
and it is possible that the input to the left auditory cortex from the right ear is attenuated or
absent, and this issue merits future investigation. Hearing loss and auditory dysfunction
are very common symptoms in blast-exposed veterans [79]. Although we did not measure
auditory responses in this study, these findings indicate that the investigation of auditory
function in our model may merit further investigation. In contrast to other cortical regions
of interest, the retrosplenial cortex was not affected, with no changes observed in neuronal
density after repeated blasts. The reasons for the reduced sensitivity of the retrosplenial
cortex to blast injury may be related to its anatomical location close to the midline, which
may protect it from the incident shockwave and make it less sensitive to acceleration in the
x-axis.

Although several in vivo studies of blast TBI have observed evidence of neurodegener-
ation, axonal injury, and tau protein accumulation [19,39,80], relatively few studies have
quantified neuronal density after blast injury, and as far as we are aware, there has not been
a systematic mapping of neuronal loss across the whole brain. Sajja et al. [81] reported sig-
nificant reduction in averaged NeuN staining in the pre-frontal cortex, nucleus accumbens,
and amygdala at 1 month after single whole-body blasts in rats. In a model of focal cranial
blasts, Bu et al. [82] reported reductions in NeuN-positive staining in the cortex, striatum,
and amygdala. In contrast, Elder et al. [34], reported no obvious histological changes in
Nissl-stained sections of hippocampus and neocortex 4.5 months after repeated blasts in
rats, despite PTSD-like behavioural deficits. Although they did not quantify neuronal
density using NeuN staining as we did in this study, Wang et al. [31] reported FluoroJade B
staining (indicating neurodegeneration) in the piriform cortex and amygdala after repeated
blasts in mice.

4.6. Repetitive Exposure to Blast Shockwaves Does Not Result in Astrogliosis

In order to determine whether the cortical neuronal loss after repeated blasts was
associated with astrogliosis, we investigated changes in the GFAP-positive area in the
motor cortex/medial parietal temporal area, somatosensory cortex, auditory cortex, and
retrosplenial cortex. Interestingly, there were no significant changes in the GFAP-positive
area in any of these cortical areas at either the 24-hour or 5-day timepoints, despite signifi-
cant neuronal loss being observed after repeated blasts in all cortical regions, except the
retrosplenial cortex. These findings contrast with those of Sajja et al. [81], who observed
increases in GFAP-positive staining in the pre-frontal cortex that were associated with
neuronal loss and neurodegeneration after a single blast. However, it is worth noting that
in addition to examining a different brain area, Sajja et al. investigated longer time points of
one month and three months after blast.

A recent study of repeated blast injury in rats observed increases in the GFAP-positive
area in specific thalamic nuclei at 4 weeks after blasts that were associated with vestibu-
lomotor deficits [83]. In addition, a study of single blast injury in mice reported bilateral
increases in GFAP staining in the thalamus [19]. In contrast, we observed no significant
differences in the GFAP-positive area in subcortical regions. However, although it did not
reach significance, there was a large increase in the GFAP-positive area in the ventrolat-
eral/ventromedial thalamic nucleus after 24 h.

Astroglial scarring has been reported as a characteristic of human blast injury [18,84]; it
is noteworthy that the majority of human studies have studied chronic time points (months
to years after blasts), rather than the acute time points (up to 5 days) that we investigated.
Chronic astrogliosis may be the result of late-onset changes that are not manifest at early
time points. In support of this viewpoint, in rodent models of blunt TBI, we observed
relatively little astrogliosis in the injury group after 24 h [58], but chronic astrogliosis was
observed 18 months after injury [85].
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4.7. Limitations and Future Work

Our study shows that repetitive exposure to a subthreshold blast TBI results in acute
unconsciousness, persistent neurological and vestibulomotor deficits, and significant neu-
ronal loss in associated brain areas. The functional tests that we used focus on general
neurological function and motor behaviour. In addition to neuro-motor deficits, blast
injury in humans is associated with cognitive impairments and anxiety/depression [86]. In
future studies, we will investigate measures of cognition and anxiety following repeated
blasts using our model. We did not investigate RotaRod performance following a single
blast; although we cannot be certain that there were no vestibulomotor impairments after
a single blast, the fact that there were no blast-induced unconsciousness or impairments
in the neuroscore (which includes beam walking, which is a basic test of vestibulomotor
function) suggests that it is unlikely that deficits would have been detected using RotaRod.
While we observed significant neuronal loss in cortical and subcortical brain areas up to
5 days after injury, we have not investigated the mechanism underlying this finding or
looked at chronic timepoints [85]. Future work will address whether mechanisms such
as apoptosis or axonal injury underlie the observed neuronal loss, as well as investigate
chronic timepoints and other brain regions, such as the cerebellum. Interestingly our study
did not observe increased expression of GFAP following blasts, which is in contrast to
several other studies [19,81,83]. Increased expression of GFAP has frequently been used as
a surrogate measure of astrocyte activation/astrogliosis [87]; however, it is now recognised
that astrocyte activation results in a multitude of transcriptomic changes [88]. Future
studies using our repeated blast model may reveal whether there is astrocyte activation at
longer timepoints, as well as whether it is present at the early timepoints in the absence of
increased GFAP expression.

4.8. Translational Relevance

We describe a novel head-only model of repetitive mild blast TBI (mbTBI) incorporat-
ing primary blast injury (shockwave) and tertiary blast injury (acceleration/deceleration)
that results in acute blast-induced unconsciousness, as well as persistent neurological
deficits with selective and significant neuronal loss in motor and somatosensory cortical
brain regions correlating with these functional deficits. Our model of repetitive mbTBI
demonstrates both acute post-blast unconsciousness (concussion) and lasting functional
impairments similar to those that can occur in humans. In addition, the observation that
the cortex exhibits neuronal loss after repeated blasts in our model is consistent with neu-
roimaging studies in blast veterans showing cortical thinning [89,90]. Furthermore, we
observed significant neuronal loss in the auditory cortex and the amygdala, which are brain
areas associated with functional hearing impairments and anxiety frequently observed
after blast injury in humans. We demonstrate that a single mild blast of the same intensity
does not result in any observable functional deficits or neuronal loss, indicating that it is the
tightly coupled repetitive blast exposure that causes injury. Until recently, most pre-clinical
blast injury studies investigated either single blast exposure or repetitive blast with inter-
blast intervals of 1 day or more [32,91]. There have been relatively few studies focusing
on tightly coupled blast exposures. Such tightly coupled blasts are highly relevant from a
military perspective, as they can occur in cases where multiple charges are used in an IED
or during ‘breacher’ training or operations. In addition, firing artillery pieces is associated
with repetitive mild blast exposure. Our results are consistent with the initial subthreshold
blast sensitizing the brain to subsequent subthreshold insults, and with other models of
repetitive blast TBI, suggesting that the window of sensitisation ranges from a few minutes
to hours [31,51,52,83]. The fact that our model incorporates head movement, such as that
occurring in sports concussion, gives wider relevance to the model. Our novel model will
be useful in terms of investigating the processes underlying sensitisation by subthreshold
intensity insults, as well as further defining the temporal window of vulnerability of the
brain; these studies may be relevant to both repetitive mild blast TBI and other types of
tightly coupled repetitive brain injury, such as sports-related concussion.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/brainsci13091298/s1: Table S1. Physiologic parameters before and
immediately after blast or sham procedure. Figure S1: A single shockwave of 260 kPa does not
result in cortical neuronal loss; Figure S2: A single shockwave of 260 kPa does not result in cortical,
subcortical or hippocampal neuronal loss; Figure S3: Cortical neuronal loss after repeated 260 kPa
blast is selective; Figure S4: Subcortical neuronal loss after repeated 260 kPa blasts is selective; Figure
S5: Representative GFAP staining in sham and three repeated 260kPa blast group at 24 hrs in the
left hippocampal CA1 subregion. Figure S6: Three repeated shockwaves of 260 kPa do not result
in astrogliosis.
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